Mathematical Origins of Life Modeling Emergence with NetLogo: Lab 3

Exploring Breeds

The focus of this week's lab will be using NetLogo to model the interaction of different
organisms. Different types of turtle's in NetLogo can be specified by defining breeds. Each
breed can have its own attributes and can be controlled with breed-specific commands. You can
also specify different shapes and sizes for each breed.

The first model we will explore will be a case of amoeba feeding on randomly floating pieces of
food. We will use NetLogo's Behavior Space to examine how a variety of parameters influence
the growth curves for the amoeba and will make quantitative comparisons with the predictions
of the Logistic Model. We will then gradually make additions and enhancements to this model,
to reflect a more realistic interaction and see how these changes alter the growth of the
amoeba.

Lab
Before starting your program set the graphics window to be 30 by 30 with patch size 8.
Now click on the procedures tab and at the top of the page type the command

breeds [amoeba food]

This defines two new types of turtles called amoeba and food. Now create a setup procedure
which looks like the following:

to setup
clear-all
setup—-amoeba
setup-food
end

and then define the two setup commands as follows:

to setup-amoeba
create-custom-amoeba amoeba-number
[set color brown
set shape "circle"
setxy random screen-size-x random screen-size-y]
end

to setup-food
create-custom-food food-number
[set color green
set shape "circle"
setxy random screen-size-x random screen-size-y]
end

In order for the above code to be complete you need to specify
the range of values for the variables amoeba-number and food-number
using sliders on the interface page. Let the values range from 0 to 500 in steps of 1.

Shapes editor

In order to make the model more representative of what we might see under a microscope lets
design our amoebas and food to have “realistic’ shapes. Open up the Shapes Editor under the
Tools menu. There are many predefined shapes and there are more that can be imported.

However, lets design our own shape. Click on “new” and you will find yourself with a rather
primitive graphics editing window. Draw a basic amoeba shape — you can add a few
pseudopods and organelles if you wish, but don't get too fancy. Save your shape with name
amoeba, and then create a new, smaller shape called food. There is no need to get to elaborate
— some irregular polygon will do. Save this one as food, and then return to your setup procedure
and change the shapes from “circle” to “amoeba” and “food” as appropriate.

Movement

Now you are ready to get the amoeba and food to move. In this first model we will just have the
breeds move randomly — with perhaps the amoeba moving faster than the food, since they have
their own locomotion. Define a go command as follows:

to go
ask food [wiggle .5]
ask amoeba [wiggle 1]
end

where wiggle is a command which must be defined. As written this command takes one input
which specifies how far the turtles move in each time step. To define commands with inputs
you specify the input variable in square brackets after the command name. A suitable wiggle
command is defined below. You can modify this as you wish.

to wiggle [amount]
left random 40
right random 40
forward amount
end

Test your code thus far by adding setup and go buttons on the interface.

Eating and Reproduction

At the moment all that happens is amoeba and food move randomly across the environment.
Now we need to program some mechanism for the amoeba to eat the food and then reproduce.
We will have amoeba only eat food if they find themselves on the same patch as the food. After
eating food they will gain some energy. When their energy surpasses some defined threshold
they will divide in half. Add two new procedures to your go procedure:

ask amoeba [eat-food]
ask amoeba [reproduce]

where eat-food can be defined as follows

to eat-food
without-interruption [
if not (count food-here = 0) [
ask random-one-of food-here [die]
set energy energy + food-energy

end

The without-interruption command makes sure that each amoeba runs all the
commands before passing control over to the next amoeba. This way two amoeba do not try to

eat the same piece of food at the same time.

In order for the eat-food code to work we need to make a slider for food-energy
on the interface. Have this range from 1 to 10, with default 10. We also need to specify
the amoeba energy variable. Add the following statement under the line defining the breeds

amoeba-own [energy]

and then in the setup-amoeba procedure add a line

set energy 10
This specifies the initial energy of the amoeba.

Turtles will reproduce if their energy reaches twice this amount. A suitable
reproduce command might be

to reproduce
if (energy >= 20) [
set energy enerqgy / 2
hatch 1 [wiggle 1]
]

end

Note: when when a turtle calls the hatch command, the new turtles have all the same
attributes as the parent. Consequently, we do not need to specify these attributes, unless we
want offspring to differ in some way from their parents.

Run your simulation to see if it behaves appropriately. Play around with different values of the
parameters. Add a line at the bottom of the go command to get the program to stop when all
the food is consumed. Something like this will do.

if (count food = 0) [stop]
Plotting your data

Add a labeled plot and a monitor to your interface showing the population of amoeba over time.
You may want to glance at last week's tutorial to see how best to do this.

Behavior Space.

After playing with the parameters in the model, you should notice that the growth pattern seems
to be logistic in nature. In order to do more with our model than watch it we need to be able to
analyze the data that is generated and compare it with either data in the field or some analytical
model that we have derived. Lets compare this data with the predictions of the logistic model
AN=rN(1-N/K) . To do this we will make use of NetLogo's Behavior Space. Behavior
Space is a way to do multiple runs of your model and sweep through different values of your
parameters. The data is then outputted to a file with comma separated values (csv) which can
be read by a data analysis package such as Excel.

From the Tools menu select Behavior Space and choose Edit Experiment Setup. The first
window specifies the values of the parameter you want to test. For this experiment
lets allow the food-number to range from 100 to 500 in steps of 100, and keep the food-energy

fixed at 10 and the initial number of amoeba constant at 1. This is what you should type in the
first window

["food-number"™ [100 500 100]]
["food-energy" 10]
["amoeba-number" 1]

In the next window you specify the number of runs for each combination
Lets run each combination 3 times so that we can average runs to reduce statistical error.

The next window specifies the data you want to analyze. In this case it should be

count amoeba

The next two windows should be fine with their default values.
For the final two windows

set “Stop after this many steps” to 0 and then

set “Stop if this reporter becomes true” to

count food = 0

click “ok” and then run the experiment. You will find that it runs much more quickly if you
uncheck “update graphics” and “update plots and monitors”.

Save your data file as Lab3Data.csv in your CAL MathOrigins student folder.
Analyzing the data

Open up the data file in Excel. The experimental runs should be neatly arranged in columns for
your analysis. Our purpose here is to compare the data with the predictions of the Logistic
model. In particular, for the logistic model we expect that the per-capita growth rate AN/N
will decrease linearly, with the y-intercept being the intrinsic growth rate r and the x-intercept
being the carrying capacity K. The data is grouped into three columns because we did three
runs for each parameter choice. Therefore, next to each group of three runs insert a new
column to find the average and then another column to calculate AN/N.Plot AN/Nvs N.
Plot the data and do a linear fit to your data. If a linear fit is a good fit, then obtain estimates for
r for each run. For which values of food-number is the linear fit best? Can you explain why?

Make a plot of intrinsic growth rate, r, vs food-number and see if you can find a quantitative
power law relationship between intrinsic growth rate and quantity of food. Can you explain your
observations?

Extension to the Model

In this lab you have been introduced to a number of new features of NetLogo in a model for the
growth of amoeba. For homework you will be asked to implement enhancements to this model
that will model more closely how a predator goes about catching its prey. You may continue to
use the amoeba-food analogy, or you may choose some other predator prey system the more
closely fits your choices of parameters

Homework Questions: Predator/Prey Pursuit Problems

—

. Save your lab 3 model, giving it the name “lastname_firstname_week_3.nlogo”. When you

are finished the homework drop this file in the dropbox folder.

The first change to the model will be to arrange for amoeba to die if they do not get enough

food.

(a)Make a slider called metabolism which ranges from 0 to 2 in steps of 0.1. Then change
the model so that amoeba lose an amount of energy equal to metabolism at each time
step.

(b)Each time step run a death procedure which kills all amoeba whose energy is less than O.

. In order that energy is not slowly drained away from the system have a certain amount of

new food appearing at random locations on the screen at a rate determined by a variable
which you might call food-growth-rate. Choose an appropriate range so that amoeba
can grow.

. One way to make the model more realistic is to include a infancy-period during which

time a new amoeba will not move, hunt for food or reproduce. You could implement this by
defining an amoeba-own variable called age. Have age start at 0 and increment by one
each time step. Only allow amoeba to move, hunt for food and reproduce when age is
greater than infancy-period. Remember to set the age of new amoeba (and the
amoeba who hatched) it to zero in the reproduce procedure.
Another enhancement would be to take into acount the fact that amoeba (or other predators)
can sense their food and move towards it.
(a)Make a slider called sensing-radius ranging from 0 to 10.
(b)Write a find-food procedure for the amoeba which sets their heading towards the
nearest piece of food within a radius of sensing-distance before taking a step. Hint:
In the procedure first create an agentset of food within the sensing radius. Then check
that there is some food in this agent set (use the any? primitive), finally set the heading
towards the food in the agent set with the minimum distance to the amoeba (use
distance myself to measure the distance from each piece of food to the amoeba).
Explore your model by changing the parameters. Find different combinations of parameter
values that lead to approximately linear growth to the carrying capcaicty, to an oscillating
population of amoeba, a chaotic population pattern (you may have to adjust your food-
energy variable to have higher upper bound to see this.)

. Now use Behaviour Space to explore how the model behaves with metabolism and food-

growth-rate set to zero. Fix the food-number at a reasonable setting and then change the
sensing-radius and latent-period to see what combination yields a growth curve
which does not fit a logistic model well (ie the decrease in percapita growth rate is not linear.)
Do this for a variety of food-number settings and see which combination shows the greatest
departure from what you expect from the logistic model. Include your Excel analysis with your
homework as lastname_firsthame_week3.xls

Before submitting your NetLogo program write comments for all your procedures explaining
what each “non obvious” line does.

