Know the meaning of, be able to calculate, and prove simple theorems about the following:

Null Space and Column Space
Eigenvectors and eigenvalues
Diagonalization and Similarity
Geometric interpretation of matrices with complex eigenvalues
Determinants - how to calculate them and properties
Orthogonality
Orthogonal projections
Orthogonal and orthonormal basis
Orthogonal matrix - definition and properties
Constructing an orthogonal basis - Gram Schmidt
Orthogonal complement
Orthogonal decomposition theorem
Vector Spaces and Inner Product Spaces
Know the axioms
Express a linear combination of functions as coordinate vectors with respect to some basis.
Find the matrix corresponding to a linear transformation
Know the definition of Norm, Orthogonal, and Distance

Applications

Difference Equations
Method of Least Squares
Markov Chains
Applications of Linear Transformations
Applications of determinants
Note: I will not be asking you to prove theorems directly out of the book, but I may ask you to prove some simple results that might follow from theorems in the book.

