1. A series is defined recursively as follows

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right)
$$

where $a_{1}=1$. Find the limit of a_{n} as $n \rightarrow \infty$.
2. Determine whether the following series converge or diverge
(a) $\sum_{1}^{\infty} \frac{n^{2}}{n!}$
(b) $\sum_{1}^{\infty} \frac{1}{n(n+1)}$
3. Find the interval of convergence of the following power series

$$
1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+32 x^{5}+\cdots
$$

4. Find the first three non zero terms of the Maclaurin Series for the function $f(x)=e^{-x^{2}}$
