- 1. Why can electric field lines never cross?
- 2. a. Calculate the repulsive electrical force between two protons given that the distance between them is 5.0×10^{-15} m.
 - b. Calculate the attractive gravitational force between the same two protons as above.
 - c. Calculate how many times stronger the electrical repulsion is than the gravitational attraction in the above problems. Apparently, the strong nuclear force is necessary to hold matter together!
- 3. A person scuffing her feet on a wool rug on a dry day accumulates a net charge of -60μ C. How many excess electrons does this person get?
- 4. Charge $Q_1 = +65\mu\text{C}$ and is located at point (0, 30). Charge $Q_2 = -86\mu\text{C}$ and is located at point (52, 0). Create a table to keep track of horizontal and vertical components. Calculate the net force on charge $Q_3 = +50\mu\text{C}$ which is located at the origin. Since force is a vector, you must specify magnitude and direction.
- 6. a. Give an example where gravitional potential energy is zero, but the acceleration due to gravity is not zero.
 - b. Give an example where the electric potential is zero, but the electric field is not zero.
- 6. A lightning flash transfers $4.0~\mathrm{C}$ of charge and $4.2 \times 10^6 \mathrm{J}$ of energy. Between what potential difference did the flash travel?