1. A bat with moment of inertia I about an axis at one end is swung with angular velocity ω at a stationary ball with mass m so that the point of impact with the ball is at a distance y from the axis of rotation of the bat. After the perfectly elastic collision the ball acquires a speed v and the bat continues with angular velocity ω^{\prime}.
(a) Write down an equation showing conservation of energy in this collision.
(b) Write down an equation showing conservation of angular momentum in this collision.
(c) Eliminate ω^{\prime} from the above equations and solve for v as a function of the position of the point of impact y and show that

$$
v=\frac{2 y I \omega}{I+m y^{2}}
$$

(d) In order to achieve a maximum energy transfer at the point y we require that v is as large as possible. Find in terms of I, m and ω the value of y which results in the maximum value of v and show that this agrees with the expression for $y_{\max E}$ in your Sweet Spot lab hand out.
(e) Hence find the maximum speed of the ball $v_{\max }$ and observe that this is equal to the speed of the bat at the sweet spot. Also show that $\omega^{\prime}=0$ indicating that the bat comes to rest when you strike a ball at rest at this sweet spot.
(f) For a ball of mass 200 g and a uniform bat (ie a rigid rod) of mass 500 g and length 1 m swung with angular velocity $40 \mathrm{rad} / \mathrm{s}$ find the sweet spot and the speed of the ball after the collision.
(g) How far would this ball go if its velocity is directed at an angle of 45° to the horizontal? Is it a home run?

