1. (a) Show that the function $y=A e^{k x}+B e^{-k x}$ satisfies the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=y$ for a particular value of k and state this value.
(b) Suppose $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ when $x=0$. Find the constants A and B. Hence write down the solution of the differential equation with these boundary conditions and call the function $y=S(x)$
(c) Suppose $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$. Find the constants A and B. Hence write down the solution of the differential equation with these boundary conditions and call the function $y=C(x)$
(d) Simplify as far as possible the expression $(C(x))^{2}-(S(x))^{2}$.
2. Find the solution to the following system of partial differential equations

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=y e^{x y}+2 x \\
& \frac{\partial u}{\partial y}=x e^{x y}+2 y
\end{aligned}
$$

Given $u(0,0)=0$
3. Using the method of separation of variables find the eigenfunctions and eigenvalues for the wave equation on a rectangular drum with sides of length 1 unit and 2 unit. That is find solutions of the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-k^{2} u
$$

satisfying the boundary conditions $u(0, y)=0, u(1, y)=0$ and $u(x, 0)=0$ and $u(x, 1)=0$. For each possible solution give an expression for the allowed values of k.

