1. Find, in the form $y=f(x)$, the general solution to the differential equation

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+x y=x+1
$$

Standard form is $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{x} y=\frac{x+1}{x^{2}}$ and integrating factor is $v=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$
Thus the differential equation becomes $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\frac{x+1}{x}$

$$
\Rightarrow \frac{\mathrm{d}}{\mathrm{~d} x}(x y)=1+\frac{1}{x} \Rightarrow x y=\int 1+\frac{1}{x} \mathrm{~d} x=x+\ln x+c \Rightarrow y=1+\frac{\ln x+c}{x}
$$

2. Find the solution to the differential equation

$$
\sqrt{x^{2}+1} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x}{2 y}
$$

Separate variables

$$
2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x}{\sqrt{x^{2}+1}} \Rightarrow \int 2 y \mathrm{~d} y=\int \frac{x}{\sqrt{x^{2}+1}} \mathrm{~d} x \Rightarrow y^{2}=\sqrt{x^{2}+1}+c \Rightarrow y=\sqrt{\sqrt{x^{2}+1}+c}
$$

3. Solve the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\cos x$, given that the $y=\frac{2}{\pi}$ when $x=\frac{\pi}{2}$.

Standard form is $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=\frac{\cos x}{x}$ and integrating factor is $v=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$ Thus the differential equation becomes

$$
\begin{gathered}
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y=x \cos x \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{2} y\right)=x \cos x \\
\Rightarrow x^{2} y=\int x \cos x \mathrm{~d} x=x \sin x+\cos x+c \text { so } y=\frac{x \sin x+\cos x+c}{x^{2}}
\end{gathered}
$$

Now substituting $y=\frac{2}{\pi}$ when $x=\frac{\pi}{2}$ we solve for c

$$
\frac{2}{\pi}=\frac{\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}+c}{\left(\frac{\pi}{2}\right)^{2}}=\frac{\frac{\pi}{2}+c}{\left(\frac{\pi}{2}\right)^{2}} \Rightarrow \frac{\pi}{2}=\frac{\pi}{2}+c \Rightarrow c=0
$$

so finally

$$
y=\frac{x \sin x+\cos x}{x^{2}}
$$

4. Solve the differential equation $x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+e^{1 / x}=0$, given that $y=0$ when $x=-1$.

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-e^{\frac{1}{x}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{x^{2}} e^{\frac{1}{x}} \Rightarrow y=\int-\frac{1}{x^{2}} e^{\frac{1}{x}} \mathrm{~d} x=e^{\frac{1}{x}}+c
$$

when $x=-1$ then $y=0$ so we solve for c

$$
0=e^{-1}+c \Rightarrow c=-e^{-1} \text { so } y=e^{\frac{1}{x}}-e^{-1}
$$

5. A element A decays to another element B which is also radioactive. A is called the mother nucleus and B is called the daughter nucleus (why radioactive elements are considered feminine is open to question!). Suppose the half life of element A is 30 minutes and the half life of element B is 10 minutes and that you start off with 1.0 moles of A and zero moles of B. Your task in this problem is to find the number of moles of B as a function of time t in minutes. This of course depends on the number of moles of A at time t.
(a) Show that the number of moles of A at time t is $A=1.0 e^{-k_{A} t}$ where $k_{A}=\ln 2 / 30 \mathrm{~min}^{-1}$. Now Now, don't get your hopes up. You'll have to wait until next week - this is for homework.
(b) The rate of change in the number of moles of B equals the rate of increase in B due to the decay of A minus the rate of decrease in B due to the decay of B. That is

$$
\frac{\mathrm{d} B}{\mathrm{~d} t}=k_{A} A-k_{B} B
$$

where $k_{B}=\ln 2 / 10 \mathrm{~min}^{-1}$. Substitute for A in the above differential equation and solve it for B as a function of time. Sketch the function using your graphical calculator.
(c) What is the maximum number of moles of B and when is it at a maximum?

