Dhysics (Giancoli) Ca 6 4 13, 14, 28, 47, 57, 60 due Tues 3 feb 04. EARTH MOON (II) At what distance from the Earth will a spacecraft on the way to the Moon experience zero net force due to these MD two bodies because the Earth and Moon pull with equal and opposite forces? a+b= d= 3.84 × 105 km Force between earth & Satellite : Fa = 6 mllo /az = 6 m Ma /bz Force between mon I calellife: Equal strengths: Sub in b = d-a: M_{\odot} Solve for a:

$$\frac{GM}{R} = V^2 = \left(\frac{2\pi R}{T}\right)^2 = \frac{4\pi^2 R}{T^2}$$

	NASA launched the Near Earth Asteroid Rendevous (NEAR), which, after traveling 1.3 billion miles, is meant to orbit the asteroid Eros at a height of about 15 km. Eros is $>$ potato-shaped: $40 \text{ km} \times 6 \text{ km} \times 6 \text{ km}$. Assume Eros has a density (mass/volume) of about $2.3 \times 10^3 \text{ kg/m}^3$. (a) What will be the period of NEAR as it orbits Eros? (b) Suppose Eros to be a sphere with the same mass and density. What would its radius be? (c) What would g be at the surface of this spherical Eros?	2 40 Km 7	
		7	
	Aproximate Eros as a cyline	de: F=3(1)	
	771	2 40=1	
	Volume = appa + longty =	W2, L	
***	V =	w ³	
	Mans = war volume		
	= p × V -		_

•

,

ţ.,

B If Eros was a pluse with the same wars of days of,
if world have V= \$t R3 = war = wir

war volume P $R^{3} = 3m = 3(2.65 \cdot 10^{15} \text{ kg}) = 2.75 \times 10^{11}$ $4\pi \rho \qquad 4\pi \cdot 2.3 \times 10^{3} \text{ kg/m}^{3}$ R = 6,5×103 m = 6,5 km (c) To find g at the surface of this giver, recall that f - ug = Gull - g = GN $g = GN - 6.67.10^{-11} \frac{m^3}{19.5^2} (2.65.10^{15} kg) = 4.2.10^{-3} m$ $g^2 = GN - 6.67.10^{-11} \frac{m^3}{19.5^2} (4.5.10^{15} kg) = 4.2.10^{-3} m$ $g = \frac{1}{10} \frac{m^3}{10} (6.5.10^3 m)^2$

12]

$$\frac{T = 2 \times 10^{8} \text{ yrs} / \pi \times 10^{7} \text{ s}}{\text{yr}}$$

By Keplet .s 3d faw,

30,000 lv

galaxy's man = Number of Stavs x man per star

M = N. Mo

11: