- 1. An unstable particle has a rest mass of 1189 $\rm Mev/c^2$ and a lifetime of 4.0×10^{-16} s in its own rest frame. If it is created in a laboratory bubble chamber, and travels at 98% of the speed of light. Calculate the following with respect to an observer in the laboratory
 - (a) The length of the track in the bubble chamber
 - (b) its momentum
 - (c) its total energy
 - (d) its kinetic energy

2. (a) The $^{14}_{6}$ carbon nucleus is radioactive and decays according to

$$^{14}\text{C} \rightarrow ^{14}\text{N} + \beta^{-} + \bar{\nu}$$

By considering the mass difference between reactants and products show that the energy released in this disintegrating process is 0.157 MeV. This energy is shared between the ^{14}N , the β^- and the $\bar{\nu}$. The atomic mass of ^{14}C is 14.003242 u and that for ^{14}N is 14.003074 u and the $\bar{\nu}$ has negligible mass.

(b) If half the energy goes to the β^- find its velocity.