AMR Quantum Mechanics Homework, Week 4

- 1. A multi electron atom is known to have a "regular" ³P state.
 - a) What are the possible spin-orbit terms?
 - b) If the energy difference between the first two spin-orbit terms is 16.4 cm⁻¹ determine the spin-orbit coupling constant.
 - c) Determine the energy difference between the next two spin-orbit terms in cm⁻¹ units.
 - d) Draw a ladder type energy level diagram (not to scale) to show the above spin orbit states with their appropriate spin-orbit splitting.
 - e) Determine if transitions from the lowest state to each of the higher states are allowed.
- 2. The famous "sodium d lines" are transitions from the sodium atom in its ground electronic state $(1s^2 2s^2 2p^6 3s^1)$ to the first excited electronic state $(1s^2 2s^2 2p^6 3p^1)$.
 - a) Generate the grounds electronic state term symbol for sodium. Evaluate if there are any spin-orbit terms.
 - b) Generate the first excited electronic state term symbol for sodium that corresponds to $1s^2 2s^2 2p^6 3p^1$ configuration. Evaluate if there are any spin-orbit terms.
 - c) Draw a ladder type energy level diagram (not to scale) to show the above energy levels.
 - d) Draw the allowed transitions on the above diagram.
 - e) The first two transitions occur at 615.42 nm and 616.07 nm. These are the famous "sodium d lines". Use these values to determine the spin-orbit coupling constant for the first excited electronic state.