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Problems from Blanchard and Devaney I’m going to scan into another document. Please email
me at smachr09@evergreen.edu with any questions or concerns reguarding these solutions.

6.5.2 Consider the system ẍ = x − x2.

a) Find and classify all equilibrium points. First we write this as a two dimensional system

ẋ = y

ẏ = x − x2

We now see that if ẏ = 0 then x = 0 or x = 1. In either case y = 0 must be true for the
point to remain fixed. We now compute the Jacobian of the system.

J =

(

0 1
1 − 2x 0

)

Analyzing at our fixed points we find that for (0,0) we have T = 0 and D = −1 making
this fixed point a saddle. For (1, 0), T = 0 and D = 1 implying that the fixed point is a
linear center.

Note that this system has the same form as the one discussed on pages 159 and 160 of
Strogatz. Using that treatment, we find that

E(x, y) =
y2

2
− x2

2
+

x3

3

is a conserved quantity for this system, implying that our fixed point (1, 0) is a non-linear
center.

Evaluated at the origin, this goes to 0. Since trajectories follow contour lines for conserva-
tive systems, we shall determine where E(x, y) = 0 and know that any trajectories must
lie entirely within the subset of R

2 for which E evaluates to zero. We set E(x, y) = 0
and solve for y. Doing this we find that the trajectories leading to the origin lie along the
curve

y = ±x

√

1 − 2x

3
.

Figure 1 shows that we have a homoclinic orbit and that it seperates closed orbits from
the rest of the phase plane.
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Figure 1: Vector Field and Contour Lines of E(x, y)

6.5.7 (General Relativity and Planetary Orbits) We study the relativistic equation for the orbit of
a planet around the sun

d2u

dθ2
+ u = α + Eu2.

Here u = 1/r and r, θ are the polar coordinates of the planet in its plane of motion, α > 0 and
E > 0 but small.

a) Rewrite the system in the (u, v) phase plane, where v = du/dθ.

We find that

du

dθ
= v

dv

dθ
= α + Eu2 − u

b) Find all of the equilibrium points of the system.

We find equalibrium points by solving for v and u in the equations from part b) given
that du/dθ = dv/dθ = 0. Doing this we find that the our equilibrium points are

~u∗

1 =

(

1 +
√

1 − 4Eα

2E , 0

)

~u∗

2 =

(

1 −
√

1 − 4Eα

2E , 0

)

c) Show that one of the equilibria is a center in the (u, v) phase plane, according to the
linearization about that point. Is it a nonlinear center?

We calculate the Jacobian
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J =

(

0 1
2Eu − 1 0

)

When evaluated at our fixed points, we get that T = 0 for both and D = ∓
√

1 − 4Eα ≈
±1, with the − for ~u∗

1 and the + for ~u∗

2, where the approximation holds because of the
fact that E is small. This shows that ~u∗

1 is a linear center. This is a nonlinear center as
well, since the system is conservative, by Theorem 6.5.1 from Strogatz. (Note that we
can rewrite this system in the same form as Equation (1) on page 159 of Strogatz. From
this it follows that the energy of the system can be expressed in the form given on the
next page. Since this system has an energy function, it is conservative.)

d) Show that the equilibrium point found in (c) corresponds to a circular planetary orbit.

The fixed point in question is u ≈ 1/E , by our earlier mentioned approximation. Then
since u = 1/r, this trajectory corresponds to a constant r value of E . Also since v = 0 for
our fixed point, we have that 0 = du/dθ = (du/dr)(dr/dθ). Since du/dr = −r−2 = −1/E2

for the fixed point in question, which is not zero, so dr/dθ = 0. Thus we have that the
fixed point is a circular path, since the path has constant r values.

6.5.14 (Glider) Let v be the glider’s speed, θ be the angle it makes to the horizontal. We model the
dynamics of these quantities by the equations

v̇ = − sin θ − Dv2

vθ̇ = − cos θ + v2

where the trigonometric terms represent the effects of gravity and the v2 terms represent the
effects of drag and lift.

a) Suppose that there is no drag so that D = 0. Show that E(v, θ) = v3 − 3v cos θ is a
conserved quantity. Sketch a phase portrait of the system under these assumtions and
interprest the results. What does the flight path of the glider look like?

To show that the quantity is conserved we differentiate with respect to t. If the result is
0, then the quantity is conserved. Aplying the product and chain rules we get

dE

dt
= 3v2v̇ − 3(v̇ cos θ − sin θvθ̇)

From here we replace v̇ and vθ̇ with the equaivalent expressions in terms of v and θ. From
that point it is staightforward to verify that all of the terms cancel, giving us Ė = 0,
which implies that the quantity is indeed conserved, as desired.

Next, we’ll find fixed points. Now, v̇ = 0 =⇒ θ = kπ for some k ∈ Z, since D = 0. For
θ̇ = 0 to be true, cos θ = v2 must be. Thus k must be even (Otherwise we wouldn’t be
able to take the square root in order to solve for v). Then v = ±1 so our fixed points are
(±1, 0) (if we restrict ourselves to θ values between ±π). This means that the glider’s
motion is stable when moving at velocity ±1 paralell to the horizontal. Trajectories inside
the region bounded by a circle in Figure 3 will be orbits, and correspond to oscilation of
angle and velocity. Those outside correspond to loop-dee-loops since θ is unbounded in
these regions.
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Figure 2: 3-D Energy Plot Showing E = 0 intersections

Next we find the Jacobian of the system.

J =

(

0 − cos θ
1 + cos θ

v2

sin θ
v

)

Evaluating this matrix at our fixed points (±1, 0), we get

A =

(

0 −1
±2 0

)

This gives us T = 0 and D = 2 for both fixed points, implying that both are linear
centers. Since this system is conservative, it also implies that both are nonlinear centers.

One of the next things we can do which is really helpful is look at contour lines of our
energy function, since our trajectories will lie along those. It turns out that E = 0 is a
good one of these to look at since it seperates different system behaviors. We plot this
contour line and two others. This gives us the information we need to start plotting. First
we show a plot of the energy of the system and it’s intersection with the E = 0 plane,
followed by the phase portrait on top of a vector field plot.

b) In case of positive drag (D > 0), we find that the Jacobian matrix becomes

J =

(

−2Dv − cos θ
1 + cos θ

v2

sin θ
v

)

We now also have different fixed points. Solving for the system when θ̇ and v̇ are 0, we
find that

v = ±
√

cos(arctan−D)

θ = arctan−D

gives us our fixed points.

When we plot these in Figures 4 and 5, we see that both the stable velocity and angle
values decrease as damping increases. This makes intuitive sense. If the glider experiences
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Figure 3: Vector Field and Contour Lines
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Figure 4: Plot of the v-value of the system’s fixed points vs. D.
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Figure 5: Plot of the θ-value of the system’s fixed points vs. D.

resistence, it’s going to loose energy and thus needs to decline in altitude slightly (ie, have
a negative θ value) so that the speeding up from conversion of potential energy into kinetic
balances out the drag force which is absorbing the glider’s kinetic energy. Also, the stable
velocity becomes lower, also making good sense with the presence of higher drag.

Since we are loosing energy to drag, as D increases, we would expect Figure 2 to change
in such a manner that the peak (fixed point) at (-1,0) will shift, as discussed earlier, and
will also become unstable, since the trajectories will want to fall down the hill of energy,
since energy is being absorbed by the air. The fixed point (1,0) will shift and become
a stable sink, since if it’s loosing energy its going to spiral downward. Note that this
argument is not too rigorous, but if we were motivated enough we should analytically
be able to show the same thing by plugging in our new fixed points in terms of D into
our Jabobian, giving us the trace and determinant as functions of D. It’s a lot of work
though, and it’s probably pretty clear without doing it.

6.5.19 (Rabbits vs. Foxes) Study the Lotka-Voltera predator-prey model given by the system of
equations

Ṙ = aR − bRF

Ḟ = −cF + dRF

.

a) Discuss the biological interprestations of the various parameters and comment on unre-
alistic ussumptions.

Here a is a parameter which is indicates how quickly rabits bread. The value of b gives
a measure of how easy it is for a fox to catch a rabbit. The value of c corresponds to
how intense competition is between foxes, while d gives a measure of the ease and overall
benefit of catching a rabit for the fox population.

What is unrealistic about this model is that if there are no foxes the rabits grow exponen-
tially forever, a clear impossibility. Also, it assumes that the foxes have no other source
of food, for they would die if R = 0 was true.
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b) Show that the model can be recast in dimensionless form as

x′ = x(1 − y) (1)

y′ = µy(x − 1) (2)

To solve this problem we factor a term of aR from Ṙ and a term of cF from Ḟ . This
makes it clear that we need to set y = bF/a and x = dR/c. Doing this gives us the (1−y)
and (x−1) terms as we would like them. We are now going to define some τ(t) such that
when we compute dx/dτ we get what we’re looking for. Well, we use the chain rule to
write out

dx

dτ
=

dx

dR
Ṙ

dt

dτ
= x(1 − y)

We have Ṙ and can find dx/dR easily; plugging these things into the desired equation,
we deduce that dt/dτ = a−1 which upon sepeartion of variables and integration gives us
the equation τ = at. Thus we have x′ in the right form, so we check out y′ using the
chain rule we get the equation y′ = (c/a)y(x− 1), so we can set µ = c/a and we have the
desired result. Checking that this is dimensionless is relatively straightforward. We must
simply check that x and y and µ are unitless based off of their definitions.

c) Find a conservative quantity in terms of the dimensionless variables.

We will do this by finding dy/dx, which when evaluated at some given point (x, y) will
give you the slope of the line tangent to the trajectory at that point. The differential
equation this then gives us is useful because we can use it to solve for the relationship
between y and x along solution curves.

By the chain rule, dy/dx = (µy(x − 1))/(x(1 − y)). Applying seperation of variables and
doing a couple of simple integrals, we arrive at the equation

yxµ = Aeµx+y.

Given some initial state ~x0, we can solve for A, and the equation we came up with
involving A, x, and y will describe the trajectory the system takes from that initial point.
A must be the same for all points alllong that trajectory, so if we solve for A in terms
of x and y then we get the conserved quantity we are looking for. (Each value of that
quantity corresponds to one of it’s own contours as well as to a trajectory of the system
which follows that contour)

Solving for A, we have

A(x, y) =
yxµ

eµx+y

.

d) Show that the model predicts cycles in the populations of both species, for almost all
intitial conditions.

Note that along the x and y axes, A = 0. Asuming that both x0 and y0 are poitive, the
value of A will be also. Thus the contour of the conserved quantity which the system
will follow given these starting points will nexer cross any of the axes. The index of this
fixed point can be shown to be zero. Note that the x-nullclines are x = 0 y = 1 and the
y-nullclines are y = 0 and x = 1. Since these are the only nullclines we know that if we
divide the plane into four regions by the lines that intersect (1, 1), then in those regions,
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Figure 6: Vector Field of the System from 6.6.1

the angle that the vectors must be making with repect to the x-axis must be inbetween the
angles that we get on the nullclines bordering that region. This follows from continuity of
the vector field. Consequently, any circle drawn around (1, 1) that is entirely contained
within Quadrant I of the x-y plane will have an index of 1. Assuming otherwise leads to
an easy contradiction of what was just said before reguarding the regions. Thus, by the
system’s conservativity, each trajectory lying in the first quadrant must be a closed orbit.
A graphical arguement might be the most assuring evidence though. I’ll see if I can get
one in soon.

6.6.1 Show that the following system is reversible

ẋ = y(1 − x2)

ẏ = 1 − y2

Let ẋ = f(x, y) and ẏ = g(x, y). Now we have the problem set up as is mentioned on page 164 of
Strogatz, and as mentioned there, if we show that f(x,−y) = −f(x, y) and g(x,−y) = g(x, y)
we will have shown that the system is reversible. Well, we can check:

f(x,−y) = (−y)(1 − x2) = −(y(1 − x2)) = −f(x, y)

g(x,−y) = 1 − (−y)2 = 1 − (y)2 = g(x, y)

So we have that which was to be demonstrated.

See Figure 6 for a vector plot of the system.

6.6.10 Is the origin a nonlinear center for the following system?

ẋ = −y − x2

ẏ = x
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We compute the Jacobian matrix

J =

(

−2x −1
1 0

)

We can see that at the origin we get T = 0 and D = 1, which certainly makes this a linear
center. We’ll have that it is a nonlinear center also if we can show that the system is reversible
(which it probably is, since this problem is in the Reversible Systems section).

Let ẋ = f(x, y) and ẏ = g(x, y). We show that this system is reversible for x. (This works
about the same as for y, we just have to shuffle things around a bit.)

g(−x, y) = (−x) = −(x) = −g(x, y)

f(−x, y) = −y − (−x)2 = −y − (x)2 = g(x, y)

And so we’re done.
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