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Figure 2.14

Curved Coordinates g;
with Varying Directions

radial and angular components. A relevant example is the motion of a planet §
around a central star in plane polar coordinates (Example 2.2.5), In other
words, we can again break vectors into components efficiently: (x, ) — (o, 9),
a powerful concept of physics and engineering. In this section, we develop the ?‘
general formalism of orthogonal coordinates, derive from the geometry of ]
orthogonal coordinates the coordinate differentials, and use them for ;
line, area, and volume elements in multiple integrals. 3

We may describe any point (z, ¥, 2} as the intersection of three planes in §
Cartesian coordinates or as the intersection of the three surfaces that form our §
new, curvilinear coordinates as sketched in Fig. 2.14. Describing the curvilinear §
coordinate surfaces by ¢, = constant, gz = constant, g3 = constant, we may §
identify our point by (q), g2, g3) as well as by (x, , ). This means that
principle we may write 3

General curvilinear coordinates  Circular cylindrical coordinates
q1, 42, qs 0@ 2

x = x(q1, 92, 3) —00 < X=pCOSg < 00

y= y(Q], az, 93)

—o0 < Y= psing < oo (2.27)
2 = 2(q1, g2, 43) — K=< 0 '

specifying x, ¥, 2 in terms of the ¢'s and the inverse relations,
a1 =qi(x, % 2 O0<p=(@?+y)'? <00

g2 = ¢2(x, ¥, 2) 0 < ¢ = arctan(y/z) < 2n
a3 = q3(x, ¥, 2) —00 < Z=Z < 00

As a specific illustration of the general, abstract g, gz, g3, the transformation
equations for circular cylindrical coordinates (Section 2.2) are included in
Egs. (2.27) and (2.28). With each family of surfaces ¢; = constant, we can
associate a unit vector §; normal to the surface ¢; = constant and in the
direction of increasing ¢;. Because the normal to the g; = constant surfaces
can point in different directions depending on the position in space (remember
that these surfaces are not planes), the unit vectors §; can depend on the
position in space, just like @ in cylindrical coordinates. Then the coordinate
vector and a vector V may be written as

r=di1q1 + g2 +@3¢3, V=QVi+&Va+ @V (2.29)

The §; are normalized to (‘ﬁ = 1 and form a right-handed coordinate system
with volume ﬁ] . ((12 X 63) =1

This example tells us that we need to differentiate x(g;, g2, ¢3) in Eq. (2.27),
and this leads to (see total differential in Section 1.5)

dx = —dan —dg + dQS: 230

and similarly for differentiation of ¥ and z, that is, dr = }:i dq1
In curvilinear coordinate space the most general expressmn for the square
of the distance element can be written as a quadratic form:

ds® = g11dq} + gizdq1dge + 913d7, dgs
+ 921 dgz dqy + go2 dgf + gas dgz dys
+ 931 dgs dg1 + gaz dgs dgz + gs3 dgs
= ;‘yﬁ dg;da;, (2.31)
Ly

where the mixed terms dqg;dq; with ¢ # j, signal that these coordinates are not
orthogonal. Spaces for which Eq. (2.31) is the definition of distance are called
metric and Riemannian. Substituting Eq. (2.30) (squared) and the correspond-
ing results for dy® and d2? into Eq. (2.2) and equating coefficients of dg; dg ;,
we find

ax dx ay ay 4 0z 9z _ axy 3y
3¢i9q; ' 9g:da; = d4i9q; 4~ 0g; dq;
These coefficients g;;, which we now proceed to investigate, may be viewed as
specifying the nature of the coordinate system (qy, g2, g5). Collectively, these
coefficients are referred to as the metric.® In general relativity the metric
components are determined by the properties of matter, that is, the g;; are
solutions of Einstein's nonlinear field equations that are driven by the energy-
momentum tensor of matter: Geometry is merged with physics.

Gy = (2.32)

The dg are arbitrary. For instance, setting dgs = dgs = 0 isolates g11. Note that Eq. (2.32) can be
derived from Eq. (2.30)} more elegantly with the matrix notation of Chapter 3.
5The tensor nature of the set of g;; follows from the quotient rule (Section 2.8), Then the tensor

transformation law yields Eq. (2.32).
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From this point on, we limit ourseives to orthogonal coordinate systems : ’ EXAMPLE 2.3.1
{defined by mutually perpendicular surfaces or, equlva]ently, sums of squares 3 —
in ds%),* which means (Exercise 2.3.1) :

95 =0, i#j or & q =34 (2.33) §
Now, to simplify the notation, we write gy = h? so that
ds® = (i da1)’ + (he dge) + (hadas)* = ) (hsdgy)*. 234) |

The specific orthogonal coordinate systems in Sections 2.2 and 2.5 are de- §
scribed by specifying scale factors i, hs, and kg Conversely, the scale factors 1
may be conveniently identified by the relation 1

ds; = h; dg; (2.35)
for any given dg;, holding the other ¢'s constant. Note that the three curvilinear §
coordinates ¢, gz, ¢3 need not be lengths. The scale factors k; may depend
on the ¢'s and they may have dimensions. The product k; dg; must have di- 4

mensions of length and be positive. Because Eg. (2.32) can also be written as
a scalar product of the tangent vectors

Y5=5—""7 (2.36) -

the orthogonality condition in Eq. (2.33) in conjunction with the sum of squares _:

in Eq. (2.34) tell us that for each displacement along a coordinate axis (see 3
Fig. 2.14)

ar . 1

4 3

they are the coordinate tangent vectors so that the differential distance vector 3§
dr becomes
dr=Y hidgidi=) hdg (2.38) §

2 i

Using the curvilinear component form we find that a line integral ji;

becomes |
[ Vidr=3" f Vik: dgs. 2.39) §

The work dW = F - dr done by a force F along a line element dr is the most §
prominent example in physics for a line integral. In this context, we often use 3
the chain rule in the form :

r{tz) tz dr 3
A(r(t)) -dr = A(r(t)) - —dt. (2.40) 3
() 8 dt :

In relativistic cosmology the nondiagonal elements of the metric g;; are usually set equal to zero
as a consequence of physical assumptions such as no rotation.

Energy Conservation for Conservative Force Using Eq. (2.40) for aforce

F = m?i:‘ in conjunction with Newton's equation of motion for a particle of

. mass m allows us to integrate analytically the work

. = . = vdi = —di =
" F.dr A F ; di=m T Pl T 5

= ?{vzaz) — V(1))

]“'(‘23 b dr(®) av mfav’, _m o e
&

as the difference of kinetic energies. If the force derives from a potential as
= —VV, then we can integrate that line integral explicitly because it
contains the gradient

r{tz) r(t2) rt2)

[ R [T ve)-ar = VI = ~(va) - V)
() rh)

and identify the work as minus the potential difference. Comparing both ex-

pressions, we have energy conservation

SV + V(r(tz) = 5vH(0) + V()

for a conservative force. The path independence of the work is discussed
in detail in Section 1.12. Thus, in this case only the end points of the path r(¢)
matter. W

In Cartesian coordinates the length of a space curve is given by [ ds, with
ds? = da? +dy® + dz2. If a space curve in curved coordinates is parameterized

as (q1(8), q2(t), g3(8), we find its length by integrating the length element of
Eq. (2.34) so that

13
L= 21th dq‘ %’f) + (d;f) dt @.41)
4

using the chain rule [Eq. (2.40)]. From Eq. (2.35) we immediately develop the
area and volume elements

doy; = ds;ds; = hshy dgi dg; (242)
and
dt = ds) dsy dsy = hihohg dgy dgz dgs. (2.43)
From Eq. (2.42) an area element may be expanded:

do = ds; dsy §; + dsyds; G2 + ds ds2 43
= hoha dga dgs G + hshi dgsdg1 G2
+ huhe dgy dgz Gs. (2.44)
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Thus, a surface integral becomes

[V-do= [ Viatodar das + [ Vitah dass + [ Vi dgydgs.
(2.45) 1

More examples of such line and surface integrals in cylindrical and spher-
ical polar coordinates appear in Sections 2.2 and 2.5. :
In anticipation of the new forms of equations for vector calculus thfa,t .
appear in the next section, we emphasize that vector algebra is the same in ;
orthogonal curvilinear coordinates as in Cartesian coordinates. Specifically, }

for the dot product ,
AB=) Al -@Bi=) ABds=) AB, (2.46) |
ik ik i ]

where the subscripts indicate curvilinear components. For the cross product

G 4 & :
AxB=) Al x @B = A A Asl, (247) ;
bk B B B ’

as in Eq. (1.40).

Orbital Angular Momentum in Cylindrical Coordinates In circular ;
cylindrical coordinates the orbital angular momentum takes the form [see -'
Eq. (2.8)] for the coordinate vector r = p + z and Example 2.2.5 for the }
velocity v = pp + ppp + 22

b @ @ 1
L=rxp=m|p 0 =z (2.48) ]
popg 2

Now let us take the mass to be 3 kg, the lever arm as I m in the radial direction §
of the xy-plane, and the velocity as 2 m/s in the 2-direction. Then we expect L
to be in the  direction and quantitatively E

10
0 2

00
0 2

-

—3p = —6@mkg/s. (2.49) §

10
00

| a2

o o B
DN O N

-

Previously, we specialized to locally rectangular coordinates that are adapted §

. . : ‘__EXAMPLE
to special symmetries. Let us now briefly examine the more general case in j

which the coordinates are not necessarily orthogonal. Surface and volume §
elements are part of multiple integrals, which are common in physical applica- 1
tions such as center of mass determinations and moments of inertia. Typically,
we choose coordinates according to the symmetry of the particular problem. s
In Chapter 1 we used Gauss’s theorem to transform a volume integral into a ‘,

surface integral and Stokes’s theorem to transform a surface integral into a
line integral. For orthogonal coordinates, the surface and volume elements
are simply products of the line elements #;dg; [see Egs. (2.42) and (2.43)].
For the general case, we use the geometric meaning of dr/dq; in Eq. (2.37)
as tangent vectors. We start with the Cartesian surface element dxdy, which
becomes an infinitesimal rectangle in the new coordinates 41, @2 formed by the
two incremental vectors

ar
dry = (g1 +dgi, q2) — x(q1, ¢2) = qul,
1
ar
dry =r(q), g2 + dgo) — 1(g1, g2) = 5;};@2, (2.50)

whose area is the z-component of their cross product, or

dxr 9y  dx By
dedy = an xaml = [ 250~ 20
™
ag ag.
=1%oy |M1de: (2.51)
g1 Bge

The transformation coefficient in determinant form is called the Jacobian.

Similarly, the volume element dx dydz becomes the triple scalar product
of the three infinitesimal displacement vectors dr; = dqﬁ% along the g; direc-
tions §;, which according to Section 1.4 takes on the form

dx  dx ax
I 3¢  dgg

a8
dydydz=| 2% X 3 qq dg, dgg. (2.52)

3z Gz Bz
31 gz Ag

Here, the coefficient is also called the Jacobian, and so onin higher dimensions.

For orthogonal coordinates the Jacobians simpiify to products of the
orthogonal vectors in Eq. (2.38). It follows that they are products of h;; for
example, the volume Jacobian in Eq. (2.52) becomes

hikahg(@r x &) - 3 = hyhshs.

Jacobians for Polar Coordinates Let us illustrate the transformation of
the Cartesian two-dimensional volume element dxdy to polar coordinates
Py, Withx = pcosg, y= osing. (See also Section 2.2.) Here,

3 oz
_{% B _ |cos¢ —psing -
drdy = gy gﬂ dode = sing pcose »dpdqo-—pdpdgo. (2.563)
p B
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SUMMARY |

Similarly, in spherical coordinates (see Section 2.5), we get from x = # sin 0
CoSg, y =rsind sing, 2= rcos# the Jacobian
sx  dxr 3z

ar :9 Z“’ sinfcosg rcosfcosy —rsinfsing
J= %f )= |sindsing rcosésing rsiné cosy
9z 0z 8z cosé —rsing 0
ar a0 dp
recosfcosy —rsind sin . sinfcosg —rsindsin
= cos@ oS P . ¢ +rsing (> N . 4
rcosésing rsinfcose sindsing rsingcosg

= r*(cos® 8 siné + sin’ §) = r* sin @ (2.54)

by expanding the determinant along the third line. Hence, the volume element
becomes dxdydz = r2dr sin 8dfdyp. The volume integral can be written as

j £, y, Dz dydz = f F@(T, 6, 9), U 6, ¢), 20 0, )y drsin dodp. W

We have developed the general formalism for vector analysis in curvilinear
coordinates. For most applications, locally orthogonal coordinates can be
chosen, for which surface and volume elements in multiple integrals are prod-
ucts of line elements. For the general nonorthogonal case, Jacobian determi-
nants apply. '

EXERCISES

2.3.1 Show that limiting our attention to orthogonal coordinate systems im-
plies that g;; = 0 for i # j [Eq. (2.33)].
Hint. Construct a triangle with sides ds;, ds;, and dss. Equation (2.42)
must hold regardless of whether gi; = 0. Then compare ds? from Eq.
(2.34) with a calculation using the law of cosines. Show that cosf;z =

912/ /011923-

2.3.2 In the spherical polar coordinate system ¢; = 7, g2 = 6, g3 = . The
transformation equations corresponding to Eq. (2.27) are

x=rsinfcosy, y=rsindsing, =z2=rcosfH.

{a) Calculate the spherical polar coordinate scale factors. &, kg, and k.
(b) Check your calculated scale factors by the relation ds; = hb; dg;.
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2.3.3 The u-, v-, 2coordinate system frequently used in electrostatics and in
hydrodynamics is defined by

xy=u, X —y=v, z=2z

This u-, v-, z-system is orthogonal.

(a) In words, describe briefly the nature of each of the three families of
coordinate surfaces.

(b) Sketch the system in the xy-plane showing the intersections of sur-
faces of constant ¢ and surfaces of constant v with the xy-plane
(using graphical software if available).

(c) Indicate the directions of the unit vector @ and ¥ in all four quadrants.

(d) Is this %, v-, 2system right-handed (i x ¥ = +&) or left-handed
(i xv=—-%)7

2.3.4 The elliptic cylindrical coordinate system consists of three families of
surfaces:

22 yz B p2 y

coshiu | gsinhlu  °  @co?u  gisin

Sketch the coordinate surfaces % = constant and v = constant as they

intersect the first quadrant of the xy-plane (using graphical software if

available). Show the unit vectors it and ¥. The range of #is 0 < u < oo,
and the range of vis 0 < v < 2.
Hint. It is easier to work with the square of each side of this equation.

2
2=z

=4
2U

2.3.5 Determine the volume of an n-dimensional sphere of radius r.
Hint. Use generalized polar coordinates.

2.3.6 Minkowski space is definedas ;) = x, 22 = y, ¥a = 2, and xy = ct. This

is done so that the space-time interval ds® = da? — daf — dxf — da?
(¢ = velocity of light). Show that the metric in Minkowski space is

1 0 0 0
c -1 0 0
Wd=1g o —1 o
0 0 0 -1
We use Minkowsld space in Section 4.4 for describing Lorentz transfor-

mations.

2.4 Differential Vector Operators

The starting point for developing the gradient, divergence, and curl operators
in curvilinear coordinates is the geometric interpretation of the gradient as
the vector having the magnitude and direction of the maximum space rate of
change of a function y {compare Section 1.5}. From this interpretation the
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-I Divergence

component of Vyr(qy, g2, ¢3) in the direction normal to the family of surfaces 3

g1 = constant is given by®

dy _ 1oy

@G- -Vy=Vy| = s = hom

since this is the rate of change of  for varying gy, holding g and gs fixed. For -

example, from Example 2.2.1 {and k, =1, h, = p, h, = 1 from Eq. (2.9)] the

g~component of the gradient in circular cylindrical coordinates has the form _-

given by Eq. (2.15). The quantity ds; is a differential length in the direction of

increasing ¢y [compare Eq. (2.35)]. In Section 2.3, we introduced a unit vector
1 to indicate this direction. By repeating Eq. (2.55) for g, and again for gz and |

adding vectorially, the gradient becomes

ay Y oy
v ) - =
V(g1 92, ¢3) = ‘ha +qzas + Gz — 35,

13y, 13y 18y
N PYRILL AP
=g Ry 9g, hy 8gz tha ag3

1s 1
= Zq,w——'!’. (2.56) §

ki 0y

Exercise 2.2.4 offers a mathematical alternative independent of this physical
interpretation of the gradient. Examples are given for cylindrical coordinates ;

in Section 2.2 and spherical polar coordinates in Section 2.5.

The divergence operator may be obtained from the second definition [Eq. )
(1.113)] of Chapter 1 or equivalently from Gauss’s theorem (Section 1.11). Let

us use Eq. (1.113),

v Ve = tm L @57) §

fdr’

with a differential volume dr = hyhohgs dg, dgs dgs (Fig. 2.15). Note that the '
positive directions have been chosen so that (g1, g2, g3) or (8, 42, 3) form a 3

right-handed set, §; x §z = 4s.
The area integral for the two faces g; = constant in Fig. 2.15 is given by

[vlhzhfd + a;;ltvlhehﬁ)dql] dgs dgs — Vihohs dag dga

3
= 5&;("1’32’13)491@02 dqga, (258) %

5Here, the use of ¢ to label a function is avoided because it is conventional to use this symbol to 3

denote an azimuthal coordinate.
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@55) 1

as in Sections 1.6 and 1.9.% Here, V; is the component of V in the §;-direction,
increasing g;; that is, V; = §; - V is the projection of ¥ onto the §;-direction.
Adding in the similar results for the other two pairs of surfaces, we obtain

3 d a
f V(g1 g2, @3)-do= [—(Vlhlhs) + == (Vahighy) + —(Vahlhz)] dq) dgz dgs.
dq1 aqe 9qz
(2.59)

Division by our differential volume [see dz after Eq. (2.57)] yields
V -Vig1, 92 ¢3) = —{(Vikghs) + "--(Vzhshl) + —(Vahlhz)]

(2.60)

o
hihzhs

Applications and examples of this general result will be given in the follow-
ing section for a special coordinate system. We may obtain the Laplacian by
combining Egs. (2.56) and (2.60), using V = V (g, ¢, gz)- This leads to

V- Vi(q, g2 93) = N [3_ql( Py aql) N 82 ( he dg2

3 (’“"’2 ay )] 261)
dgs \ ha dgs

Examples and numerical applications of the central Egs. (2.56), (2.60), (2.61),
and (2.66) are shown for cylindrical coordinates in Section 2.2 and for spherical
polar coordinates in Section 2.5.

%Since we take the limit dq), dgz, dga — 0, the second- and higher order derivatives will drop out.
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Figure 2.16

Curvilinear Surface
Element with
g, = Constant

Finally, to develop V x V, let us apply Stokes’s theorem (Section 1.11) and,
as with divergence, take the limit as the surface area becomes vanishingly
small. Working on one component at a time, we consider a differential surface
element in the curvilinear surface ¢; = constant. For such a small surface the
mean value theorem of integral calculus states that an integral is given by the
surface times the function at a mean value on the small surface. Thus, from

[V %Vl doy = @1 (7 x Vhaha das das 262)
k)
Stokes’s theorem yields

1 - (V x V)hzhsdgedgs = fv- dr, (2.63)

with the line integral iying in the surface g¢; = constant. Following the loop (1,
2, 3, 4) of Fig. 2.16,

a
56 V(q1, g2, @3) - dr = Vzhadgs + [Vahe + gq—(%ha) dth] dqy
P
a
- [Vzhz + @(Vzhz)d%] dgz — Vzha dgs

P i}
= [E(%VS) - 8_q3(h2 Vz)] dqs dqs. (2.64)

We pick up a positive sign when going in the positive direction on parts 1
and 2 and a negative sign on parts 3 and 4 because here we are going in the
negative direction. Higher order terms have been omitted. They will vanish in
the limit as the surface becomes vanishingly small (dg: — 0, dg; ~— 0).

Combining Egs. (2.63) and (2.64), we obtain

1 8 a
VxVli= [a—qz(hsvs) - E(nzvz)]. (265)

The remaining two components of ¥V x V may be picked up by cyclic permu-
tation of the indices. As in Chapter 1, it is often convenient to write the curl in
determinant form:

a1k Gohe  daks

1 ] a J
hbshs | 3q1 gz 9gs
Vi haVy  RsVs

VxV= (2.66)

Remember that because of the presence of the differential operators, this
determinant must be expanded from the top down. Note that this equation is
not identical to the form for the cross product of two vectors [Eq. (1.40)). V
is not an ordinary vector; it is a vector operator.

Our geometric interpretation of the gradient and the use of Gauss’s and
Stokes's theorems (or integral definitions of divergence and curl) have enabled
us to obtain these general formulas without having to differentiate the unit
vectors ;. There exist alternate ways to determine grad, div, and curl based
on direct differentiation of the &;. One approach resolves the §; of a specific
coordinate system into its Cartesian components (Exercises 2.2.1 and 2.5.1)
and differentiates this Cartesian form (Exercises 2.4.3 and 2.5.2). The point
is that the derivatives of the Cartesian £, ¥, and % vanish since %, ¥, and £
are constant in direction as well as in magnitude. A second approach [L. J.
Kijewski, Am. J. Phys. 83, 816 (1965)] starts from the equality of 8%r/dg; 3q;
and #%r/dq; dq; and develops the derivatives of §; in a general curvilinear form.
Exercises 2.3.3 and 2.3.4 are based on this method.

EXERCISES

2.4.1 Develop arguments to show that ordinary dot and cross products (not
involving V) in orthogonal curvilinear coordinates proceed as in Carte-
sian coordinates with no involvement of scale factors.

2.4.2 With §; a unit vector in the direction of increasing ¢, show that
_ 1 a(hsh3)
hihshy  9q1
N 1], 13k 1 9k,
b VXq :—[qz.___" __h_:l‘
® YT | ks Bgs qshz dqz
Note that even though §; is a unit vector, its divergence and curl do not
necessarily vanish (because it varies with position).

(@ V-4



