- 1. A bat with moment of inertia I about an axis at one end is swung with angular velocity ω at a stationary ball with mass m so that the point of impact with the ball is at a distance y from the axis of rotation of the bat. After the perfectly elastic collision the ball acquires a speed v and the bat continues with angular velocity ω' .
 - (a) Write down an equation showing conservation of energy in this collision.
 - (b) Write down an equation showing conservation of angular momentum in this collision.
 - (c) Eliminate ω' from the above equations and solve for v as a function of the position of the point of impact y and show that

$$v = \frac{2yI\omega}{I + my^2}$$

(d) In order to achieve a maximum energy transfer at the point y we require that v is as large as possible. Find in terms of I, m and ω the value of y which results in the maximum value of v and show that this agrees with the expression for y_{maxE} in your Sweet Spot lab hand out.

(e) Hence find the maximum speed of the ball v_{max} and observe that this is equal to the speed of the bat at the sweet spot. Also show that $\omega' = 0$ indicating that the bat comes to rest when you strike a ball at rest at this sweet spot.

(f) For a ball of mass 200 g and a uniform bat (ie a rigid rod) of mass 500 g and length 1 m swung with angular velocity 40 rad/s find the sweet spot and the speed of the ball after the collision.

(g) How far would this ball go if its velocity is directed at an angle of 45° to the horizontal? Is it a home run?