1. The standard Normal Variable has probability density function

$$
y=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Find the coordinates of the two points of inflection.
2. Find $\int \frac{x}{4 x^{2}-1} d x$.
3. Write down the derivative of $\cos ^{2} x$ and hence find the integral $\int \frac{\sin 2 x}{\cos ^{2} x+9} \mathrm{~d} x$
4. The curves C_{1} and C_{2} have equations $y=x^{2}+1$ and $y=1+2 x-x^{2}$ respectively. Find the area of the finite region enclosed between C_{1} and C_{2}.
5. Using the substitution $x=3 \tan \theta$, evaluate $\int_{0}^{3} \frac{1}{\left(9+x^{2}\right)^{2}} d x$

