	

TUTORIAL 2 : CSOUND PROGRAMMING WITH CECILIA

Csound Programming and the CECILIA file structure.
CECILIA is a Csound programming environment. Some of the tools to make the job easier and more productive are:

· Text-editor optimized for Csound coding

· Full on-line Csound manual

· Orchestra and Score Opcode inserters

· Quick syntax checker

· Colorized and tabulated syntax

· Unified (orc & sco) document structure

· Comprehensive Search and Replace facilities.

CECILIA saves documents as single files. These files are called modules and include both the orchestra and the score along with a number of other useful information. The reason for this is to make file management easier. It is entirely possible to save the orchestra and score independently.

[image: image1.wmf]Cecilia’s Csound Editor

1. Start CECILIA and Netscape (we’ll be using Netscape to access the Csound documentation).

2. Under the File menu in the Main window, select New... and then Module...

The CECILIA editor opens up with a couple of window panes. The CECILIA Csound Editor is divided into 9 different sections (or panes). These can be posted in the editor window through the Sections menu or the buttons under the editor menubar:

[image: image2.wmf]The editor’s window panes are composed of the following:

· info. In this section, the author can enter any relevant information about what this particular module does. This information can be displayed by selecting the About this module... menu in the grapher window when the module is saved and recalled.

· tk_interface. In this section the author will enter definitions for any CECILIA interface object to be used in this module. This is of course optional. The third tutorial deals with this.

· mono, stereo, quad. These three sections are where the orchestra is entered. Which variant will be used for the computation is determined by which "channel" button is selected in the Main window. This separation is useful for permitting three variations on the number of output channels. It is not necessary to use all three versions. Only the versions with some content will be available in the Main window.

· score. In this section the score is input. There are a number of different types of CECILIA scores.

· orcOut, scoreOut, csoundOut. These panes are read-only and show the orchestra and score files that are actually sent to Csound for computation. The CsoundOut pane show the Csound command.

3. [image: image3.wmf]For the time being, close off all the editor panes, except the mono and the score panes.

4. Adjust the relative size of the panes by dragging on their name plate on the top-right side of their pane. You can also solo any given panel.

5. [image: image4.wmf]Click in the mono pane. We are now ready to enter our first orchestra.

Note: the regular Csound header specifying sampling rates, control rate, no. of channels and ksmps, is given in the Main window. However, like in regular Csound programming, any global definitions can be given at the top of the orchestra before the first instrument definition.
Creating a Csound orchestra file (.orc)

Csound orchestra files can contain multiple instruments. Each instrument is defined by interconnecting commands or opcodes that either generate or modify signals. For this example, we will program a simple sine wave instrument.

1. Every CSound instrument must start with instr# and ends in endin.
Note: the editor has filled this in for us.

2. Each line has a single opcode. The syntax of a generic opcode statement is:
Output
Opcode
Arguments, … , …
; Comments

3. You can type in an oscil opcode or you can CTRL-click on the line where you wish to include the new opcode and use the opcode-inserter. A popup menu will appear containing cascades of all the Csound opcodes. You only need to replace the variables with appropriate values.

4. [image: image5.wmf]In the mono window type the following instrument:

5. Go to the Edit menu and select Colorize syntax. As you can see, the opcodes are colorized and whenever the mouse travels over a legal opcode, its syntax is given in the assistance window at the bottom of the editor window.

6. Now go back and insert tabs between the output variables, the opcodes and the parameters. Then grab and drag the small blue line just below the pane buttons. Adjust the beginning and the end of the blue line.

7. Select the oscil opcode by double-clicking on it. When it is highlighted, under the Edit menu select Help with selected opcode... Netscape will open up the Csound manual at the correct page. Explore this resource!

8. Once you have entered a valid orchestra and a valid score (we can use the default score file that appears in the score window) bring up the Main window, select DAC (for real-time output) and press Send to C-Sound (or CMD-Space). Should you have any errors in your orchestra, the system will beep and the error and line # of the error will appear in the performance window.

The Csound Score (.sco)

The score file in Csound is composed of two main sections: tables and notes.

The Function Table
In the first part we use Csound’s subroutines or GENS to generate function tables (f-tables) and/or fill them by reading sound files. Function tables cause a GEN subroutine to place values in a stored function table for use by instruments.
f-statement syntax:
f number
load-time table-size GEN-routine parameter1 parameter2 …
· f number : the table number (from 1 to 200) by which the stored function will be known. A negative number requests that the table be destroyed.
Note: this number must equal the instrument number defined in the orchestra that will use this function table.

· load-time: when in the score this table should be loaded. 0 is at the beginning

· table-size: the size in points (or samples) of the table. Maximum table size is 16777216 (224) points. Function tables are arrays of floating-point values. Arrays can be of any length in powers of 2; (i.e., 2,4,8,16,32,64,…)

· GEN-routine: Number of the GEN routine to be called. Each Gen routine is different. Depending on what you are trying to build you would and which opcode you are using you might call a different GEN. Take a look at the Csound Manual and explore the different GENS to get an idea of what’s available.

· parameters (p fields): Parameters whose meaning is determined by the particular GEN routine.

The Note List
In the second part of the score the notes of our score are written with note statements or i-statements. Each note statement not only defines the instrument #, start time and duration of each note event, it can also specify a variety of our instrument’s parameters such as frequency, amplitude, mod index, etc. with p-fields (parameter fields).

i-statement syntax:
p1
p2

p3

p4

p5

…
i#
start-time
duration
user-defined
user-defined

(typically amp)
(typically freq)
Creating a score in Csound
To create a simple score for our mono-sine instrument (instr 1) with an f-table statement and i-statements
1. type the following in the score window pane:

2. In the main window click on Send to Csound. If all went according to plans you should hear a glorious sine wave at 440HZ for 3 seconds.

Exercise 1

1. Expand you orchestra to include the following instruments:

[amp]
[cycles per second (cps or Hz)] [carrier] [modulator] [mod index] [f-table #]

2. add i-statements for instr 2 with various start times and durations.

3. Modify the carrier and modulator frequency ratios in instrument 2.
Modify the mod index.

Parameter Fields

As you may have already noticed, it could start to get a little cumbersome to control the various frequencies and amplitudes of your instruments if you were limited to only defining them in the orchestra file. To make our instruments more flexible we can fill in the various values for our instrument in the score file by replacing the value in the orchestra with a p-field.

1. In Inst 1, replace the amplitude value with p4 and the frequency value with p5.

2. In our score file we can now define what the amp and freq are for instr 1 on a note-by-note basis.

Score file (after f-table has been defined):

The k-rate and Control Signals

Any variable that begins with “k” will be assigned the control-rate as defined in the main window. The benefit of using a sampling rate lower than 44.1K is that in most cases for low-freq controllers you would never hear the difference but would gain the advantage of faster compute times.

1. Use a control signal to vary the amp of an audio signal (creating tremelo)

Notice where we would normally indicate a1’s amplitude we instead used the output of k1. This will provide a continually fluctuating value depending on the waveshape used to generate k1. Note: k1’s amp and freq would need to be define in the p-fields of the i-statements.

2. Use a control value to vary the amp of a1 with a linear envelop linen opcode.

Exercise 2

1. Create an instrument whose fundament freq would be added to a control value.

2. Create a score using all of the above instruments. Define your p-fields in a top line comment to aid in identify what goes where.

3. All of these instruements use the f1 table which we have defined as using GEN10 (a sinusoidal wave table). Look up other GENS in the CSOUND manual and experiment…

a mono orchestra template has been filled out in the mono pane

a short score has been entered containing a sine wave function table and a single 10 second note.

instr 1 	;mono-sine�a1	oscil	10000, 440, 1

out 	a1

endin

Oscillator�labeled a1�because this starts with “a” Csound understands it to use the audio rate

oscillator a1 patched to the out opcode. This value must equal the oscillator’s label (a1)

Instrument name is 1 - this value must be a number between 1-200

comment

function # of waveshape template�frequency

amplitude (at 16bit 32767 is max amp)

; FM synthesis� 	instr 2�a1	foscil	 	10000, 	440, 	1, 	2, 	3, 	1� 	out 	a1

C : M ratio

;p1	p2	p3	p4	p5�f1	0	8192	10	1�i1	0	3

instr 4 	;mono-sine w/ env�k1	linen	p4, p7, p3, p8 	 ;p3=dur, p4=amp, p7=attack, p8=release

a1	oscil	k1, p5, 1	 ;p5=freq

out 	a1

endin

;p1	p2		p3		p4		p5�;i#	str t		dur		amp		freq

i1	0		2		10000		440

i1	2		2		 5000		220

i1	3		1		 5000		880				

instr 1 	;mono-sine�a1	oscil	p4, p5, 1

out 	a1

endin

instr 3 	;mono-sine tremelo�k1	oscil	p4, p6, 1 ;p4=amp, p6=freq of k1(tremelo rate)

a1	oscil	k1, p5, 1 ;p5=freq

out 	a1

endin

Cecilia Tutorial #2
Csound Programming
pg. 6 of 6

