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Introduction

First radiation process to look at: radiation in

thermal equilibrium with itself: blackbody radiation

Assumptions:

1. Photons are Bosons, i.e., more than one

photon per phase space cell possible.

2. Photons are in thermodynamic equilibrium at

all frequencies.

Outline of computation:

1. Compute mean energy of photons of

frequency ν in phase space cell, 〈E(ν)〉
2. Compute number of phase space cells as a

function of frequency, N(ν).

3. Compute photon spectrum as product

〈E(ν)〉 ·N(ν).
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Derivation: Step 1, I

First step: Mean energy of photons of frequency ν in phase

space cell.

Describe phase space cell as box =⇒ Photons: ∼solution

of QM harmonic oscillator =⇒ Total energy of box with n

photons:

En =

(
n +

1

2

)
· hν (3.1)

where 1
2hν: ground state energy (unobservable).

Probability that oscillator is in nth state from Boltzmann:

Pn(ν, T ) =
exp

(
−
(
n + 1

2

)
hν
)

∑
n′ exp

(
−
(
n′ + 1

2

)
hν
) =

exp(−nhν/kT )∑
n′ exp(−n′hν/kT )

(3.2)

Therefore, average energy per phase cell:

〈E〉 =
∑

n

EnPn(ν, T ) (3.3)

=
∑

n

{(
n +

1

2

)
hν · exp(−nhν/kT )∑

n′ exp(−n′hν/kT )

}
(3.4)

introducing x = hν/kT

=
kT
∑

n

(
n + 1

2

)
x exp(−nx)

∑
n exp(−nx)

(3.5)

= kT

{∑
n nx exp(−nx)∑
n exp(−nx)

+
x

2

}
(3.6)
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Derivation: Step 1, II

To evaluate 〈E〉, need to compute the geometric sums∑
n exp(−nx) and

∑
n nx exp(−nx). We find (see handout)

∑

n

exp(−nx) =
1

1 − exp(−x)
(3.7)

and

∑

n

nx exp(−nx) =
x exp(−x)

(1 − exp(−x))2 (3.8)

Therefore,

〈E〉 = kT

(
x e−x (1 − e−x)−2

(1 − e−x)−1 +
x

2

)
(3.9)

=
hν exp(−x)

1 − exp(−x)
+
hν

2
(3.10)

=
hν

ehν/kT − 1
+
hν

2
(3.11)

We reiterate: the hν/2 term is unobservable =⇒ Renormalize
zero-point of energy to get rid of it.

Could have “known” this result since from Bose-Einstein statistics
of particles with chemical potential µ = 0 the occupation number is

nγ(ν, T ) =
〈E〉
hν

=
1

exp(hν/kT ) − 1
(3.12)
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To prove Eqs. (3.7) and (3.8), look at the Taylor series of f(y) = (1 − y)−1.

By induction:

f(y) = (1 − y)−1 (3.13)

df

dy
=

(−1)(−1)

(1 − y)2
=

1

(1 − y)2
(3.14)

d2f

dy2
=

(−1)(−2)

(1 − y)3
=

1 · 2

(1 − y)3
(3.15)

and in general

dnf

dyn
=

n!

(1 − y)n+1
(3.16)

Therefore, the Taylor series of f(y) around y = 0 is

1

1 − y
=
∑

n

1

n!

dnf

dyn

∣∣∣∣
y=0

yn =
∑

n

yn (3.17)

Substituting y = exp (−x) proves Eq. (3.7).

To prove Eq. (3.8), we need to compute
∑

n

nx exp(−nx) = x
∑

n

n exp(−nx) (3.18)

Note that
d

dx

∑

n

exp(−nx) = −
∑

n

n exp(−nx) (3.19)

such that

∑

n

n exp(−nx) = − d

dx

∑

n

exp(−nx) (3.20)

by Eq. (3.7)

= − d

dx

(
1

1 − exp(−x)

)
(3.21)

=
exp(−x)

(1 − exp(−x))2
(3.22)

Multiplying with x proves Eq. (3.8).
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Derivation: Step 2, I

Second Step: Computation of density of phase space cells

in box Lx, Ly, Lz.

Wave vector of photon:

k =
2π

λ
n =

2πν

c
n (3.23)

To get all possible photons: count distinguishable photons at

same frequency, i.e., photons with different spin or different

number of nodes (=different n).

Spin is easy: there are 2 polarization states

Number of nodes: in the x, y, or z direction, number of

nodes is

nx =
Lx
λ

=
kxLx
2π

⇐⇒ dnx =
Lx
λ

=
Lx dkx

2π
(3.24)

For n� 1, can go to “continuum of states”. Eq. 3.24 then

implies

dN = dnx dny dnz =
LxLyLz d3k

(2π)3
=
V d3k

(2π)3
(3.25)

Therefore, the number of states per unit volume per wave

number is
nk
d3k

= 2 · dN

V

1

d3k
=

2

(2π)3
(3.26)

Factor 2 from spin.
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Derivation: Step 2, II

Because of Eq. (3.23),

d3k = k2 dk dΩ =
(2π)3

c3
ν2 dν dΩ (3.27)

such that the density of states

ρs =
nν

dν dΩ
=

2

(2π)3
· (2π)3

c3
ν2 =

2ν2

c3
(3.28)

(number of states per solid angle, per volume, per

frequency).
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Blackbody spectrum

To summarize, we had:

Mean energy of state:

〈E〉 =
hν

ehν/kT − 1
(3.11)

State density:

ρs =
2ν2

c3
(3.28)

The total energy density is then

uν(Ω) = 〈E〉 · ρs (3.29)

=
2hν3

c3

1

exp(hν/kT ) − 1
(3.30)

(energy per volume per frequency per solid angle)

Because of Eq. (2.30) (uν = Iν/c), the intensity is given by

Iν =
2hν3

c2

1

exp(hν/kT ) − 1
=: Bν (3.31)

This is the spectrum of a black body.

In λ space, the spectrum is

Bλ =
2hc2/λ5

exp(hc/λkT ) − 1
(3.32)

(since we need Bλ dλ = Bν dν).
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Spectrum
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Rayleigh-Jeans Law

For hν � kT (ν . 2 × 1010T ),

exp

(
hν

kT

)
= 1 +

hν

kT
+ . . . (3.33)

such that

Bν ≈
2ν2

c2
kT (3.34)

This is the Rayleigh-Jeans law.

The Rayleigh-Jeans law is used in the radio

regime to define the brightness temperature,

Tb = Iν ·
c2

2kν2
(3.35)

where Iν is the measured radio intensity.
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Wien Spectrum

For hν � kT , (ν & 2 × 1010T ),

exp

(
hν

kT

)
− 1 ∼ exp

(
hν

kT

)
(3.36)

such that

Bν ≈
2hν3

c2
exp

(
−hν
kT

)
(3.37)

the Wien spectrum (or Wien’s law).
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Wien Displacement Law

The frequency of maximum intensity, νmax is

obtained by solving

∂Bν

∂ν

∣∣∣∣
ν=νmax

= 0 (3.38)

which is equivalent to solving

x = 3(1 − exp(−x)) (3.39)

where x = hνmax/kT . Numerically, x = 2.82,

therefore

hνmax = 2.82 · kT (3.40)

This is the Wien displacement law.

The frequency of maximum flux is directly

proportional to the black body temperature.

Likewise, for Bλ, one finds

λmaxT = 0.2898 cm K (3.41)

Note that λmaxνmax 6= c!

Do not confuse Wien’s law and the Wien displacement law. . .
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Summary: Rayleigh-Jeans vs. Wien
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Rayleigh-Jeans applies for ν . νmax

Wien applies for ν & νmax.
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Stefan-Boltzmann law

The total brightness of a black body is obtained from

B(T ) =

∫ ∞

0
Bν(T ) dν (3.42)

. . . substituting x = hν/kT

=
2h

c2

(
kT

h

)4 ∫ ∞

0

x3 dx

exp(x) − 1
(3.43)

. . . the integral has the value π4/15

=
2π4k4

15c2h3
T 4 =

ac

4π
T 4 =

σSBT
4

π
(3.44)

Convert the brightness to the flux (F = πB, Eq. 2.24), to

obtain

F = σSBT
4 (3.45)

the Stefan-Boltzmann law.

And, yes, Boltzmann’s first name is Ludwig, while Stefan’s first
name is Josef.

a is the radiation density constant,

a :=
8π5k4

15c3h3
= 7.566 × 10−15 erg cm−3 K−4 (3.46)

also written as the Stefan-Boltzmann constant

σSB :=
2π5k4

15c2h3
= 5.671 × 10−5 erg cm−2 K−4 s (3.47)
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Effective Temperature
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G0 V spectrum after Pickles (1998), PASP 110, 863

The effective temperature, Teff, of a spectrum Iν is the

temperature where

F =

∫
Iν cos θ dν dΩ = σT 4

eff (3.48)

Sometimes, Iν is only known over a certain wavelength range, and
depending on the spectrum the measured Teff will depend on this
range (see figure).
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Application: Planets

The temperature of an irradiated body is given

from energy equilibrium:

L�
4πa2

πr2 = σSBT
44πr2 (3.49)

where a: distance to sun, r: planetary radius.

Therefore

T =

(
L�

16πσSBr2

)1/4

=
281 K

(a/1 AU)1/2
(3.50)

Last step used L� = 4 × 1033 erg s−1 and

1 AU = 1.496 × 1013 cm.

If the planet reflects part of the radiation and if the IR

emissivity is only roughly a BB, then Eq. (3.49) is modified,

(1 −B)
L�

4πa2
πr2 = εσSBT

44πr2

=⇒ T =
281 K

(a/1 AU)1/2

(
1 −B

ε

)1/4

(3.51)

where B: Bond albedo, and ε: effective emissivity

For the Earth, B = 0.39, for Venus, B = 0.72. Thus, since

TEarth ∼ 288 K, εEarth = 0.55 < 1 (greenhouse effect).

If the planet is not a fast rotator, replace 4πr2 by 2πr2.


