
CALCULATED FICTION

MATH WORKSHOP 2
October 5, 2004

For this workshop you should work in a group with your project seminar.  As before, you are 
to work through the workshop at the same speed as the rest of your group; stick together.  
For some of you, much of this workshop will be review, so this will be a good opportunity to 
deepen your understanding by explaining the ideas to others.

Keep your work on a separate sheet so you can turn it in at the end of the workshop.

A “Prime” Example:  HOW TO TALK LIKE A MATHEMATICIAN

Read the handout entitled “How to Talk Like a Mathematician”.

ACTIVITY
1.   Look back through Chapter 1 of The Language of Mathematics [TLOM].  Which 

facts from that chapter can we call theorems?  Which can we call propositions?  
Lemmas?  Corollaries?  Conjectures?

TI-84, I Love You:  GETTING TO KNOW YOUR CALCULATOR

Let’s begin by spending a few minutes becoming more familiar with our calculators.  (If you’re 
already familiar with your calculator, this will be a snap; you should help the other people in 
your group.)

Figure out how to compute the following numbers using your calculator.  Keep trying until 
you get the answers on the right.  (Your calculator will probably show more digits than are 
shown here.)

 10!     3628800
 10! / (3! 7!)    120

352     1225
 230     1073741824

178212     1.0254 e39  or  1.0254 +39

     2.366355
 2004 mod 139    58
 
What ARE some of these things?  Here’s the rundown:

 10! is pronounced “ten factorial” (not “TEN!”, though you are free to get that excited 
about it if you want to).  Recall from the reading that if n is a natural number, n! is the 
product of all of the natural numbers from 1 up through n.  Thus 10! = 1*2*3*4*5*6*7*8*9*10.  



Your calculator should have a factorial button on it, so you shouldn’t have to do all of that 
multiplication by hand – a nice feature if you have to find, say, 35!.  

 230 is 2 multiplied by itself 30 times.  Your calculator probably has a 2x button 
somewhere on it, which means you can find this in one step instead of punching in all those 
2s.

 Similarly, 178212 is 1782 multiplied by itself 12 times.  Your calculator should have an 
xy button that will make finding such numbers a lot easier.  The e39 or +39 part of the answer 
means “times 1039”.  The calculator uses this when the answer is too long to fit on the screen, 
as it is in this case, where the answer is 40 digits long.  A number written this way is said to 
be in scientific notation.

  is the twelfth root of 30829.  That is, it’s the number that, when raised to 
the 12th power (read: when multiplied by itself 12 times), yields 30829.  Lucky for you, your 
calculator should have a button to do this too.

 2004 mod 139 is the remainder left over when 2004 is divided by 139.  Said another 
way, it’s the result of subtracting 139 from 2004 over and over until something less than 139 is 
left.  This is sometimes called “clock arithmetic”.  If the clock says 1 o’clock now, what time 
will it say in 49 hours?  The answer isn’t 50 o’clock, right?  To get the answer, you add 1 and 
49 and then start subtracting 12s (50, 38, 26, 14, 2) until you get to a clock time, and that’s the 
answer.  This is the same thing, only now the clock has 139 hours on it instead of only 12.  
Try doing 50 mod 12 on your calculator too.  What about 24 mod 12?

ACTIVITY
2.   What’s the largest factorial that your calculator can handle?  That is, what’s the 

largest natural number n such that punching n! into your calculator yields an 
answer?  What’s n! for the n you found, and what does the calculator say when 
you try to find (n+1)! ?

3. What’s the smallest factorial that your calculator can handle?  What’s 0! ?  Can 
you think of a reason why your calculator’s answer makes sense?

4. Find 178212 + 184112, and then take the 12th root of that.  What’s your calculator’s 
answer?  (This will depend on the calculator you have; your answer should 
be between 1920 and 1925.)  Is it a whole number?  If it were (or if it is), why 
would that be surprising?

Groin and Mousetrap:  PERMUTATIONS & COMBINATIONS

How many ways are there to rearrange the letters in the word “groin”?  If you reach into a 
bag of eight mousetraps and three of them snap shut on your fingers, how many possibilities 
are there for which three they were?  Combinatorics – specifically the part dealing with 



permutations and combinations – answers these kinds of questions for us.

A rearrangement of a set of distinct elements (like, say, the letters in “mulch”) is called a 
permutation.  If we rearrange some elements, we can say we are permuting them.  Hence we 
can permute “groin” to get the permutations “nogri” and “ringo”.  

ACTIVITY
5.   How many permutations of “ABC” are there?  Write them down.  How about 

“ABCD”?  Write those down too.

As you can see, writing them out is not the way to find the number of permutations of a 
set of n elements.  Luckily we have a nice formula:  There are n! permutations of a set of n 
elements.  Check your answers to activity 5 against this formula; if they disagree, see which 
ones you forgot to write down.

What happens, though, if you want to permute only a subset of a set of n elements?  For 
example, maybe you have 15 trophies you won at raw oyster-eating tournaments, and you’re 
trying to choose 6 of them to display in order on your mantel.  How many ways are there to 
do this?

You could start by picking the leftmost one:   15 choices
Then the one to go next to it:   14 choices (since now one is gone)
Then the one to go next to that:  13 choices (now two are gone)
Then the next one:    12 choices (etc.)
Next:      11 choices
And the last (rightmost) one:   10 choices

Thus there are 15*14*13*12*11*10 = 3,603,600 ways to do this.  

In general, if you want to permute k elements from a set of n elements, there are 

 ways to do it.  To read P(n,k) out loud, say “n permute k”.  We’ll only use 
this formula when we care about what the actual number is; otherwise we’ll just refer to these 
permutation numbers as P(n,k).

ACTIVITY
6.   How many ways are there for a class of 25 students to elect a class president, 

vice president, and secretary?  Give both an P(n,k) answer and an actual 
number.

With permutations, order is important.  But sometimes order isn’t important to us.  Suppose 
we want to appoint a special 5-person Snack and Beverage Task Force, with the 5 people 
chosen from our class of 42 people.  For these purposes, it doesn’t matter what order we 
choose them in; all that matters is who ends up on the task force.  Let’s emphasize the word 
choose here: we’re choosing instead of permuting.  Permutation implies order matters; choice 
implies order doesn’t matter.



In general, if you want to choose k elements from a set of n elements, there are 

 ways to do it.  To read C(n,k) out loud, say “n choose k”.  Again, we’ll 
refer to these combination numbers as C(n,k) whenever possible, only using the formula 
when an actual number is required.

ACTIVITY
7.   How many 10-person committees can we choose from the 100 people in the 

U.S. Senate?  Give both an C(n,k) answer and an actual number.

8. Calculate C(20,0).  Explain why that’s the right answer.

9. Calculate P(200,3) and C(200,3).

If you had trouble with that last one, there may be buttons somewhere on your calculator that 
will help you out; look for 

n
C

r
, 

n
C

k
, C(n,r), or C(n,k) (and similarly for P).

Breeding Like Rabbits:  FIBONACCI NUMBERS

The Fibonacci numbers are named after a guy named Leonardo of Pisa (true story; Fibonacci 
is short for filius Bonacci, “son of Bonacci”).  They arose from a problem that Fibonacci 
investigated in the year 1202 about how fast rabbits could breed in ideal circumstances.  To 
wit:

Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits are 
able to mate at the age of one month so that at the end of its second month a female can 
produce another pair of rabbits. Suppose that our rabbits never die and that the female always 
produces one new pair (one male, one female) every month from the second month on. How 
many pairs will there be in one year?

• At the end of the first month, they mate, but there is still one only 1 pair. 
• At the end of the second month the female produces a new pair, so now there are 2 

pairs of rabbits in the field. 
• At the end of the third month, the original female produces a second pair, making 3 

pairs in all in the field. 
• At the end of the fourth month, the original female has produced yet another new pair, 

and the female born two months ago produces her first pair also, making 5 pairs. 



Continuing, the number of pairs of rabbits in the field at the start of each month is 1, 1, 2, 3, 
5, 8, 13, 21, 34, ...

As we let the number of months stretch out forever, this defines an infinite sequence.  Let’s 
make a function out of these Fibonacci numbers:  we’ll say that the number of pairs of rabbits 
at the start of month n is f(n).  Thus we already know that f(1) = 1, f(2) = 1, and f(3) = 2.  The 
rule for generating the rest of sequence is simple:

 

That is, to get another number in the sequence, you just add up the previous two numbers in 
the sequence.  Snappy!  

Here’s another view of the rabbit family tree.  Here a vertical line represents the same pair of 
rabbits over time.



ACTIVITY
10.   List the first 20 Fibonacci numbers.

11. Why does the above rule give the answer to Fibonacci’s problem?  Explain.  
(Think about how many rabbits survive from the previous month – which, 
remember, is all of them – and how many new pairs are born in month n.)

You might complain that the rabbit problem isn’t very realistic, and you’d be correct.  But 
have no fear: the Fibonacci sequence comes up all over the place in nature anyway.  For 
example, a male honeybee has only one parent (a mother) while a female honeybee has two 
(a mother and a father).  As a result, the number of ancestors a male honeybee has from n 
generations back is a Fibonacci number.

ACTIVITY
12.   Draw the family tree of a male honeybee going back at least 5 generations.

13. Use your calculator to compute successive ratios of the Fibonacci numbers you 
listed above.  That is, compute 1/1, then 2/1, then 3/2, then 5/3, then 8/5, and 
so on, always putting the larger one on top.  Keep track of your answers.  How 
does your sequence behave?  Do the numbers seem to be heading somewhere?  

Compare your numbers with , the Golden Ratio (also called the Golden 
Number).  Make a conjecture about what you see.



The Fibonacci numbers show up often in natural structures like plants (for example, the 
numbers of petals on a flower is often a Fibonacci number) and seashells.  There a ton of fun 
books around that explore the Fibonacci numbers and their glorious manifestations in nature.  
The Golden Ratio has a long and fascinating history in art.  (You may remember a discussion 
of it from The Da Vinci Code.)

But There’s Only One Pointy Part:  PASCAL’S TRIANGLE

For this part, you’ll need to get the other handout, a photocopy of part of Pascal’s Triangle.

Pascal’s Triangle is named after a 17th-century French mathematician, Blaise Triangle.  It’s an 
infinite triangle of numbers.  Here are the first few lines of it:

1
1   1

1   2   1
1   3   3   1

1   4   6   4   1
1   5  10  10   5   1

ACTIVITY
14.   From this part of the triangle, figure out how to generate the next line of the 

triangle.  What’s the general rule?

We can always use the rule to get one line of the triangle from the one before it; that’s why 
the triangle is infinite.  

Pascal’s triangle has a number of great applications, many of them in the field of 
Combinatorics.  It’s also fun to play with because there are so many patterns hiding inside of 
it.  Let’s look at a few.

ACTIVITY
15.   One row at a time, add up the numbers in the triangle (so you get one sum for 

each row).  What pattern do you see?  State a conjecture about it.  Can you give 
an argument (using your rule from the previous activity, perhaps) for why your 
conjecture is true?  

Now let’s look for C(4,0), C(4,1), C(4,2), C(4,3), C(4,4) in the triangle.  Hey, those numbers 
are right there in the 4th row!  (Wait – the 4th row?  Yes, because here we start counting from 
ZERO, so the top row is row 0, the next is row 1, and so on.  This may seem goofy, but it 
makes other things work out nicely.)  Lo and behold, Pascal’s triangle is made up entirely of 
combination numbers!  This is great news for those of us who don’t like calculators; all the 
combination numbers we want are at our fingertips, the result of a few simple additions.  Of 
course, this isn’t practical for large combination numbers.



ACTIVITY
16.   Use Pascal’s triangle to find C(8,4).  In general, where in the triangle do you 

look to find C(n,k)?  

17. We can even find the Fibonacci numbers inside of Pascal’s triangle, if we’re 
willing to do a little bit of addition.  Experiment with adding along diagonals 
until you start to see them.  Be careful about which diagonals you choose; if 
you go too steep, you’ll be adding infinitely many numbers.  On a diagram, 
show the diagonals you followed.

Somewhat mind-blowing is the pattern you get when you just look at the multiples of 2 
(which is to say, the even numbers).  

ACTIVITY
18.   On the handout, shade in everything EXCEPT the multiples of 2.  On another 

copy, shade in everything except the multiples of 3.  What patterns do you see?  

It turns out that if you darken the odd numbers in Pascal’s triangle (well, in some cut-off part 
of it), you get a truncated version of the Sierpinski Gasket, a figure with zero area obtained 
by successively removing the middles of equilateral triangles.  Funtastic!

SOURCES

Materials for this workshop were taken and/or adapted from the following sources:

Discovering Number Theory, Jeff Holt and John Jones, 2001.
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html, Ron Knott’s web site 

on the Fibonacci numbers and the Golden Ratio.



PROJECT

1. Finish any workshop activities that you didn’t get to during workshop time.  

For the rest of this week’s project, work on your own or with at most one other person.  As 
always, say who you worked with.

2. Notice that each row of Pascal’s triangle reads the same left to right as right to left.  Since 
the entries in Pascal’s triangle are combination numbers, this corresponds to a useful fact 
about C(n,k).  Find a way to state this useful fact as a conjecture.  (To get you started, look at 
C(5,0), C(5,1), C(5,2), C(5,3), C(5,4), and C(5,5).  Which ones are equal?  What’s the pattern?)

Once you have a conjecture, give an argument that shows it to be true.  (You could use the 
formula for C(n,k), or you could use things you know about Pascal’s triangle, or you could 
just think about the meaning of C(n,k).)

3. Continue to play with Pascal’s Triangle.  Find another pattern in it, or take one of the 
patterns discussed in the workshop.  Come up with a reason that explains why your pattern is 
there.

4. Continue to play with the Fibonacci numbers.  Do something to them that yields an 
interesting new pattern.  For example, if you square consecutive Fibonacci numbers and add 
them up, it looks like you get another Fibonacci number:  12 + 22 = 5, 22 + 32 = 13, and 32 + 
52 = 34.  This may take some doing, so be patient and keep your eyes peeled.  Some other 
things you might try are adding up groups of consecutive Fibonacci numbers and multiplying 
different Fibonacci numbers together.  

Once you’ve found a pattern, state it as a conjecture.  (If you have trouble finding your own 
pattern, you can use the example from the previous paragraph, but you need to give evidence 
that you made a significant effort to find your own.)

BONUS:  Use induction (discussed in TLOM) to prove your conjecture.   


