Analytical Chemistry Solutions to Workshop Problems due Week 2

- 1. Calculate the p-function of (a) the ion-product constant of water at 25C and (b) the concentrations of the four major ions in a solution that is both 2.00 x 10⁻³ M in NaCl and 5.4 x 10⁻⁴ M in HCl.
- (a) For the ion product of water, pKw is given by $pK_w = -\log(1.00 \times 10^{-14}) = 14.000$

The concentration of H⁺ is equal to the concentration of HCl.
pH =
$$-\log [H^+] = -\log (5.4 \times 10^{-4}) = -(-3.2676) = 3.27$$

pOH = $14.000 - pH = 14.00 - 3.27 = 10.73$
pNa = $-\log (2.00 \times 10^{-3}) = 2.699$

The total Cl concentration is given by the sum of the concentrations of the two solutes: [Cl] = $2.00 \times 10^{-3} \text{ M} + 5.4 \times 10^{-1} \text{ M} = 2.54 \times 10^{-3} \text{ M}$ pC1 = $-(\log 2.54 \times 10^{-3}) = 2.595$

$$pC1 = -(\log 2.54 \times 10^{-3}) = 2.595$$

Be sure you understand what happens to significant figures when you go between logs and scientific notation.

- 2. Magnetite is a mineral having the formula Fe₃O₄ or FeO·Fe₂O₃. A 1.1324-g sample of a magnetite ore was dissolved in concentrated HCl to give a solution that contained a mixture of Fe2+ and Fe3+. Nitric acid was added and the solution was boiled for a few minutes, which converted all of the iron to Fe3+. The Fe3+ was then precipitated as Fe2O3*xH2O by addition of NH₃. After filtration and washing, the residue was ignited at a high temperature to give 0.5394 g of pure Fe₂O₃ (159.69 g/mol). Calculate (a) the percent Fe (55.847 g/mol) and (b) the percent Fe₃O₄ (231.54 g/mol) in the original ore sample.
 - (a) mass Fe = 0.5394 g Fe₂O₃ x $\underline{1 \text{ mol Fe}_2O_3}$ x $\underline{2 \text{ mol Fe}}$ x $\underline{55.847}$ g Fe 159.69 g Fe₂O₃ 1 mol Fe₂O₃ 1 mol Fe = 0.37728 g Fe percent Fe = $0.37728 \text{ g} \times 100\% = 33.317 = 33.32\%$ 1. 1324 g
 - (b) In this calculation, we assume that iron is not lost and therefore 3 mol of Fe₂O₃ were formed from 2 mol of Fe₃O₄, or

1.324 g

$$3 \ Fe_2O_3 ==> 2 \ Fe_3O_4 + \frac{1}{2} \ O_2$$
 Then,
$$mass \ Fe_3O_4 = 0.5394 \ g \ Fe_2O_3 \ x \ \frac{1 \ mol \ Fe_2O_3}{159.69 \ g \ Fe_2O_3} \ x \ \frac{2 \ mol \ Fe_3O_4}{3 \ mol \ Fe_2O_3} \ x \ \frac{231.54 \ g \ Fe_3O_4}{1 \ mol \ Fe_3O_4}$$

$$= 0.521396 \ g$$

$$percent \ Fe_3O_4 = 0.521396 \ g \ Fe_3O_4 \times 100\% = 46.043 = 46.04\%$$

6-5.
$$K = \frac{P_{\rm E}^3}{P_{\rm A}^2 [{\rm B}]} = \frac{\left(\frac{3.6 \times 10^4 \text{ Torr}}{760 \text{ Torr/atm}} \times 1.013 \frac{\text{bar}}{\text{atm}}\right)^3}{\left(\frac{2.8 \times 10^3 \text{ Pa}}{10^5 \text{ Pa/bar}}\right)^2 (1.2 \times 10^{-2} \text{ M})} = 1.2 \times 10^{10}$$

6-6. HOBr + OCl
$$\rightleftharpoons$$
 HOCl + OBr $K_1 = 1/15$
HOCl \rightleftharpoons H⁺ + OCl $K_2 = 3.0 \times 10^{-8}$
HOBr \rightleftharpoons H⁺ + OBr $K = K_1K_2 = 2.0 \times 10^{-9}$

6-8.
$$K = e^{-(59.0 \times 10^3 \text{ J/mol})/(8.314 472 \text{ J/(K·mol)})(298.15 \text{ K})} = 5 \times 10^{-11}$$

6-12. (a)
$$Q = \left(\frac{48.0 \text{ Pa}}{10^5 \text{ Pa/bar}}\right)^2 / \left(\frac{1 370 \text{ Pa}}{10^5 \text{ Pa/bar}}\right) \left(\frac{3 310 \text{ Pa}}{10^5 \text{ Pa/bar}}\right)$$

= 5.08 × 10⁻⁴ < K The reaction will go to the right.

Note that it was not necessary to convert Pa to atm, since the units cancel.

(b)
$$H_2 + Br_2 \rightleftharpoons 2HBr$$

Initial pressure: $1\,370 - x - 3\,310 - x - 48.0 + 2x$

Note that $2x Pa$ of $4x Pa$

- (c) Neither, since Q is unchanged.
- (d) HBr will be formed, since ΔH° is positive.

(a)
$$[Cu^+][Br^-] = K_{sp}$$

 (x) $(x) = 5 \times 10^{-9} \implies [Cu^+] = 7.1 \times 10^{-5} \text{ M}$

(b) $(143.45 \text{ g/mol})(7.1 \times 10^{-5} \text{ mol/L})(0.100 \text{ L/100 mL}) = 1.0 \times 10^{-3} \text{ g/100 mL}$

6-15. (a)
$$[Ag^{+}]^{4}[Fe(CN)_{6}^{4-}] = K_{sp}$$

 $(4x)^{4}$ (x) = $8.5 \times 10^{-45} \implies x = 5.0_{6} \times 10^{-10} \text{ M}$

- (b) $(643.42 \text{ g/mol})(5.0_6 \times 10^{-10} \text{ mol/L})(0.100 \text{ L}) = 3.3 \times 10^{-8} \text{ g/100 mL}$
- (c) $[Ag^+] = 4x = 2.02 \times 10^{-9} \text{ M} = 2.18 \times 10^{-7} \text{ g/L} = 2.18 \times 10^{-7} \text{ mg/mL}$ = 0.218 ng/mL = 0.22 ppb

6-19. (a)
$$CaSO_4(s) \stackrel{K_{sp}}{\rightleftharpoons} Ca^{2+} + SO_4^{2-}$$
 $x^2 = 2.4 \times 10^{-5}$
FM 136.14 x x x $\Rightarrow x = 4.9_0 \times 10^{-3} \text{ M} = 0.667 \text{ g/L}$

(b) $[Ca^{2+}][SO_4^{2-}] = [0.50 + x][x]$. Guessing that x << 0.50, we solve the equation $[0.50][x] = 2.4 \times 10^{-5} \Rightarrow x = [SO_4^{2-}] = 4.8 \times 10^{-5} \text{ M} = 6.5 \times 10^{-3} \text{ g}$ CaSO₄/L. Our assumption that x << 0.50 is reasonable.

Salt	K_{sp}	[Ag+] (M, in equi	ilibrium with 0.1 M anion)	
AgCl	1.8×10^{-10}	$K_{\rm sp}$ /0.10	$= 1.8 \times 10^{-9}$	
AgBr	5.0×10^{-13}	$K_{\rm sp}$ /0.10	$= 5.0 \times 10^{-12}$	
AgI	8.3×10^{-17}	$K_{\rm sp}$ /0.10	$= 8.3 \times 10^{-16}$	
Ag ₂ CrO ₄	1.2×10^{-12}	$\sqrt{K_{\rm sp}/0.10}$	$= 3.5 \times 10^{-6}$	
	AgCl AgBr AgI	AgCl 1.8 × 10 ⁻¹⁰ AgBr 5.0 × 10 ⁻¹³ AgI 8.3 × 10 ⁻¹⁷	AgCl 1.8×10^{-10} K_{sp} /0.10 AgBr 5.0×10^{-13} K_{sp} /0.10 AgI 8.3×10^{-17} K_{sp} /0.10	AgCl 1.8×10^{-10} K_{sp} /0.10 = 1.8×10^{-9} AgBr 5.0×10^{-13} K_{sp} /0.10 = 5.0×10^{-12} AgI 8.3×10^{-17} K_{sp} /0.10 = 8.3×10^{-16}

Order of precipitation: I before Br before Cl before CrO_4^{2-}