1. Find the equation of the curve $y(x)$ passing through the points $(0,0)$ and $(1,0)$ for which the integral expression $V[y]=\int_{0}^{1}\left(y^{\prime}\right)^{2} d x$ takes a minimum value, given the constraint $\int_{0}^{1} y^{2} d x=1$.
2. Show that requiring that the functional

$$
I[y]=\int_{a}^{b}\left(p(x)\left(y^{\prime}\right)^{2}-q(x) y^{2}\right) d x
$$

to have an optimum value subject to the constraint

$$
\int_{a}^{b} y^{2} w(x) d x=1
$$

leads to the differential equation

$$
\frac{d}{d x}\left(p y^{\prime}\right)+q y-\lambda w y=0
$$

3. Solve the following problems from Perfect Form by Lemons: 4.5 and 4.6.
