Worksheet 1

1. Find a second order differential equation for the function $y(x)$ for which the following functional reaches an optimal value

$$
\int_{x_{1}}^{x_{2}} \frac{1+\left(y^{\prime}\right)^{2}}{y} \mathrm{~d} x
$$

2. Find and solve the Euler-Lagrange equations for the following functional

$$
\int_{x_{1}}^{x_{2}} \sqrt{x} \sqrt{1+\left(y^{\prime}\right)^{2}} \mathrm{~d} x
$$

Homework 1 (Due January 22nd at 1:00 pm)

1. Find and solve the Euler-Lagrange equations for the following functional

$$
I[y]=\int_{x_{1}}^{x_{2}}\left(y^{\prime}\right)^{2}-y \mathrm{~d} x
$$

2. Solve the following problems from Perfect Form by Lemons: 2.1, 2.3 and 2.5(a).
