Blackbody Radiation
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~ Introduction R
First radiation process to look at:
. blackbody radiation

Assumptions:

1. Photons are Bosons, i.e., more than one
photon per phase space cell possible.

2. Photons are in thermodynamic equilibrium at
all frequencies.

Outline of computation:

1. Compute of
frequency v in phase space cell, (E(v))

2. Compute number of phase space cells as a
function of frequency, N (v).

3. Compute photon spectrum as product
(E(v)) - N(v).
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~ Derivation: Step 1, | ™
First step:

Describe phase space cell as box = Photons: ~solution
of QM harmonic oscillator = Total energy of box with n
photons:

E, = (n + %) - hv (3.1)

where %hu: ground state energy (unobservable).
Probability that oscillator is in nth state from Boltzmann:

exp (— (n+3) hv) exp(—nhv/kT)
P,(v,T) = T = /
(v,T) Sowexp (— (0 + E) hv) > exp(—n hV/(Z?g?

Therefore, average energy per phase cell:
(E) =) E,P,(v,T) (3.3)

~2{ () st 09

introducing x = hv/kT
KT, (n+ 3) zexp(—nx)

>, exp(—nax) 59
B dopnxexp(—nz)
— kT{ (=) + 2} (3.6)
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~ Derivation: Step 1, Il ™

To evaluate (F), need to compute the geometric sums
> . exp(—nz) and >, nzexp(—nzx). We find (see handout)

Z exp(—nz) = ! (3.7)
- 1 — exp(—x)
and
> naexp(—nz) v oxp( ) (3.8)
xp(—nx) = .
- (1= exp(—2))?
Therefore,
rem(l—e ™) g
E)y = KT + = 3.9
o (SGEIE ) e
hvexp(—x)  hv
— 3.10
1 — exp(—x) T3 (3:10)
B hv hv 311
B chv /KT _ 1 ™ 2 (3.11)
We reiterate: the —> Renormalize

zero-point of energy to get rid of it.

Could have “known” this result since from Bose-Einstein statistics
of particles with chemical potential ;» = 0 the occupation number is

(E) _ 1

T pu— pu—
(v T) hv  exp(hv/kT) — 1

(3.12)
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To prove Egs. (3.7) and (3.8), look at the Taylor series of f(y) = (1 —y) ™t

By induction:
fly) =@ -y~ (3.13)
d —-1)(—1 1
df _ (= 2) - 5 (3.14)
dy  (1-93? (1-y)
d? —1)(-2 1-2
*’;: (1) 3) = ; (3.15)
dy>  (1-93? (Q-y)
and in general
da"f n! (3.16)
dyn - (1 _ y)n+l )
Therefore, the Taylor series of f(y) around y = 0 is
R I W a1
_ I '
1—y — nl dy™ |, o ~
Substituting y = exp (—z) proves Eq. (3.7).
To prove Eq. (3.8), we need to compute
Z nrexp(—nzr) =x Z nexp(—nz) (3.18)
n n
Note that
T Z exp(—nx) Z nexp(—nx) (3.19)
such that
Z nexp(—nz) Z exp(—nx) (3.20)
by Eq. (3.7)
__d ! (3.21)
~ dx \1—exp(—2) '
exp(~2) (3.22)

T (1 - exp(—a))?

Multiplying with = proves Eq. (3.8).
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~ Derivation: Step 2, | N
Second Step:
inbox L, Ly, L.
Wave vector of photon:
27 21TV
k=—n=—n (3.23)
A c
To get all possible photons: count distinguishable photons at
same frequency, i.e., photons with or
(=different n).
Spin is easy: there are 2 polarization states
Number of nodes: in the x, y, or z direction, number of
nodes is
L, k,L, L, L,dk,
Ny = N " o < dn, = N T o (3.24)

For n > 1, can go to “continuum of states”. Eq. 3.24 then
implies
L.L,L,33k V a3k
dN = dn, dn, dn, = —/—2L= — 3.25
-y erp g O
Therefore, the number of states per unit volume per wave
number is

M _, AN 1 2
Bk "V Bk (2n)3

Factor 2 from spin.

(3.26)
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~ Derivation: Step 2, Il ™
Because of Eqg. (3.23),
2 3
B = 12 ke d = ? 2 dv dQ (3.27)
c
such that the density of states
n, 2 (2n)32 , 27 (3.28)
s = = - Vo= — :
g dvd2  (2m)3 8 c3

(number of states per solid angle, per volume, per
frequency).
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~ Blackbody spectrum N
To summarize, we had:
Mean energy of state:
hv
<E> - chv/kT _ 1 (3.11)
State density:
212
Ps = 3 (3.28)
The total energy density is then
w,(Q) = (E) - ps (3.29)
2hv3 1
= (3.30)

3 exp(hv/kT) —1
(energy per volume per frequency per solid angle)

Because of Eq. (2.30) (u, = I,,/c), the intensity is given by

2hv? 1
I, = — B, 3.31
c? exp(hv/kET) — 1 (3:31)

This is the spectrum of a black body.
In \ space, the spectrum is

B 2hc? /N3
~explhe/AkT) — 1
(since we need By d\ = B, dv).

B) (3.32)
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~ Spectrum

I,(T) [ergs™ cm?Hz ™" sr]
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~ Rayleigh-Jeans Law N
For (v <2 x 1017,
g (3.33)
X = c e .
P\ kT kT
such that ,
2
B, ~ S kT (3.34)
C
This is the Rayleigh-Jeans law.
The Rayleigh-Jeans law is used in the radio
regime to define the brightness temperature,
62
Iy=1,- 3.35
" 2kv? (3:35)

where [, is the measured radio intensity.
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Blackbody Radiation: Properties 2



h
_ 3-10
~ Wien Spectrum ™
For , (v 2 2 x 1017,
L hw (3.36)
X — — ~ X — .
P\ kT P\kT
such that
B~ 2hv3 hv (3.37)
v P T '
the Wien spectrum (or ).
- [z -
Blackbody Radiation: Properties 3
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~ Wien Displacement Law N

The frequency of maximum intensity, vmax IS
obtained by solving

9B, =0 (3.38)
o | B '
which is equivalent to solving
r = 3(1 — exp(—2x)) (3.39)

where x = hvmax/kT. Numerically, x = 2.82,
therefore
Mmax = 2.82 - kT (3.40)

This is the Wien displacement law.

The frequency of maximum flux is directly
proportional to the black body temperature.

Likewise, for B, one finds

Amax] = 0.2898 cm K (3.41)

Note that !

Do not confuse Wien’s law and the Wien displacement law. . .

H J
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/7 |Summary: Rayleigh-Jeans vs. Wien R
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Rayleigh-Jeans applies for v < max
Wien applies for v 2 Vmax.
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~ Stefan-Boltzmann law N\
The total brightness of a black body is obtained from
B(T) = / B,(T) dv (3.42)
0

...substituting x = hv /kT

_%(’“_TY/OO v da (3.43)
2\ h o exp(z)—1 '

...the integral has the value 7*/15

R A ac o _ osgT?

15¢?h3 47

Convert the brightness to the flux (F' = 7B, Eq. 2.24), to
obtain

(3.44)

F = O'SBT4 (345)
the Stefan-Boltzmann law.

And, yes, Boltzmann’s first name is Ludwig, while Stefan’s first
name is Josef.

a is the :
a = 8ok = 7.566 x 10 Pergcm 3K (3.46)
15¢3h3 '
also written as the
2ok e o4
Ospg i= 15.2),3 =5.671 x 10 ergcm “K "s  (3.47)
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~ Effective Temperature ™
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GO v spectrum after Pickles (1998), PASP 110, 863
The effective temperature, T, of a spectrum I, is the
temperature where

F = /]V cos @ dv dQ) = o1 (3.48)

Sometimes, I, is only known over a certain wavelength range, and
depending on the spectrum the measured 1 will depend on this
range (see figure).
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~ Application: Planets N

The temperature of an irradiated body is given
from energy equilibrium:
Le
4a?
where a: distance to sun, r: planetary radius.
Therefore

1/4
Lo 281K
(167TJSBT2> (a/1AU)Y/2 (3:50)

T = osgT*4mr? (3.49)

Last step used L, = 4 x 10%3ergs! and
1AU = 1.496 x 10" cm.

If the planet reflects part of the radiation and if the IR
emissivity is only roughly a BB, then Eg. (3.49) is modified,

Lo 5

(1— B)47m27r7“ = eosgT*amr?
N L (1 — B>1/4 (3.51)
(a/1AU)Y/2 \ ¢
where B: , and e: effective emissivity

For the Earth, B = 0.39, for Venus, B = 0.72. Thus, since
Tearth ~ 288K, €gath = 0.55 < 1 (greenhouse effect).

If the planet is not a fast rotator, replace 47r? by 2772,

H J
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