
Mathematical Origins of Life                   Modeling Emergence with  NetLogo: Lab 4

Dancing Patches
In last week's lab we modeled the interaction and growth of a mobile species by making use of
NetLogo's breeds. We observed that when interactions were no longer purely random
population growth curves were quantitatively different from the predictions of the logistic
equation. Indeed when sources and sinks of energy were included, oscillations in population
were observed. A common feature of all these models, was that the agents (ie the amoeba and
the food) were mobile. It is often the case, in both biology and chemistry that interactions take
place between stationary agents. Examples include growth of forests, the growth of algae, or
the interactions between cells in an organism. In this lab we will use NetLogo to model such
interactions using patches. We will see that although the patches themselves do not move,
waves of changes within the patches can mimic various types of complex movement. It is
believed that such interactions are responsible for the complex patterns we see in animal coats,
and perhaps at a more fundamental level for cell differentiation of a developing embryo.

The Game of Life 
The mathematical concept behind the model we will build is that of a cellular automata. The
fundamental idea is that each patch can have a number of different states and it changes states
by examining the states of its neighbors and following some simple rules. We will start with the
well known example of Conway's Game of Life, and build from this to create a somewhat
realistic model of the growth of stationary species. The model can be extended readily to
include the sorts of chemical reactions that play a role in animal development.

In the Game of Life, patches can have two states: alive and dead. A patch which is dead will
come to life in the next generation if it has three live neighbors. A patch that is alive will only
continue to live if it has either two or three live neighbors. In this model we will let a patch that is
alive have the state 1 and a patch that is dead have the state 0.

Start your model by writing defining the state variable for the patches:
patches-own [state]

Then write a procedure called random-setup which randomly assigns either a 0 or a 1 the
sate variable of each patch and then colors patches that have state 1 white and those with state
0 black. An efficient way of doing this is 

to random-setup
   ca
   ask patches [ 

set state random 2 
set pcolor scale-color red state 0 1

]
end

The line in which the pcolor is defined may seem funny (especially the red part!), but make
sure you understand how it works, and check that it does work by creating a button to use the
procedure and check that white patches do indeed have state 1 and black patches have state 0.
There are certainly other ways of doing this, but this one will generalize naturally to the
extensions you will do for homework.

Rules of the Game
Now it is time to apply the cellular automata rules for the Game of Life



We will do this in a go procedure. The only thing this procedure needs to do is change the state
of a patch according to the rules of the Game of Life. However, there is one subtlety you should
be aware of. Since NetLogo executes commands to different patches sequentially if you are not
careful one patch may change its state, before its neighbor has had a chance to ask it what
state it was in. In order to keep all changes in step, we will first ask each patch to keep a record
of the total number of its neighbors that are alive (state 1). Only once all of the patches have
done this will we allow them to change state. The rule to change the state can be applied
efficiently by using the an  ifelse statement which allows you to execute different commands
when different conditions apply. Nested if statements are used when more than two conditions
apply

to go
  ask patches [set total count neighbors with [state = 1]]

ask patches [
ifelse total = 3 

[set state 1]
[if total !=2 [set state 0] ]

set pcolor scale-color red state 0 1 
] 

end

In order for the above code to be complete you need to add the  variable total to the
patches-own list. Notice the use of the neighbors primitive. This returns a list of the 8
patches surrounding the patch in question.  Make sure you follow the logic of the if statement in
this procedure. Later you may want to change the rules to create your own cellular automata.
Create a button for the go procedure and test it.

Designing Life
After some initial craziness you should see the patches settle down to a few simple stable
structures and perhaps a few blinking patterns. It may not appear too “life”-like but  in fact there
are a whole host of interesting “organisms” in the Game of Life, some of which appear to move
(gliders) , others which breed (breeders). If you run your game a few times you might see a few
of these emerge. To see the more complicated “organisms” you need build them. There is no
blind watchmaker in the Game of Life. Although it has been shown that it is theoretically
possible to create self replicating “molecules” á la DNA these are not stable to invasion by
“parasites” and have no hope of evolving. However, we can be “watchmakers” by drawing
“organisms” on a blank canvas. We can do this by using NetLogo's ability to track the location
of the mouse.

First create a blank-slate procedure that sets all the patches to be dead 

to blank-slate
   ca
   ask patches [ 

set state 0
set pcolor black

]
end

Now create a new procedure that will turn the patch at the location of the mouse to be alive



(white and state 0) when the mouse is pressed

to draw 
  if mouse-down? [

ask patch at mouse-xcor mouse-ycor [
set state 1
set pcolor white

]
]

end

Since it is likely you will also want to erase mistakes, create a similar procedure called erase to
that you can use to “kill” a patch. The draw and erase procedures should be executed with
“run forever” buttons. You may find it useful to put a command in your go procedure to stop if
the mouse is down. 

Play around with this code for a while and see what lifeforms you can create. I'll have a few
suggestions for you to look at. At this time you may want to try modifying the rules of the game
in some way to see what other “lifescapes” you can create.

Homework
Although the “organisms” you created in the Game of Life may mimic biology, they are not a
biological model per se. However, we can easily modify the code to model different models in
biology and chemistry. Here is what I propose, Let's allow the state variable in the above
program to be the age of some organism. (I suggest you relabel it as age to make this explicit
in your code). We will have patches get older each year until they reach a maximum age, at
which point they are considered dead (and we set their age to 0). Patches will only die by
reaching old age. Let's have a model where new cells can only be born in patches that are dead
and which also have the exactly the right number of fertile neighbors. We could call these fertile
neighbors parents.

1. First rescale your screen to be 50 by 50 with patch size 5
2. Let the age variable range from 0 to max-age. Were max-age can be specified by a slider

(choose a slider range for max-age to be 1 to 100).  
3. Since we have cells ranging in ages from 0 to  max-age, modify your random-setup

procedure to create patches of all ages. Also make sure you you change your  scale-
color range to include the full spectrum of ages.

4. Now modify the rules. As first rule let the age at which our organisms reach fertility be 15 and
the age at which they become sterile be 50. Let the number of parents that are needed for a
dead cell to be reborn be 2. 
(a)Change your go procedure so that total is  the number of fertile neighboring patches.
(b)Modify the next part of your  go procedure to ask the patches which are not dead to get

older by one year and then if their age is  greater than the maximum age to die. For those
that are already dead (age 0) ask them to be reborn if they have exactly 2 parents.

(c)Make sure your command to color the patches is scaled correctly. 
5. Run your modified program. Experiment with different values for  max-age to see how

having non-reproductive neighbors affects the population distribution.
6. Modify your program so that you have sliders ranging from 0 to 100 for both the fertile-

age and the sterile-age. Also add a slider from 0 to 8 for parent-number. Modify the
appropriate lines in your program.

7. Add commands that will allow you to plot the total number of patches in each age group:
immature, fertile, and sterile.



8. Now explore your model in detail. Experiment by starting with a random initial distribution of
ages and with a blank-slate on which you seed  your own pattern of newborn patches. You
will find that some behavior can only be obtained by carefully tuning the sliders as the model
runs.

9. With max-age  set at 100 and parent-number set at 2 find parameter values for
 fertile-age and the sterile-age for which each of the following types of patterns: 
(a)The population exists only in isolated groups that appear to drift across the screen.
(b)The changing population distribution appears to move in large lacey waves across the

screen.
(c)The changing population distribution resembles a tight spiraling pattern.
(d)The population appears to change in a random way.
(e)The majority of patches appear to change together in a synchronized way. 
Write your values and descriptions in the information section of your Netlogo program

10.Try to get qualitatively different patterns using different values for max-age and parent-
number. In particular, try getting “Life” like patterns with low values for  max-age.  Also try
setting parent-number to 0. You might also want to consider modifying your code to allow
for a range of acceptable neighboring parents for rebirth to take place (eg 2 or more parents
would be a suitable model for some fruit trees). 

11.The above patterns are observable in nature for systems which grow in the way described. It
is straight forward to change the code to model a reaction-diffusion type chemical process
like the B-Z reaction. To do this we let the age represent the concentration of some chemical.
During each time step the concentration can change in following ways:
(a)First it can increase by a constant amount due to the presence of some precursor

chemical which is in large supply. (This is the reaction part of chemical process and is
similar to how we change age in the biological model we just made, accept it can
increment by more than one each time step).

(b)Second, it can increase by adding some fraction of the total concentration of its neighbors
to its own total. (this is the diffusion part of the chemical process and is similar to counting
parents in the biological model accept here we total the concentration, rather than the
number of parents, and all patches can increase there concentration by diffusion).

(c)Finally the concentration is reset to zero when it gets too high (this is the inhibition part of
the chemical process. This is akin to dying in our model). 

This question is optional, but it is worth making it work if you can since it leads to remarkable
patterns that differ from the ones you created in the biological model above.

12.Save your lab 4model, giving it the name “lastname_firstname_week_4.nlogo”. When you
are finished the homework drop this file in the dropbox folder. Before submitting your
NetLogo program write comments for all your procedures explaining what each “non
obvious” line does.


