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< is less than ax partial derivative oi x with
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Abbreviations for Units A ampere keV  kilo-electron volts 3
A angstrom (1071 m) L liter
atm atmosphere m meter *
Btu  British thermal unit MeV mega-electron volts »
Bq becquerel min  minute @
C  coulomb mm  millimeter
°C  degree Celsius ms millisecond
cal calorie N newton r
Ci  curie nm nanometer (10~ m) i
cm  centimeter rev  revolution
eV electron volt R roentgen i
°F  degree Fahrenheit Sv seivert ‘
fm  femtometer, fermi (10-35 m) s second
G  gauss T tesla
Gy gray i} unified mass unit
g gram v volt “
H  henry w watt
h hour - Wb weber g
Hz hertz y year
§ joule um  micrometer (1076 m)
K  kelvin 4s  microsecond ’
kg kilogram uC  microcoulomb
km kilometer Q ohm ’J

he = 19864 X 1077 J-m = 1239.8 ¢V-nm

fic = 31615 X 107% J-m = 19733 eV-nm
2
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Some Physical Constants Avogadro’s number N, 6.022142 X 10 particle /mol
(See Appendix D for a complete Boltzmann’s constant k 1.380650 X 1072 JJK
list of fundamental constants.) Bohr magneton mg = eh 9.2740090 X 102 J/T
' Coulomb constant k= ldme, 8.987551788 X 10° N-m*/C?
Compton wavelength A, = himc 242631022 X 1072 m
Fundamental charge e 1.602176 X 10-° C
Gas constant R = N,k 8.31447 J/mol-K = 1.987 22 cal/mo! Kk -
= 8.20578 X 1072 L-atrvmol-K
Gravitational constant G 6.6731 X 10-"! N-m¥kg
Mass, of electron m, 9.109382 X 1073 kg
= 510.9989 keV/c?
of proton m, 1.672622 X 10-*" kg
= 938.2722 MeV/c?
of neutron m, 1.674927 X 1077 kg
= 939.5653 MeV/c?
Permeability of free space 1y 4ar X 1077 NfA?
Planck’s constant h 6.626009 X 1073 J-3
= 4135667 X 107 eV-s
h 1054572 X 1073 J.5
= 6.582119 X 1-16eV 5
Speed of light c 2.99792458 X 10® m/s
Unified mass unit u 1.660539 X 1027 kg
= 931.49401 MeV/c?
Some Conversion Factors 1 yr=3.156 X 107 5 1IT=10'G
1 light-year = 9.461 X 105 m 1Ci =37 X 10 Bq
1cal =4.186) 1 bam = 102 m?
1 MeV/c = 5344 X 1072 kg-mfs 1uv=166054 X 10~V kg
leV = 1.6022 X 10-]J 1 parsec = 3.26 light-years
1kW-h=36M 1 rad = 57.30°
Some Particle Masses kg MeV/c? u
and Rest Energies Electron 9.1094 X 103 0.51100 5.4858 X 10~
Muon 1.8835 X 1072 105.66 0.11343
Proton 1.6726 X 10-% 938.27 1.00728
Neutron 1.6749 X 10-7 939.57 1.00866
Deuteron 3.3436 X 1077 1875.61 2.01355
a particle 6.6447 X 107 3727.38 400151
w 1.43 x 10-25 80 X 10° 85.9
z° 1.63 X 10~ 91.2 x 10° 97.9



Periodic Table

18
1 2
H ' He
Loot97| 2 B 4 5 16 17 |i0m
3 4 5 6 7 8 9 10
Li Be B C N 0 F Ne
6.941 | 9.012 10.81 |12.011 |14.007|15.9994] 19.00 [20.179
11 12 13 14 15 16 17 18
Na | Mg Al | Si P S Cl | Ar
22090 | 2431 | 2 4 5 6 7 8 7 10 fl 12| 26.98 | 28.09 {30.974| 32.064 |35.453|39.948
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K Ca Sc Ti v Cr | Mn | Fe Co Ni Cu Zn | Ga | Ge As Se Br Kr
39.102 | 40.08 | 44.96 |47.88 | 50.94 | 52.00 | 54.94 | 55.85 | 58.93 | 58.69 | 63.55 | 65.38 | 69.72 | 72.59 | 74.92 | 78.96 | 79.90 | 83.80
37 38 39 40 | 4 420 43 | « 45 46 47 a8 | 49 | s0 | 51 52 53 | 54
Rb Sr Y Zr | Nb | Mo | Tc | Ru Rh Pd Ag Cd | In Sn | Sb Te I Xe
8547 |87.62| 88.906 |91.22 | 92.91}9594 | (98) | 101.1 [102.905] 106.4 |107.870|112.41 | 114.82|118.69|121.75| 127.60 | 126.90|131.29
55 56 57-11 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs Ba | Rare | Hf | Ta W | Re | Os Ir | Pt Au Hg | TIL | Pb | Bi Po At | Rn
132.905(137.33| Earths |[178.49|180.95183.85| 186.2 | 190.2 | 192.2 |195.09| 196.97 |200.59|204.37|207.19|208.98 | (210) | (210 | (222
87 88 89-103 104 105 106 107 108 109 110 111 112 114
Fr Ra | Actinides | Rf Du Sg Bh Hs Mt —_ — - —
223) | (226) 261) | (260) | (263) | 262) | 265) | @66) | @7 | ™ | @™ 1%
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
RareEarths | 13 | Ce | Pr | Nd | Pm | Sm { Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu
(Lanthanides} |138.91(140.12|140.91|144.24| (147) | 150.36 | 152.0 | 157.25 |158.92)|162.50|164.93|167.26| 168.93 |173.04|174.97
29 90 91 92 923 94 95 96 97 98 99 100 101 102 103
Actinides Ac | Th | Pa U Np Pu Am | Cm | Bk Ct Es | Fm | Md No | Lr
227.031232.04|231.04(238.03|237.05| 244) | 243 | 247 | @41 | @51 | @52) | 257) | (258) | (259) | (260)

, The 1-18 group designation has been recommended by the International Union of Pure and Applied Chemistry (IUPAC).
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Part |

: _--Rsélbitivity and Quantum Mechanics:
The Foundations of Modern Physics

The earliest recorded systematic efforts to assemble knowledge about motion as a key to
understanding natural phenomena were those of the andent Greeks. Set forth -n sophisti-
cated form by Aristotle, theirs was a natural philosophy (i.e., physics) of explanatior s deduced
from assumptions rather than experimentation. For example, it was a fundamental e ssumption
that every substance had a “natural place” in the universe. Motion then resulted wien a sub-
stance was trying to reach its natural place. Time was given a similar absolute i eaning, as
moving from some instant in the past (the creation of the universe) toward some ¢nd goal in
the future, its natural place. The remarkable agreement between the deductions of \ristotelian
physics and motions observed throughout the physical universe, together with a nearly total
absence of accurate instruments to make contradictory measurements, enabled acc 2ptance of
the Greek view for nearly 2000 years. Toward the end of that time a few scholars 1ad begun
to deliberately test some of the predictions of theory, but it was the ltafian scienist Galileo
Galilei who, with his brilliant experiments on motion, established for all time th absolute
necessity of experimentation in physics and, coinddentally, initiated the disintegrati»n of Aris-
totelian physics. Within 100 years Isaac Newton had generalized the results of Galile o's exper-
ments into his three spectacularly successful laws of motion, and the natural phi asophy of
Aristotle was gone.

With the burgeoning of experimentation, the following 200 years saw a m Jltitude of
major discoveries and a concomitant development of physical theories to explain them. Most
of the latter, then as now, failed to survive. increasingly sophisticated experimental te sts, but by
the dawn of the twentieth century Newton's theoretical explanation of the motion of mechani-
cal systems had been joined by equally impressive laws of electromagnetism and hemody-
namics as expressed by Maxwell, Carmnot, and others. The remarkable stuccess of 11ese laws
led many scientists to believe that description of the physical universe was complet2. Indeed,
A A Michelson, speaking to scientists near the end of the nineteenth century, said, * the grand
underlying principles have been firnly established . . . the future truths of physics are to be
looked for int the sixth place of decimals”

Such optimism (or pessimism, depending on your point of view) turned out o be pre-
mature, as there were already vexing cracks in the foundation of what we now refer o as clas-
sical physics. Two of these were described by Lord Kelvin, in his famous Baltimore L ectures in
1900, as the “two douds” on the horizon of twentieth-century physics: the failure of theory to
account for the radiation spectrum emitted by a blackbody and the inexplicable res ilts of the
Michelson-Morley experiment. indeed, the breakdown of classical physics occurrec in many




different areas: the Michelson-Morley.null result contradicted Newtonian relativity; the black-
hody radiation spectrum contradicted predictions of thermoedynamics; the photoelectric effect
and the spectra of atoms could not be explained by electromagnetic theory; and the exciting
rhscoveries of x rays and radioactivity seemed to be outside the framework of classical physics
entirely. The development of the theories of quantum mechanics and relativity in the early
twentieth century not only dispefled Kelvin's “dark douds,” they provided answers to all of the
puzzles listed here and many more. The applications of these theories to such microscopic
iystems as atoms, molecules, nudei, and fundamental particles and to macroscapic systems
of solids, liquids, gases, and plasmas have given us a deep understanding of the intncate
workings of nature and have revolutionized our way of life.

in Part 1 we discuss the' foundations of the physics of the modern era, relativity theory
and quantum mechanics. Chapter 1 examiines the apparent conflict between Einstein's princi-
ple of refativity and the observed constancy of the speed of light and shows how accepting the
validity of both ideas led to the spedial theory of relativity. Chapter 2 concems the refations
ronnecting mass, energy, and momentumn in special relativity and concludes with a brief dis-
wussion of general relativity and some experimental tests of its predictions. In Chapters 3, 4,
and 5 the development of quantum theory is traced from the earliest evidences of quantiza- -
tion to de Broglie's hypethesis of electron waves. An elementary discussion of the Schrodinger
squation is provided in Chapter 6, illustrated with- applications to one—d;mens&@nal systems.' .
Chapter 7 extends. the application of quantum mechanics to many-particle systems: and intr-
duces the important new concepts of electron.spin and the exclusion principle. Conduding the. .
development, Chapter 8 discusses the wave mechanics of systems of large mirbers of identi-+
cal particles, underscoring the importance of the symmetry of wave functions. Begmmng with
Chapter 3, the chapters in Part 1 should be studied in sequéence because each of Chapters 4
through 8 depends on the discussions, developments, and examples of the previous chapters.
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Relativity I

The relativistic character of the laws of physics began to be apparent very early
in the evolution of classical physics. Even before the time of Galileo and New-
ton, Nicolaus Copernicus! had shown that the complicated and imprecise A tistotelian
method of computing the motions of the planets, based on the assumption that Earth
was located at the center of the universe, could be made much more simple and accu-
rate if it were assumed that the planets move about the sun instead of Earth Although
Copemicus did not publish his work until very late in life, it became widcly known
through correspondence with his contemporaries and helped pave the way for accep-
tance a century later of the heliocentric theory of planetary motion. While 1he Coper-
nican theory led to a dramatic revolution in human thought, the aspect tha concerns
us here is that it did not consider the location of Earth to be special or favo -ed in any
way. Thus, the laws of physics discovered on Earth could apply equally well with
any point taken as the center—i.e., the same equations would be obtained -egardless
of the origin of coordinates. This invariance of the equations that express tie laws of
physics is what we mean by the term relativity.

We will begin this chapter by investigating briefly the relativity of Newton’s
laws and then concentrate on the theory of relativity as developed by Albeit Einstein
(1879-1955). The theory of relativity consists of two rather different the ories, the
special theory and the general theory. The special theory, developed by Einstein and
others in 1905, concerns the comparison of measurements made in differ¢ nt frames
of reference moving with constant velocity relative to each other. Contrary ' o popular
opinion, the special theory is not difficult to understand. Its consequences, 'vhich can
be derived with a minimum of mathematics, are applicable in a wide variet - of situa-
tions in physics and engineering. On the other hand, the general thcory, also
developed by Einstein (around 1916), is concerned with accelerated referen ce frames
and gravity. Although a thorough understanding of the general theory requ ires more
sophisticated mathematics (e.g., tensor analysis), a number of its basic deas and
important predictions can be discussed at the level of this book. The genera theory is
of great importance in cosmology and in understanding events that occur in the vicin-
ity of very large masses (e.g., stars), but is rarely encountered in othe; areas of
physics and engineering. We will devote this chapter entirely to the spec al theory
(often referred to as special relativity) and discuss the general theory in the final
section of Chapter 2, following the sections concerned with special 1:lativistic
mechanics.



-1 TrHe EXOERIMENTAL PASIS OF RETATIVITY K

[-1 The Experimental Basis of Relativity
Classical Relativity

Galileo was the first to recognize the concept of acceleration when, in his studies of
falling objects, he showed that the rate at which the velocity changed was always
constant, indicating that the motion of the falling body was intimately related to its
changing velocity. It was this observation, among others, that Newton generalized
into his second law of motion:

F=m—= i-1
mdr ma

where dv/dr = a is the acceleration of the mass m and F is the net force acting on
it. (Recall that letters and symbols printed in boldface type are vectors.) Newton’s
first law of motion, the law of inertia, is also implied in Equation 1-1: the velocity
of an object acted upon by no net force does not change; i.e., its acceleration is
zero.

fiames of Reference  An important question regarding the laws of motion, one
that concerned Newton himself and one that you likely studied in first-year physics,
is that of the reference frame in which they are valid. It turns out that they work cor-
rectly only in what is called an inertial reference frame, a reference frame in which
the law of inertia holds.” Newton’s laws of motion for mechanical systems are not
valid in systems that accelerate relative to an inertial reference frame; i.e., an acceler-
ated reference frame is not an inertial reference frame. Figures 1-1 and 1-2 illustrate
inertial and noninertial reference frames.

(ralilean Transformation Newton's laws brought with them an enormous
advance in the relativity of the laws of physics. The laws are invariant, or unchanged,
in reference systems that move at constant velocity with respect to an inertial frame.
Thus, not only is there no special or favored position for measuring space and time,
there is no_special or favored velocity for inertial frames of reference. All such
frames are equivalent. If an observer in an inertial frame S measures the velocity of
an object to be u and an observer in a reference frame S’ moving at constant velocity
v in the +x direction with respect to § measures the velocity of the object to be u]
thenw’ = u — v, or, in terms of the coordinate systems in Figure 1-3 (page 5),

u; = u, —v u,=u u.=u 1-2

If we recall that ), = dx'/dt, u, = dx/dz, and so forth, then, integrating each of the
Equations 1-2, the velocity transformation between § and §’, yields Equations 1-3,
the Galilean transformation of coordinates:

’ '

X=x—w y=y Z'=z : 1-3

assuming the origins of S and 8’ coincided at ¢ = 0. Differentiating Equations 1-2
leads to



Chapter I Relativity

(a)

(o)

Fig. 1-1 A mass suspended by a cord from the roof of a railroad boxcar illustrates - he relativity
of Newton’s second law F = ma. The only forces acting on the mass are its weight g and the
tension T in the cord. (a) The boxcar sits at rest in §. Since the velocity v and the ac celeration a
of the boxcar (i.e., the system §") are both zero, both observers see the mass hangin  vertically
atrest with F = F' = 0. (b) As 5" moves in the +x direction with v constant, both ( bservers see
the mass hanging vertically, but moving at ¥ with respect to  in § and at rest with : espect to
the §* observer. Thus, F = F' = (. (c) As §" moves in the + x direction with a > 0 with respect
to S, the mass hangs at an angle 8 > 0 with respect to the vertical. However, it is sti 1 at rest
(i.e., in equilibrium) with respect to the observer in 5, who now “explains” the ang ¢ 6 by
adding a pseudoforce F, in the —x’ direction to Newton’s second law.

du, du , dl_l]' du du., du
a’,—j=d—:—ax ®= =_Ldr =a, a4, =——=—F=a 1-4
and the conclusion thata’ = a. Thus, we sce that F = ma = ma’ = F' in Figare 1-3 and
Figure 1-15 and, indeed, in every situation where the relative velocity v of t e reference

w

i >

~ @
~ \Satellite

-~

-

Geosynchronous
orbit

z
Fig. 1-2 A geosynchronous satellite has an orbital angular velocity equal to that of Earth and,
therefore, is always located above 4 particular point on Earth; i.e., it is at rest with 1 :spect to
the surface of Earth. An observer in § accounts for the radial, or centripetal, acceler wion a of
the satellite as the result of the net force Fy;. For an observer O at rest on Earth (in '), how-
ever, a” = 0 and Fi; # ma’. To explain the acceleration being zero, observer O mu it add a
pseudoforce F, = —F.




1-1 THs ExpEriMENTAL Basis oF RELATIVITY

Fig. 1-3 The observer in S on the dock measures u for the sailboat’s velocity. The observer
in §* {in the motorboat) moving at constant velocity ¥ with respect to § measures u’ for

the sailboat. The invariance of Newton’s equations between these two systems means that
w=u-—v

frames is constant. Constant relative velocity v of the frames means that dv/dt = 0;
hence the observers measure identical accelerations for moving objects and agree on the
results when applying F = ma. Note that §' is thus also an inertial frame and neither
trame is preferred or special in any way. This result can be generalized as follows:

Any reference frame which moves at constant velocity with respect to dan
inertial frame is also an inertial frame. Newton's laws of mechanics are
invariant in all reference systems connected by a Galilean transformation.

The sccond of the preceding statements is the Newtonian principle of relativity. Note
the tacit assumption in the foregoing that the clocks of both observers keep the same

time, ie., ¥ = ¢

- EXAMPLE 1-1 Velocity of One Boat Relative to Another What will a person in

~the motorboat in Figure 1-3 measure for the velocity of the sailboat? The motor-

.. boat is sailing due east at 3.0 m/s with respect to the dock. The person on the dock

" measures the velocity of the sailboat as 1.5 m/s toward the northeast. The coordi-
nate system § is attached to the dock and §’ is attached to the motorboat.

- Solution
" 1. The magnitude of the sailboat’s velocity u’ is given by:

- 'P) [¥) 2
u Nu2 + Wt -+ ou

2. The components of u’ are given by Equations 1-2 with v = 3.0 m/s, u, =
1.5 cos 45°, u, = 0, and u, = —1.5 sin 45°:

,=15c0s45% — 3.0
2

= —1.5sin 45°

13
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3. Substituting these into u’ above yields:

u' = N(3.76 m¥s? + 1.13m%/s?)
= 2.2 mfs

ﬁ 4. The direction of u’ relative to north (the —z axis}) is given by:
&' = tan~L(u;/uy)
5. Substituting from above:

0’ =tan~! (—1.94/—1.06)
= 61° west of north

Remarks: Note that the observers in § and S’ obtain different values for the speed

" and direction of the sailboat, It is the equations that are invariant betwe.'n inertial
systems, not necessarily the numbers calculated from them. Since neiher refer-
ence frame is special or preferred, both results are correct!

Speed of Light

In about 1860 James Clerk Maxwell discovered that the experimental law s of elec-
tricity and magnetism could be summarized in a consistent set of four concise mathe-
matical statements, the Maxwell equations, one consequence of whict was the
prediction of the possibility of electromagnetic waves. It was recognizi«d almost
immediately, indeed by Maxwell himself, that the Maxwell equations did not obey
the principle of Newtonian relativity, i.e., the equations were not invariant when
transformed between inertial reference frames using the Galilean transfc rmations.
That this is the case can be seen by considering Figure 1-4, which shows an infinitely
long wire with a2 uniform negative charge density A per unit length anl a point
charge g located a distance y, above the wire. The wire and charge are at re. .t in the §
frame. A second reference frame §° moves at constant speed v in the +x direction
with respect to S. An observer at rest in §' sees the wire and charge ¢ mov ng in the
—x' direction at speed v The observers in § and S’ thus have different forr s for the
electromagnetic force acting on the point charge g near the wire, implying that
Maxwell’s equations are not invariant under a Galilean transformation. )

4

z z
Fig. 1-4 The observers in § and §' see identical electric fields 2k\/y, at a distance y, = : { from an
infinitely long wire carrying uniform charge A per unit length. Observers in both § and § ' measure
_ aforce 2kgi/y, on g due to the line of charge; however, the S’ chserver measures an add tional
force —pohv?g/(21ry) due to the magnetic field at y| arising from the motion of the wire in the
—x' direction. Thus, the electromagnetic force does not have the same form in different nertial
systems, implying that Maxwell’s equations are not invariant under a Galilean transform ition.
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A fair question at this peint would be, Why does anyone care that Maxwell’s
electromagnetic laws are not invariant between inertial systems the way Newton’s
laws of mechanics are? Scientists of the time probably wouldn’t have cared a great
deal, except that Maxwell’s equations predict the existence of electromagnetic waves
whose speed would be a particular value ¢ = 1/(pgeg)”> = 3.00 X 10® m/s. The
excellent agreement between this number and the measured value of the speed of
light* and between the predicted polarization properties of electromagnetic waves
and those observed for light provided strong confirmation of the assumption that
light was an electromagnetic wave and, therefore, traveled at speed c.*

That being the case, it was postulated in the nineteenth century that electromag-
netic waves, like all other waves, propagated in a suitable material medium. Called the
ether, this medium filled the entire universe including the interior of matter. (The
Greek philosopher Aristotle had first suggested that the universe was permeated with
“ether” 2000 years earlier.) It had the inconsistent properties, among others, of being
extremely rigid (in order to support the stress of the high electromagnetic wave speed)
while offering no observable resistance to motion of the planets, which was fully
accounted for by Newton’s law of gravitation. The implication of this postulate is that
a light wave, moving with velocity ¢ with respect to the ether, would, according to the
classical transformation (Equations 1-2), travel at velocity ¢’ = ¢ + v with respect to
a frame of reference moving through the ether at v. This would require that Maxwell’s
equations have a different form in the moving frame so as to predict the speed of light
to be ¢, instead of ¢ = 1/(jugep)”>. That would in turn reserve for the ether the status
of a favored or special frame for the laws of electromagnetic theory. It should then be
possible to design an experiment that would detect the existence of the favored frame.

The problem with the ether postulate at the time it was made was not that it
became a favored frame of reference for Maxwell’s equations (Newton had postu-
lated a similar status for the “fixed stars” for the laws of mechanics), but that, unlike
the media through which other kinds of waves moved (e.g., water, air, solids), it
offered no other evidence of its existence. Many experiments were performed to
establish the existence of the ether, but nearly all of them suffered from the same
serious limitation.

Let’s use Fizeau's classic measurement of the speed of light to illustrate that lim-
itation (see Figure 1-5). The time ¢ for the light beam to make a round trip (wheel to
mirror back to wheel) is 2L/ ¢; therefore, the speed of light would be

However, the motion of Earth relative to the ether at some speed v (unknown) would

affect the time measured in an “out and back” terrestrial measurement of the light’s

speed, such as Fizeau’s. If Earth moves toward the right in Figure 1-5 at speed v, then

in the outbound leg the speed of light relative to the laboratory is ¢/ = ¢ — v and in
o S Iy 5‘

the return leg ¢’ = ¢ + v. The round-trip time ¢ is then
b e iy, s
c—v c+v -y ¢ v
e 1-5

=2L1_f)“~2L1+f+ )
c ) L

L L 2Lc 2L 1
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ﬁ\ Partially 3
reflecting

Observer glass piate
Fig. 1-5 Fizean measured the speed of light in 1849 by aiming a beam of light at a d stant mir-
ror through the gap between two teeth in a wheel, in effect changing the light beam i 1to pulses.
A light pulse traveling at speed ¢ would take 2L/c seconds to go from the wheel to th = mirror
and back to the wheel, If, during that time, rotation of the wheel moved a tooth into 1 1e light’s
path, the observer could not see the light. But if the angular velocity w were such tha: the pulse
arrived back at the wheel coincident with the arrival of the next gap, the observer sav- the light.

where the term (1 — v¥c?)~ ! has been expanded using the binomial expansion in
powers of the small quantity v*/¢? (see Appendix B4) and only the first two terms
have been retained. Although the speed of Earth relative to the ether was unknown,
one could reasonably expect that at some season of the year it should e at least
equal to Earth’s orbital speed around the sun, about 30 kmv/s. Thus, the maximum
observable effect would only be of the order of v¥e?2 = (3 X 1043 X 108)2 = 1078,
or about 1 part in 10%. The experimental accuracy of Fizeau’s measureme it was too
poor by a factor of about 10* to detect this small an effect. A large number of experi-
ments intended to detect the effect of Earth’s motion on the propagatior speed of
light were proposed, but for all of them except one the accuracy possibl: with the
apparatus available was, like Fizean’s, insufficient to detect the small effect. The one
exceplion was the experiment of Michelson and Morley.’

EXAMPLE 1-2 Earth’s Orbital Speed Determine Earth’s average ortital speed
with respect to an inertial frame of reference attached to the center of th: sun. The
mean value of Earth’s orbit radins R is 1.496 X 10% km.

Solution
1. The average orbital speed is given in terms of the orbital circun ference C
and the time required to complete one orbit:

v=_Cl
2. The circumference is given in terms of the orbit radius R. The me: n value of

R is a convenient unit of length used for distances within the solar system; it
is called the astrornomical unit (AU).
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C =2nR
= 2mw(1.496 X 10% km)
=940 X 108 km

3. Barth travels a distance equal to Cinr =1y = 3.16 X 107 s. The average
£ speed is then given by:

~9.40 X 10°km
T 316 X 107s
= 29.8 km/s

i. What would the relative velocity of the inertial systems in Figure 1-4 need to
be in order for the §' observer to measure no net electromagnetic force on the
charge ¢?

. Discuss why the very large value for the speed of the electromagnetic waves
would imply that the ether be rigid, i.e., have a large bulk modulus.

o]

The Michelson-Morley Experiment

All waves that were known to nineteenth-century scientists required a medium in
order to propagate. Surface waves moving across the ocean obviously require the
water. Similarly, waves move along a plucked guitar string, across the surface of a
struck drumhead, through Earth after an earthquake, and, indeed, in all materials
acted upon by suitable forces. The speed of the waves depends on the properties of
the medium and is derived relative to the medium. For example, the speed of sound
waves in air, i.e., their absolute motion relative to still air, can be measured. The
Doppler effect for sound in air depends not only on the relative motion of the source
and listener, but also on the motion of each relative to still air. Thus, it was natural for
scientists of that time to expect the existence of some material like the ether to sup-
port the propagation of light and other electromagnetic waves and to expect that the
absolute motion of Earth through the ether should be detectable, despite the fact that
the ether had not been observed previously.

Michelson realized that, although the effect of Earth’s motion on the results of
any “out and back™ speed of light measurement, such as shown generically in Figure
1-6, would be too small to measure directly, it should be possible to measure v¥/c? by

Light source Mirror
Ny ey v
SN
TEI cC+Vv
Observer A B
b L -

¥ig. 1-6 Light source, mirror, and observer are moving with speed v relative to the ether.
According to classical theory, the speed of light c, relative to the ether, would be ¢ — v
relative to the observer for light moving from the source toward the mirror and ¢ + v for light
reflecting from the mirror back toward the source,

%
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Albert A. Michelson made the first accurate measurement of the speed of light. Abc ve, in his
own handwriting, is the vahue as recorded on page 107 of his laboratory records of 1he 1878
experiment. (Below) Michelson in his laboratory. {Courtesy of American Institute o, Physics,
Niels Bohr Library.]
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. a difference measurement, using the interference property of the light waves as a
- sensitive “clock.” The apparatus that he designed to make the measurement is called
_ the Michelson interferometer. The purpose of the Michelson-Morley experiment was

to measure the speed of light relative to the interferometer (i.e., relative to Earth},
thereby detecting Earth’s motion through the ether and, thus, verifying the latter’s
existence. To illustrate how the interferometer works and the reasoning behind
the experiment, let us first describe an analogous situation set in more familiar
surroundings.

~ EXAMPLE 1-3 A Boat Race Two equally matched rowers race each other over
- courses as shown in Figure 1-7a. Each oarsman rows at speed c in still water; the
; current in the river moves at speed v. Boat 1 goes from A to B, a distance L, and
 back. Boat 2 goes from A to C, also a distance I, and back. A, B, and C are marks
- on the riverbank. Which boat wins the race, or is it a tie? (Assume ¢ > v.) e ct

Solution

The winner is, of course, the boat that makes the round trip in the shortest time,

s0 to discover which boat wins we compute the time for each. Using the classical
:. velocity transformation (Equations 1-2), the speed of | relative to the ground is

(c? — vH)'?, as shown in Figure 1-7b; thus the round-trip time ¢, for boat I is

L L _ 2L
ATt T TS T E e VA
zL_E(l_f)“’“~£~(,+1_vz+ ) 16
o P p

C
c —_—
\/1 C_l‘

(a)

{b) v

[ ,’cz_vz

g A—B B-3A

kig. 1-7 (a) The rowers both row at speed c in still water. (See Example 1-3.) The current in
the river moves at speed . Rower 1 goes from A to B and back to A, while rower 2 goes from
A to € and back to A. (b) Rower | must point the bow upstream so that the sum of the velocity
vectors ¢ + v results in the boat moving from A directly to B. His speed relative to the banks
{i.c., points A and B) is then (¢ — v*)'2. The same is true on the retum trip.
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7 where we have again used the binomial expansion. Boat 2 moves dovmstream at
%+ speed ¢ + v relative to the ground and returns at ¢ — v, also relative to the ground.
%' The round-trip time ¢, is thus

i

2L 1 % V2 ) 17
== =H1+5+. ..
c, VvV ¢ c?

which, you may note, is the same result that we obtained in our discu: sion of the
speed-of-light experiment (Equatien 1-5).
The difference At between the round-trip times of the boats is then

2L v2) 2L( 1 vz) L

At=p,—t=—1+ =] -/ 1+-=5]=— -8
FEhTh= ( c? c ! 2 ¢? e? 1

The quantity Lv?/c? is always positive; therefore, #, > ¢, and the rower of boat 1 has

the faster average speed and wins the race.

The Results Michelson and Moriey carried out the experiment in 1887, repeating
with a much improved interferometer an inconclusive experiment that Michelson
alone had performed in 1881 in Potsdam. The path length L on the new interferome-
ter (see Figure 1-8) was about 11 m, obtained by a series of multiple :eflections.
Michelson’s interferometer is shown schematically in Figure 1-9a (pag: 14). The
field of view seen by the observer consists of parallel alternately brigh. and dark
interference bands, called fringes, as illustrated in Figure 1-9b. The two light beams
in the interferometer are exactly analogous to the two boats in Exampl: 1-3, and
Earth’s motion through the ether was expected to introduce a time (phase) difference
as given by Equation 1-8. Rotating the interferometer through 90° doubles the time
difference and changes the phase, causing the fringe pattern to shift by :in amount
AN. An improved system for rotating the apparatus was used in which tl e massive
stone slab on which the interferometer was mounted floated on a pool o’ mercury.
This dampened vibrations and enabled the experimenters to rotate the inte ferometer
without introducing mechanical strains, both of which would cause change ; in L, and
hence a shift in the fringes. Using a sodium light source with A = 5¢0 nm and
assuming v = 30 km/s (i.e., Earth’s orbital speed), AN was expected to be about 0.4
of the width of a fringe, about 40 times the minimum shift (0.01 fringe} that the
interferometer was capable of detecting.

To Michelson’s immense disappointment, and that of most scientists o the time,
the expected shift in the fringes did not occur. Instead, the shift observed was only
about 0.01 fringe, i.e., approximately the experimental uncertainty of the ipparatus.
With characteristic reserve, Michelson described the results thus:®

The actual displacement [of the fringes] was certainly less than the tweatieth
part [of 0.4 fringe), and probably less than the fortieth part. But since th: dis-
placement is proportional to the square of the velocity, the relative velocity of
the earth and the ether is probably less than one-sixth the earth’s orbital ve ocity
and certainly less than one-fourth.
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Light source Q?#ﬁ‘»rtable Unsilvered
Silvered  Jlass plate

glass plate

Fig. 1-8 Drawing of Michelson-Morley apparatus used in their 1887 experiment. The optical
parts were mounted on a sandstone 5 ft square slab, which was floated in mercury, thereby
reducing the strains and vibrations during rotation that had affected the carlier experiments.
Observations could be made in all directions by rotating the apparatus in the horizontal plane.
[From R. S. Shankland, “The Michelson-Morley Experiment.” Copyright © November 1964 by Scientific
American, Inc. All rights reserved.}

Michelson and Morley had placed an upper limit on Earth’s motion relative to the
ether of about 5 km/s. From this distance in time it is difficult for us to appreciate the
devastating impact of this result. The then accepted theory of light propagation could
not be correct, and the ether as a favored frame of reference for Maxwell’s equations
was not tenable. The experiment was repeated by a number of people more than a
dozen times under various conditions and with improved precision, and no shift has
ever been found. In the most precise attempt, the upper limit on the relative velocity
was lowered to 1.5 km/s by Georg Joos in 1930 using an interferometer with light
paths much longer than Michelson’s. Recent, high-precision variations of the experi-
ment using laser beams have lowered the upper limit to 15 m/s.

More generally, on the basis of this and other experiments, we must conclude
that Maxwell's equations are correct and that the speed of electromagnetic radiation
is the same in all inertial reference systems independent of the motion of the source
relative to the observer. This invariance of the speed of light between inertial refer-
ence frames means that there must be some relativity principle that applies to electro-
magnetism as well as to mechanics. That principle cannot be Newtonian relativity,
which implies the dependence of the speed of light on the relative motion of the
source and observer. It follows that the Galilean transformation of coordinates
between inertial frames cannot be correct, but must be replaced with a new coordi-
nate transformation whose application preserves the invariance of the laws of electro-
magnetism. We then expect that the fundamental laws of mechanics, which were
consistent with the old Galilean transformation, will require modification in order to
be invariant under the new transformation. The theoretical derivation of that new
transformation was a cornerstone of Einstein’s development of special relativity.

Michelson interferometers
with arms as long as 4 km
are currently being used in
the search for gravity waves.
See Section 2-5.

Maxued: 156 0
= quater b
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{(a) M, (b) 1 Fringe width
S—— —

@ Rotation

Beam
splitter Compensator M,

&
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Sodium
light source
{diffuse)

~

Fig. 1% Michelson interferometer. (a) Yellow light from the sodium source is di zided into two
beams by the second surface of the partially reflective beam splitter at A, at whic 1 point the two
beams are exactly in phase. The beams travel along the mutually perpendicular paths 1 and 2,
reflect from mirrors M, and M,, and return to A, where they recombine and are v ewed by the
observer. The compensator’s putpose is to make the two paths of equal optical le 1gth, 50 that
the lengths L contain the same number of light waves, by making both beams pa: s through two
thicknesses of glass before recombining. M, is then tilted slightly so that it is not quite perpen-
dicular to M. Thus, the observer O sees M, and M, the image of M, formed by 1he partially
reflecting second surface of the beam splitter, forming a thin wedge-shaped film oof air between
them. The interference of the two recombining beams depends on the number of waves in each
path, which in turn depends on (1) the length of each path and (2} the speed of lig ht (relative to
the instrument) in each path. Regardless of the value of that speed, the wedge-sh: ped air film
between M, and M} results in an increasing path length for beam 2 relative to bezm 1, looking
from left to right across the observer's field of view; hence, the observer sees a se ries of parallel
interference fringes as in (), alternately yellow and black from constructive and - lestructive
interference, respectively.

More

A more complete description of the Michelson-Morley ex;reriment, its
interpretation, and the results of very recent versions can e found on
the home page: www.whfreeman.com/modphysicsde Soe also Fig-
ures 1-10 through 1-12 here, as well as Equations 1-9 throigh 1-12.

1-2 Finstein’s Postulates

In 1905, at the age of 26, Albert Einstein published several papers, amo1g which was .
one on the electrodynamics of moving bodies.!! In this paper, he post lated a more
general principle of relativity which applied to both electrodynamic an i mechanical
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laws. A consequence of this postulate is that absolute motion cannot be detected by
any experiment. We can then consider the Michelson apparatus and Earth to be at
rest. No fringe shift is expected when the interferometer is rotated 90°, since all
directions are equivalent. The null result of the Michelson-Morley experiment is
therefore to be expected. It should be pointed out that Einstein did not set out to
caplain the Michelson-Morley experiment, His theory arose from his considerations
ol the theory of electricity and magnetism and the unusuval property of electromag-
netic waves that they propagate in a vacuum. In his first paper, which contains the
vomplete theory of special relativity, he made only a passing reference to the experi-
mental attempts to detect Earth’s motion through the ether, and in later years he
¢ould not recall whether he was aware of the details of the Michelson-Morley experi-
ment before he published his theory.

The theory of special relativity was dertved from two postulates proposed by
finstein in his 1905 paper:

Postulate 1. The laws of physics are the same in all inertial reference frames.

Postulate 2.  The speed of light in a vacuum is equal to the value ¢, independent
of the motion of the source.

Postulate 1 is an extension of the Newtonian principle of relativity to include all
types of physical measurements (not just measurements in mechanics). It implies that
ao inertial system is preferred over any other; hence, absolute motion cannot be
detected, Postulate 2 describes a common property of all waves. For example, the
speed of sound waves does not depend on the motion of the sound source. When an
approaching car sounds its horn, the frequency heard increases according to the
Doppler effect, but the speed of the waves traveling through the air does not depend
un the speed of the car. The speed of the waves depends only on the properties of the
alr, such as its temperature. The force of this postulate was to include light waves, for
which experiments had found no propagation medium, together with all other waves
whose speed was known to be independent of the speed of the source. Recent analy-
ais of the light curves of gamma-ray bursts that occur near the edge of the observable
universe have shown the speed of light to be independent of the speed of the source
{0 a precision of one part in 107,

Although each postulate seems quite reasonable, many of the implications of the
two together are surprising and seem to contradict common sense. One important
implication of these postulates is that every observer measures the same value for the
apeed of light independent of the relative motion of the source and observer. Con-
sider a light source § and two observers R,, at rest relative to §, and R,, moving
toward § with speed v, as shown in Figure 1-134. The speed of light measured by R,
ix ¢ = 3 X 10® m/s. What is the speed measured by R,? The answer is not ¢ + v, as
nne would expect based on Newtonian relativity. By postulate 1, Figure 1-13a is
aquivalent to Figure 1-135, in which R, is at rest and the source S and R, are moving
with speed v. That is, since absolute motion cannot be detected, it is not possible to
suy which is really moving and which is at rest. By postulate 2, the speed of light
ifom a moving source is independent of the motion of the source. Thus, looking at
Figure 1-13b, we sce that R, measures the speed of light to be ¢, just as R, does. This
result, that all observers measure the same value ¢ for the speed of light, is often con-
sidered an alternative to Einstein’s second postulate.

This result contradicts our infuition. Our intuitive ideas about relative velocities
are approximations that hold only when the speeds are very small compared with the

(<67
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Fig. 1-13 (a) Stationary light
source § and a stationary
observer R,, with a second
observer R, moving toward
the source with speed v,

(b) In the reference frame in
which the observer R; is at
rest, the light source § and
observer B, move to the right
with speed v. If absolute
motion cannot be detected,
the two views are equivalent.
Since the speed of light does
not depend on the motion of
the source, observer R,
measures the same value for
that speed as observer R,.
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Albert Einstein in 1905, at the ame of his greatest productivity. [Courtesy of Lot e Jacobi.]

speed of light. Even in an airplane moving at the speed of sound, it is n>t possible to
measure the speed of light accurately enough to distinguish the differince between
the results ¢ and ¢ + v, where v is the speed of the plane. In order to mal:e such a dis-
tinction, we must either move with a very great velocity (much greate - than that of
sound) or make extremely accurate measurements, as in the Mich:lson-Morley
experiment, and when we do, we will find, as Einstein pointed out in hi: original rel-
ativity paper, that the contradictions are “only apparently irreconcilable.”’

Events and QObservers

In considering the consequences of Einstein’s postulates in greater cepth, i.e., in
developing the theory of special relativity, we need to be certain that meanings of
some impottant terms are crystal clear. First, there is the concept of an evenr. A phys-
ical event is something that happens, like the closing of a door, a lightning strike, the
collision of two particles, your birthday, or the explosion of a star. Every event
occurs at some point in space and at some instant in time, but it is very important to
recognize that events are independent of the particular inertial referen e frame that
we might use to describe them. Events do not “belong” to any reference frame,

Events are described by observers who do belong to particular iner ial frames of
reference. Observers could be people (as in Section 1-1}, electronic instraments, or
other suitable recorders, but for our discussions in special relativity we are going to
be very specific. Strictly speaking, the observer will be an array of recording clocks
located throughout the inertial reference system. It may be helpful for y u to think of
the observer as a person who goes around reading out the memories of the recording
clocks or receives records that have been transmitted from distant clock s, but always
keep in mind that in reporting events such a person is strictly limited to summarizing
the data collected from the clock memories. The travel time of light frecludes him
from including in his report distant events that he may have seen by ey ! It is in this
sense that we will be using the word observer in our discussions.
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Each inertial reference frame may be thought of as being formed by a cubic three-
dimensional lattice made of identical measuring rods (e.g., meter sticks) with a record-
ing clock at each intersection as illustrated in Figure 1-14. The clocks are all identical,
and we, of course, want them all to read the “same time” as one another at any instant,
i.e., they must be synchronized. There are many ways to accomplish synchronization of
the clocks, but a very straightforward way, made possible by the second postulate, is to
use one of the clocks in the lattice as a standard, or reference clock. For convenience we
will also use the location of the reference clock in the lattice as the coordinate origin for
the reference frame. The reference clock is started with its indicator (hands, pointer, dig-
ital display) set at zero. At the instant it starts it also sends out a flash of light that
spreads out as a spherical wave in all directions. When the flash from the reference clock
reaches the lattice clocks I m away (notice that in Figure 1-14 there are six of them, two
of which are off the edges of the figure), we want their indicators to read the time
required for light to travel 1 m (=1/299,792,458 s). This can be done simply by having
an observer at each clock set that time on the indicator and then having the flash from
the reference clock start them as it passes. The clocks I m from the origin now display
the same time as the reference clock, i.e., they are all synchronized. In a similar fashion,
all of the clocks throughout the inertial frame can be synchronized, since the distance of
any clock from the reference clock can be calculated from the space coordinates of its
position in the lattice and the initial setting of its indicator will be the corresponding
travel time for the reference light flash. This procedure can be used to synchronize the
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Fig. 1-14 [nertial reference frame formed from a lattice of measuring rods with a clock at F[ M ( ”'( J
each intersection. The clocks are all synchronized using a reference clock. In this diagram the

measuring rods are shown to be 1 m long, but they could all be 1 cm, 1 pum, or 1 km as S?“ ﬂ"
required by the scale and precision of the measurements being considered. The three space #‘q
dimensions are the clock positions. The fourth spacetime dimension, time, is shown by 5?4

indicator readings on the clocks.

1'7
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clocks in any inertial frame, bur it does not synchronize the clocks in reference frames
that move with respect to one another. Indeed, as we shall see shortly, clocks in rela-
tively moving frames cannot in general be synchronized with one another.

When an event occurs, its location and time are recorded instantly by the nearest
clock. Suppose that an atom located at x =2m, y =3 m, z =4 m in Figure 1-14
emits a tiny flash of light at £+ = 21 s on the clock at that location. That event is
recorded in space and in time, or, as we will henceforth refer to it, the spacetime
coordinate system with the numbers (2,3,4,21). The observer may read o1t and ana-
lyze these data at his leisure, within the limits set by the information tr ansmission
time (i.e., the light travel time) from distant clocks. For example, the patl of a parti-
cle moving through the lattice is revealed by analysis of the records showing the
particle’s time of passage at each clock’s Jocation. Distances between successive
locations and the corresponding time differences enable the determination of the par-
ticle’s velocity. Similar records of the spacetime coordinates of the particle’s path
can, of course, also be made in any inertial frame moving relative to ours, but to
compare the distances and time intervals measured in the two frames requ res that we
consider carefully the relativity of simultaneity.

Relativity of Simultaneity

Einstein’s postulates lead to a number of predictions regarding measureinents made
by observers in inertial frames moving relative to one another that initiall 7 seem very
strange, including some that appear paradoxical. Even so, these predictions have
been cxperimentally verified; and nearly without exception, every paradox is
resolved by an understanding of the relativity of simultaneity, which state: that

Two spatially separated events simultaneous in one reference frame are not
simultanecus in any other inertial frame moving relative to the first,

A corollary te this is that

Clocks synchronized in one reference frame are not synchronizec in any
other inertial frame moving relative to the first.

‘What do we mean by simultaneous events? Suppose two observers both in the
inertial frame S at different locations A and B, agree to explode bomlss at time £,
(remember, we have synchronized all of the clocks in §). The clock at C. equidistant
from A and B, will record the arrival of light from the explosions at the same instant,
i.e., simultaneously. Other clocks in § will record the arrival of light from A or B first,
depending on their locations, but after correcting for the time the light : kes to reach
each clock, the data recorded by each would lead an observer to conc ude that the
explosions were simultaneous. We will thus define two events to be sin ultaneous in
an_inertial reference frame if the light signals from the events reach an observer
balfway between them at the same time as recorded by a clock at that lo« ation, called
a local clock.

Einstein’s Example To show that two events which are simultanesus in frame
S are not simultaneous in another frame §' moving relative to S, we us:: an example
introduced by Einstein. A train is moving with speed v past a station platfirm, We have
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observers located at A', B', and " at the front, back, and middle of the train. (We con-

sider the train to be at rest in §' and the platform in S.) We now suppose that the train

and platform are struck by lightning at the front and back of the train and that the light-
ning bolts are simultaneous in the frame of the platform (S; Figure 1-154). That is, an
observer located at C halfway between positions A and B, where lightming strikes,
observes the two flashes at the same time. It is convenient to suppose that the lightring
scorches both the train and the platform so that the events can be easily located in each
reference frame. Since C' is in the middle of the train, halfway between the places on
the train which are scorched, the events are simultaneous in S* only if the clock at C’
tecords the flashes at the same time. However, the clock at C' records the flash from the
front of the train before the flash from the back. In frame S, when the light from the
front flash reaches the observer at C’, the train has moved some distance toward A, so
that the flash from the back has not yet reached €', as indicated in Figure 1-15b. The
observer at C’ must therefore conclude that the events are not simultaneous, but that the
front of the train was struck before the back. Figures 1-15¢ and 1-154 illustrate, respec-
tively, the subsequent simultaneous arrival of the flashes at C and the still later amrival
of the flash from the rear of the train at C'. As we have discussed, all cbservers in §' on
the train will agree with the observer at C' when they have corrected for the time it
takes light to reach them.

(a

¢ ¥ig, 1-15 Lightning bolts strike the front and rear of the train, scorching both the train and the
® rphtform, as the train (frame $') moves past the platform (system §) at speed v. (a) The strikes
1:#e simultaneous in S, reaching the C observer located midway between the events at the same
i instant as recorded by the clock at € as shown in (¢). In §* the flash from the front of the train
- . racorded by the C' clock, located midway between the scorch marks on the train, before that
ﬁom the rear of the train (b and 4, respectively). Thus, the C' observer conchudes that the

- girikes were not simultaneous,
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Fig. 1-16 (a) Light flashes originate simultaneously at clocks A and B, synchronized in §.

(b) The clock at C", midway between A’ and B’ on the moving train, records the arriva of the
flash from A before the flash from B shown in (d). Since the observer in § announced t1at the
flashes were triggered at ¢, on the local clocks, the observer at C* concludes that the lo:al
clocks at A and B did not read #, simultaneously; i.e., they were not synchronized. The
simultaneous arrival of the flashes at C is shown in (¢).

The corollary can also be demonstrated with a similar example. Again coniider the
train to be at rest in §’, which moves past the platform, at rest in §, with speed 1. Figure
1-16 shows three of the clocks in the § lattice and three of those in the §' latice. The
clocks in each system’s lattice have been synchronized in the manner 1hat was
described earlier, but those in § are not synchronized with those in §'. The ob:erver at
C midway between A and B on the platform announces that light sources at 4 and B
will flash when the clocks at those locations read ¢, (Figure 1-164a). The obsener at C7,
positioned midway between A" and B', notes the arrival of the light flash from the front
of the train (Figure 1-16b) before the arrival of the one from the rear (Figure 1-16d).
Observer ' thus concludes that, if the flashes were each emitted at ) on he local
clocks, as announced, then the clocks at A and B are not synchronized. All obs arvers in
S’ would agree with that conclusion after correcting for the time of light tr vel. The
clock located at € records the arrival of the two flashes simultaneously, of cou se, since
the clocks in S are synchronized (Figure 1-16¢). Notice, too, in Figure 1-16 thit C’ also
concludes that the clock at A is ahead of the clock at B. This is important, am| we will
return to it in more detail in the next section.

. 3. In addition to that described above, what would be another possible nethed
. of synchronizing all of the clocks in an inertia! reference system?
4. In the demonstration of the validity of the corollary, how do obser ers at
A' and B’ reach the same conclusion as the observer at C' regardig the
synchronization of the clocks at A and B?
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-3 The Lorentz Transformation

We now consider a very important consequence of Einstein’s postulates, the general
relation between the spacetime coordinates x, y, z and ¢ of an event as seen in reference
frame § and the coordinates x', y', z’, and ¢#' of the same event as seen in reference frame
$’, which is moving with uniform velocity relative to 5. For simplicity we shall consider
only the special case in which the origins of the two coordinate systems are coincident at
time ¢ = ¢ = 0 and §' is moving, relative to 5, with speed v along the x (or x') axis and
with the y' and z’ axes parallel, respectively, to the y and z axes, as shown in Figure
1-17. As we discussed carlier, the classical Galilean coordinate ransformation is

t ’

X =x—vt y =y =z t=t 1-3

which expresses coordinate measurements made by an observer in S’ in terms of
those measured by an observer in 5. The inverse transformation is

L ’ r

x=x"+v y=y 2=z t=1¢

and simply reflects the fact that the sign of the relative velocity of the reference
frames is different for the two observers. The corresponding classical velocity trans-
formation was given in Equation 1-2 and the (invariant) acceleration transformation
in Equation 1-4. (For the rest of the discussion we shall ignore the equations for y
and z, which do not change in this special case of motion along the x and x’ axes.)
These equations are consistent with experiment as long as v is much less than c.

It should be clear that the classical velocity transformation is not consistent with
the Einstein postulates of special relativity. If light moves along the x axis with speed ¢
in S, Equation 1-2 implies that the speed in §' is u;, = ¢ — v rather than u; = ¢. The
Galilean transformation equations must therefore be modified to be consistent with
Einstein’s postulates, but the result must reduce to the classical equations when v is
much less than ¢. We shall give a brief outline of one method of obtaining the relativis-
tic transformation which is called the Lorentz transformation, so named because of its
otiginal discovery by H. A. Lorentz.? We assume the equation for x’ to be of the form

X' =y (x—v) 1-13
,J/LMP’]{— C"m (-: LQCW"
where =y is a constant which can depend upon v and ¢ but not on the coordinates. If
this equation is to reduce to the classical one, -y must approach 1 as v/c approaches 0.
The inverse transformation must look the same except for the sign of the velocity:

x=~y& +vh 1-14

z z
Fig. 1-17 Two ipertial frames § and §* with the latter moving at speed v in +x direction of
system 5. Each set of axes shown is simply the coordinate axes of a lattice like that in
Figure 1-14. Remember, there is a clock at each intersection. A short time before the times repre-
sented by this diagram O and 0" were coincident and the lattices of § and S’ were intermeshed.

(1§05
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With the arrangement of the axes in Figure 1-17, there is no relative motion of the
frames in the y and z directions; hence y' = y and z' = z. However, insertio 1 of the as
yet unknown multiplier v modifies the classical transformation of time, t' == £. To see
this, we substitute x" from Equation 1-13 into Equation 1-14 and solve for ¢'. The
result is

1 — ~?%
¢ = y[r+ %ﬂ 1-15

Now let a flash of light start from the origin of S at ¢ = 0. Since we have
assumed that the origins coincide at t = ' = 0, the flash also starts at the o igin of §’
at r" = 0. The flash expands from both origins as a spherical wave. The equation for
the wave front according to an observerin S is

Yy +2=a 1-16
and according to an observer in §' it is
x4yt g 2= (22 1-17

where both equations are consistent with the second postulate. Consistenc:r with the
first postulate means that the relativistic transformation that we seek must transform
Equation 1-16 into Equation 1-17, and vice versa. For example, substitut ng Equa-
tions 1-13 and 1-15 into 1-17 results in Equation 1-16, if

1 _ 1
2

where B = v/c. Notice thatfy = 1 for v = 0 and y —» ® for v = ¢./How this is done is
illustrated in Example 1-4.

1-18

EXAMPLE 1-4 Relativistic Transformation Multiplier v Show that -y must be
given by Equation 1-18, if Equation 1-17 is to be transformed into Equ:tion 1-16
consistent with Einstein’s first postulate,

Solution
Substituting Equations 1-13 and 1-15 into 1-17 and noting that y' = yand 2z’ = z
in this case yield

' 1 —~2 2
YA — v+ P+ 2= 2y [r +——1 ﬂ 1-19
Y

To be consistent with the first postulate, Equation 1-19 must be identical to 1-16.
This requires that the coefficient of the x? term in Equation 1-19 be equal to 1, that
of the ¢ term equal to ¢% and that of the xt term equal to 0. Any of thcse condi-
tions can be used to determine vy and all yield the same result. Using, for example,
 the coefficient of x2, we have from Equation 1-19 that
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Cz.yz (1 — 2)‘2

7 which can be rearranged to

(1 -y 2
-y . =(1-v)

. Canceling 1 — +* on both sides and solving for vy yield

’Y:

With the value for v found in Example 1-4, Equation 1-15 can be written in a
somewhat simpler form, and with it the complete Lorentz transformation becomes

X =yx—v) Yy =y
t ( VI) ,
= y| ¢t 7=z
3
and the inverse

x =y + v y=y

. (¢'+3£) _ 1-21
Y &2 1=z
with
1
v - @

S EYAMPLE 1-5 Transformation of Time Intervals The arrivals of two cosmic ray
" p. mesons (muons) are recorded by detectors in the laboratory, one at time £, at
" location x, and the second at time ¢, at location x, in the laboratory reference

" frame, § in Figure 1-17. What is the time interval between those two events in sys-
* tem §' which moves relative to § at speed v?

Solution
Applying the time coordinate transformation from Equation 1-20,

- vx vx
o~y = "I(tl - _zb) - 'Y(to - ““f)
¢ ¢ 1-22
, v
z;'/ ty — =yt — 1 "%‘i(xb_xa)

prig b4

&W ch=

74 54
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We see that the time interval measured in S’ depends not just on the co responding
time interval in S, but also on the spatial separation of the clocks in § that mea-
sured the interval. This result should not come as a total surprise, sinze we have
already discovered that, although the clocks in S are synchronized with each other
they are not synchronized for observers in other inertial frames.

Special Case 1

If it should happen that the two events occur at the same locatio1 in §, ie.,
Xz = x, then (4, — #), the time interval measured on a clock located at the events,
is called the proper time inferval. Notice that, since -y > 1 for all franies moving
relative to S, the proper time interval is the minimum time interval hat can be
measured between those events.

Special Case 2

Does there exist an inertial frame for which the events described alove would
be measured to be simultaneous? Since the question has been asked, ycu probably
suspect that the answer is yes, and you are right. The two events will e simulta-
neous in a system §” for which ¢ — ¢4, = 0, i.e., when

-yv
Y@, — )= "c'_‘z‘(xb — x5
or when
 — |
=Y s (_.L_D)C 1-23
C xb - xa

Notice that (x, — x,)/c = time for a light beam to travel from x, to x;; tl us we can
characterize 5" as being that system whose speed relative to § is that fr «ction of ¢
given by the time interval between the events divided by the travel tirie of light
between them.

While it is possible for us to get along in special relativity without tl ¢ Lorentz
transformation, it has an application that is quite valuable: it enables the spacetime
coordinates of events measured by the measuring rods and clocks in the reference
frame of one observer to be translated into the corresponding coordinates d ztermined
by the measuring rods and clocks of an observer in another inertial frame. /15 we will
see in Section 1-4, such transformations lead to some stariling results.

Relativistic Velocity Transformations

The transformation for velocities in special relativity can be obtained by d fferentia-
tion of the Lorentz transformation, keeping in mind the definition of the velocity.
Suppose a particle moves in § with velocity u whose components are u, = dx/dt,

= dyfds, and u, = dz/dt. An observer in §' would measure the comnponents
U, = dx'fdt’, uy = dy'ldt’, u; = dz'/dt’. Using the transformation equations, we
obtain
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dx' = y(dx — vdf) dv' = dy

. _vdx .
dt—'y(dt (:2) dz' = dz

from which we see that w, is given by

u,:d_x_’_'y(dx—vdt)_(dx/dt—v)
x P de) dx

58

and, if a particle has velocity components in the y and z directions, it is not difficult
to find the components in 5 in a similar manner.

AR

' u)’ ’ uz 7
“ = vt e T vie ( Vi
(1 -2) {1-%) 1-¥, ) <4
Remember that this form of the velocity transformation is specific to the arrangement oo T
of the coordinate axes in Figure 1-17. Note, too, that when v << ¢, i.e., when Jd =< b

B = v/c = 0, the relativistic velocity transforms reduce to the classical velocity addi-
tion of Equation 1-2. Likewise the inverse velocity transformation is

u, +v uy u,
L= A R
“ vi, y v, : vu! 1-25
l-l-—c2 '\(I-f-—c2 'y1+—c2

EXAMPLE 1-6 Relative Speeds of Cosmic Rays Suppose that two cosmic ray
protons approach Earth from opposite directions as shown in Figure 1-18a. The

%f speeds relative to Earth are measured to be v; = 0.6¢ and v, = —0.8¢c. What is

Iig. 1-18 (a) Two cosmic ray protons approach Earth from opposite directions at speeds v, and
v, with respect to Earth. (b) Attaching an inertial frame to each particle and Earth enables one to
visualize the several relative speeds involved and apply the velocity transformation correctly.

25
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%;: Earth's velocity relative to each proton, and what is the velocity of each protor
& relative to the other?

Solution

Consider each particle and Earth to be inertial reference frames §', 5%, and § with
their respective x axes parallel, as in Figure 1-185 With this arrangerent v; = &, =
0.6¢ and v, = uy, = —0.8¢. Thus, the speed of Earth measured in §° is vg, = —0.6¢

and the speed of Earth measured in 5" is vg, = 0.8¢.

To find the speed of proton 2 with respect to proton 1, we apply Equation 1-24

# to compute u},, i.e., the speed of particle 2 in §'. Its speed in § has >een measured

to be u,, = —0.8c, where the §* system has relative speed v; = 0.6¢ with respect to
S. Thus, substituting into Equation 1-24, we obtain

~08c— (060) _ —ldc _ oo

!

Y T T 0.60(—08c)c?  1.48

and the first proton measures the second to be approaching (moviig in the —x'
direction) at 0.95¢.
The observer in $¥ must of course make a consistent measure: 1ent, i.e., find

the speed of proton I to be 0.95¢ in the +x" direction. This can be ‘eadily shown
;:? by a second application of Equation 1-24 to compute 7],

06c ~ (~08c) _ l4c

U

0y = = 0.95¢

5. The Lorentz transformation for y and z is the same as the classizal result:

" y=1y" and z = z'. Yet the relativistic velocity transformation doe; not give
the classical result u, = w), and u, = u;. Explain.

6. Since the velocity components of a moving particle are different in relatively

moving frames, the directions of the velocity vectors are also di ferent, in

['7 ¢ azl? general. Explain why the fact that observers in § and §' measure different

directions for a particle’s motion is not an inconsistency in their obs :rvations.

Spacetime Diagrams

The relativistic discovery that time intervals between events are not the same for all
observers in different inertial reference frames underscores the four-dime sional char- :
acter of spacetime. With the diagrams that we have used thus far, it is diffic ult to depict ;

i

i

and visualize on the two-dimensional page events that occur at different limes, since :
each diagram is equivalent to a snapshot of the spacetime at a particular in :tant. Show- i‘
ing events as a function of time typically requires a series of diagrams, suc1 as Figures
1-15 and 1-16; but even then our attention tends to be drawn to the spaci: coordinate :
systems, rather than the events, whereas it is the events that are fundamental. This diffi- {
culty is removed in special relativity with a simple yet powerful graphing method i
called the spacetime diagram. (This is just a new name given to the f ver:us x graphs :
that you first began to use when you discussed motion in introductory physics.) On the !
spacetime diagram we can graph both the space and time coordinates of ma 1y eventsin ’
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Fig. 1-19 Spacetime diagram for an inertial reference frame S. Two of the space dimensions
{ v and z) are suppressed. The units on both the space and time axes are the same, meters. A
meter of time means the time required for light to travel 1 meter, i.e., 3.3 X 107%s.

one or more inertial frames, albeit with one limitation. Since the page offers only two
dimensions for graphing, we suppress, or ignore for now, two of the space dimensions,
in particular y and z. With our choice of the relative motion of inertial frames along the
x axis, y' = y and ¢’ = z anyhow. (This is one of the reasons we made that convenient
choice a few pages back, the other reason being mathematical simplicity.) This means
that for the time being we are limiting our attention to one space dimension and to
time, i.e., to events that occur, regardless of when, along one line in space. Should we
need the other two dimensions, e.g., in a consideration of velocity vector transforma-
lions, we can always use the Lorentz transformation equations.

In a spacetime diagram the space location of each event is plotted along the x axis
horizontally and the time is plotted vertically. From the three-dimensional array of
measuring rods and clocks in Figure 1-14, we will use only those located on the x axis
as in Figure 1-19. (See, things are simpler already!) Since events that exhibit relativis-
tic effects generally occur at high speeds, it will be convenient to multiply the time
scale by the speed of light (a constant), which enables us to use the same units and
scale on both the space and time axes, e.g., meters of distance and meters of light
travel time.!? The time axis is, therefore, ¢ times the time ¢ in seconds, i.e., ct. As we
will see shortly, this choice prevents events from clustering about the axes and enables
the straightforward addition of other inertial frames into the diagram.

As time advances, notice that in Figure 1-19 each clock in the array moves verti-
cally upward along the dotted lines. Thus, as events A, B, €, and D occur in space-
time, one of the clocks of the arrayis at (or very near) each event when it happens.
Extending our previous definition a bit, the clock located at each event records
proper time. (See Example 1-5.) In the figure, events A and D occur at the same place
{x = 2 m), but at different times. The time interval between them measured on clock
2 is the proper time, since clock 2 is located at both events. Events A and B occur
a1 different locations, but at the same time (i.e., simultaneously in this frame). Event
C occurred before the present (¢t = 0 = present), since ¢f = — 1 m.

Worldlines in Spacetime  Particles moving in space trace out a line in the space-
time diagram called the worldline of the particle. The worldline is the “trajectory” of the
particle on a ct versus x graph. To illustrate, consider four particles moving in space (not
spacetime), as shown in Figure 1-20a, which shows the array of synchronized clocks on
the x axis and the space trajectories of four particles, each starting at x = ( and moving
al some constant speed, during 3 m of time. Figure 1-20b shows the worldline for cach
of the particles in spacetime. Notice that constant speed means that the worldline has
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(a)

(b}

(@

) f----- | __ 5

£) o
2= 3~ xm)

Fig. 1-20 (a) The space trajectories of four particles with various constant speeds Note that
particle 1 has a speed of zero and particle 2 moves in the —x direction. The worldl ines of the
particles are straight lines. (5) The worldline of particle 1 is also the cr axis, since hat particle
remains at x = 0. The constant slopes are a consequence of the constant speeds. (¢) For accel-
erating particles 5 and 6 [not shown in (g)], the worldlines are curved, the slope at any point

yielding the instantaneous speed.

constant slope; i.e., it is a straight line (slope = A¢/Ax = 1/(Ax/Af) = 1/spees’). That was
also the case when you first encountered elapsed time versus displacemer t graphs in
introductory physics. Even then, you were plotting spacetime graphs ad drawing
worldlines! If the particle is accelerating— either speeding up as particle 5 in Figure
1-20¢, or slowing down, like particle 6—the worldlines are curved. Thus, th 2 worldline
is the record of the particle’s travel through spacetime, giving its speed (= /slope) and
acceleration (= 1/rate at which the slope changes) at every instant,

EXAMPLE 1-7 Computing Speeds in Spacetime Find the speed u of particle 3 in
Figure 1-20.

Solution

The speed u = Ax/Ar = 1/slope where we have Ax = 1.5—-0=15m and Act =
¢ - At = 3.0 - 0 = 3.0 m (from Figure 1-20). Thus, At = (3.0/c) = 3.0/3.) X 10%) =
® 10*sandu =15m/107%s = 0.5¢c.
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. ¥Fig. 1-21 The speed-of-light limit to the speeds of particles limits the slopes of worldlines

- for particles that move through x = 0 at ct = 0 to the shaded area of spacetime, i.e., to stopes
¢ &« —~1and > +1. The dashed lines are worldlines of light flashes moving in the -—-x and
- +ux directions. The curved worldline of the particle shown has the same limits at every instant.
- Notice that the particle’s speed = 1/slope.

The speed of particle 4, computed as shown in Example 1-7, turns out to be c,
* the speed of light. (Particle 4 is a light pulse.) The slope of its worldline A(ct¥Ax =
- 3 m/3 m = 1. Similarly, the slope of the worldline of a light pulse moving in the —x
direction is — 1. Since relativity limits the speed of particles with mass to less than c,
~ as we will see in Chapter 2, the slopes of worldlines for particles that move through
i x =0 at ¢t =0 are limited to the larger shaded triangle in Figure 1-21. The same
" limits to the slope apply at every point along a particle’s worldline, such as point A
on the curved spacetime trajectory in Figure 1-21. This means that the particle’s pos-
sible worldlines for times greater than ¢f = 2 m must lie within the heavily shaded
iriangle.

Analyzing events and motion in inertial systems that are in relative motion can
now be accomplished more easily than with diagrams such as Figures 1-15 through
i-18. Suppose we have two inertial frames S and §' with §' moving in the +x
direction of § at speed v as in those figures. The clocks in both systems are started
at t = ' = 0 (the present) as the two origins x = 0 and x' = O coincide, and, -as
before, observers in each system have synchronized the clocks in their respective
systems. The spacetime diagram for § is, of course, like that in Figure 1-19, but
how does 5’ appear in that diagram, i.e., with respect to an observer in §? Consider
that, as the origin of 5’ (i.e., the point where x’ = 0) moves in S, its worldline is
the ¢’ axis, since the ¢’ axis is the locus of all points with x’ = 0 (just as the ¢t
axis 1s the locus of points with x = 0). Thus, the slope of the ¢’ axis as seen by
an observer in § can be found from Equation 1-20, the Lorentz transformation, as
follows:

X=yE-w=0 for x=0
or

x = vt = (vlc)er) = et
and

ot = (UB)x

which says that the slope (in S} of the worldline of the point x' = 0), the ¢’ axis, is
1/B. (See Figure 1-224.)

1-3 THE LORENTZ TRANSFORMATION
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(@ ¢t (m)
ct{m) c

F 3

(b}

Fig. [-22 (a) Spacetime diagram of S showing S’ moving at speed v = (.5¢ in the +; direc-
tion. The diagram is drawn with ¢ = ¢ = 0 when the origins of S and 5’ coincided. Tl ¢ dashed
line shows the worldline of a light flash that passed through the point x = 0 at ¢ = 0 h:ading in
the +x direction. Its slope equals 1 in both § and §’. The ct’ and x’ axes of §' have sloses of
1/B = 2 and B = 0.5, respectively. (p) Calibrating the axes of §* as described in the te <t allows
the grid of coordinates to be drawn on §'. Interpretation is facilitated by remembering that

(b) shows the system 5" as it is observed in the spacetime diagram of .




Pk

1-3 TaE LORENTZ TRANSFORMATION |

In the same manner, the x’ axis can be located using the fact that it is the locus
ol points for which ¢t = 0. The Lorentz transformation once again provides the

slope:

or

Thus, the slope of the x’ axis as measured by an observer in S is 3, as shown in Fig-
ure 1-22a. Don’t be confused by the fact that the x axes don’t look parallel anymore.
They are still parallel in space, but this is a spacetime diagram. It shows motion in
both space and time. For example, the clock at x' = 1 m in Figure 1-22b passed the
point x = 0 at about ¢z = —1.5 m as the x’ axis of §' moved both upward and to the
right in §. Remember, as time advances, the array of synchronized clocks and mea-
suring rods that are the x axis also moves upward, so that, for example, when cf = 1,
the origin of 8’ (x’ = 0, ¢’ = 0) has moved vt = (v/c)cf = Bt to the right along the
X axis.

QUESFION .~

7. Explain how the spacetime diagram in Figure 1-22b would appear drawn by
an observer in 5.

EXAMPLE 1-8 Simultaneity in Spacetime Use the train-platform example of
Figure 1-16 and a suitable spacetime diagram to show that events simultaneous in
one frame are not simultaneous in a frame moving relative to the first. (This is the
. corollary to the relativity of simultaneity that we first demonstrated in the previous
section using Figure 1-16.)

solution
Suppose a train is passing a station platform at speed v and an observer C at the
midpoint of the platform, system S, announces that light flashes will be emitted at
4 clocks A and B located at opposite ends of the platform at ¢ = 0. Let the train, sys-
“ tem S', be a rocket train with v = (0.5c. As in the earlier discussion, clocks at C
"~ and C’ both read 0 as C' passes C. Figure 1-23 shows this situation. It is the
% spacetime equivalent of Figure 1-16.

0 Two events occur: the light flashes. The flashes are simultaneous in S, since
" both occur at ¢t = 0. In §’, however, the event at A occurred at cf’ (A") (see Figure

- 1-23), about 1.2 ¢t' units before ct’ = 0, and the event at B occurred at ct’ (B'),
about 1.2 et units after ¢’ = 0. Thus, the flashes are not simultaneous in S’ and A
occurs before B, as we also saw in Figure 1-16.
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Train
(S framey)

-
=1 Platform
(S frame}

m
2+
e

Fig, 1-23 Spacetime equivalent of Figure 1-16, showing the spacetime diagram foi the system
§ in which the platform is at rest. Measurements made by observers in §” are read f -om the
primed axes,

ANY

©9 Exploring
v Calibrating the Spacetime Axes

By calibrating the coordinate axes of 5’ consistent with the Lorentz transfo mation
we will be able to read the coordinates of events and calculate space and tirr e inter-
5; vals between events as measured in both § and 5’ directly from the diag am, in

addition to calculating them from Equations 1-20 and 1-21. The calibratior of the
S’ axes is straightforward and is accomplished as follows. The locus of pein s, e.g.,
with x" = 1 m, is a line parallel to the ¢ axis through the point x" =1, (¢ =0,
just as we saw earlier that the ¢t axis was the locus of those points with x' = 0
through the point x* = 0, ¢’ = 0. Substituting these values into the Lorent: trans-
formation for x', we see that the line through x” = 1 m intercepts the x axis, ; .., the
line where ¢t = 0, at

X =ylx—v)=y{x— B

1 1-26
b=y or x=—=~1-82
) Y
o1, in general, .
x=xNT— B2

" In Figure 1-225, where B = 0.5, the line ¥’ = 1 m intercepts the x axis at x = 0.{ 66 m.
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The ct’ axis is calibrated in a precisely equivalent manner. The locus of points
with ¢f' = 1 m is a line parallel to the x" axis throngh the point ¢’ = 1, x" = 0.
Using the Lorentz transformation, the intercept of that line with the ct axis (where
x = 0) is found as follows:

f=v0—wicd)

ct' =y (ct — Bx) 1-27

r ¢t = yet for x = 0. Thus, for ¢f =1, 1 = yct or ¢f = (1 — BH*? and, again, in
eneral, cf = c’{1 — P2 The x” - ' coordinate grid is shown in Figure 1-225.
Notice in Figure 1-22b that the clocks located in $’ are not found to be syn-
hronized by observers in S, even though they are synchronized in §’. This is
sexactly the conclusion that we arrived at in the discussion of the lightning siriking
the train and platform. In addition, those with positive x" coordinates are behind the
reference clock and those with negative x' coordinates are ahead, the difference

t' = —yPx. Note, too, that the slope of the worldline of the light beam equals 1 in
", as well as in S, as required by the second postulate.

1-4 Time Dilation and Length Contraction

The results of correct measurements of the time and space intervals between events
do not depend upon the kind of apparatus used for the measurements or on the events
themselves. We are free therefore to choose any events and measuring apparatus that
will help us understand the application of the Einstein postulates to the results of
measurements. As you have already seen from previous examples, convenient events
in relativity are those that produce light flashes. A convenient clock is a light clock,
pictured schematically in Figure 1-24. A photocell detects the light pulse and sends a

Y

Mirror
Detector
L1 = Ct1
Signal 2o=cy bt
At=t—t = L

Fig. 1-24 Light clock for measuring time intervals. The time is measured by reading the
distance between pulses on the oscilloscope after calibrating the sweep speed.
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voltage pulse to an oscilloscope, which produces a vertical defiection of the oicillo-
scope’s trace. The phosphorescent material on the face of the oscilloscope tube gives
a persistent light that can be observed visuaily, photographed, or recorded ele« troni-
cally. The time between two light flashes is determined by measuring the di tance
between pulses on the scope and knowing the sweep speed. Such a clock, which can
easily be calibrated and compared with other types of clocks, is often used in miclear
physics experiments. Although not drawn as in Figure 1-24, the clocks used in « xpla-
nations in this section may be thought of as light clocks.

Time Dilation (or Time Stretching)

We first consider an observer A’ at rest in frame S’ a distance D from a mirvor, a. so in
8, as shown in Figure 1-25a. He triggers a flash gun and measures the time int 2rval
At between the original flash and the return flash from the mitror. Since hight travels
with speed c, this time is At" = (2D)/c.

We now consider these same two events, the original flash of light anc the
returning flash, as observed in reference frame S, with respect to which $* is mc ving
to the right with speed v. The events happen at two different places, x; and 1,, in
frame § because between the original flash and the return flash observer A" has
moved a horizonta] distance vAr, where At is the time interval between the events
measured in §. In Figure 1-25b, a space diagram, we see that the path traveled by the
light is longer in § than in $’. However, by Einstein’s postulates, light travels wit! the
same speed ¢ in frame S as it does in frame . Since it iravels farther in S at the s une
speed, it takes longer in S to reach the mirror and return. The time interval betv een
flashes in S is thus longer than it is in §'. We can easily calculate Af in terms of At',
From the triangle in Figure 1-25¢, we see that

cAr\2 v Ar \?
(2)“’9”(2)

or

At = =
Y e BN

) 4 )

|t :
_+_._._._.....__._.____

Fig. 1-25 (a) Observer A’ and the mirror are in 2 spaceship at rest in frame $’. The time it takes for the light pulse to reach ti e
mirror and return is measured by A to be 2D/c. (&) In frame S, the spaceship is moving to the right with speed v If the speed

of light is the same in both frames, the time it takes for the light to reach the mirror and return is longer than 2D/c in S becante
the distance traveled is greater than 2D. (c) A right triangle for computing the time Arin frame S.
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Using At" = 2D/e, we have

where 7 = Af' is the proper time interval that we first encountered in Example 1-5. 2, 2% T
Equation 1-28 describes fime dilation; i.e., it tells us that the observer in frame § /
always measures the time interval between two events to be longer (since y > 1) than
the corresponding interval measured on the clock located at both events in the frame
where they occur at the same location. Thus, observers in S conclude that the clock at
‘A’ in ¥ runs slow, since that clock measures a smaller time interval between the two
events. Notice that the faster §° moves with respect to §, the larger is vy, and the
slower the §’ clocks will tick. It appears to the .S observer that time is being stretched
outin S'.

Be careful! The same clock must be focated at each event for A’ to be the
sproper time interval 7. We can see why this is true by noting that Equation 1-28 can
" be obtained directly from the inverse Lorentz transformation for ¢, Referring again to

o

%{-Figure 1-25 and calling the emission of the flash event 1 and its return event 2, we
% have that

At=:2—t,x'y(t2'+ ?22)—7(‘1'*'_‘:21)

PN, LA

At =~y — )+ 7(xz —x1)

or

Ar=yar + Loax 129

* If the clock that records #5 and ¢] is located at the events, then Ax’ = 0. If that is not
. the case, however, Ax’ # 0 and Ar', though certainly a valid measurement, is not
. a proper time interval. Only a clock located ar an event when it occurs can record
. proper time.

Lo

EXAMPLE 1-9 Spatial Separation of Events Two events occur at the same point
xg at times ¢ and ¢ in §’, which moves with spced v rclative to §. What is the
spatial separaticn of these events measured in §?

Solution
1. The location of the events in § is given by the Lorentz inverse transforma-
tion Equation 1-21:

x= v x4+ v

(W3]
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afot=2r
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Fig. 1-26 Spacetime diagram
illustrating time dilation. The
dashed line is the worldline of
a light flash emitted at x’ = 0
and reflected back to that
point by a mirror at x’ = 1 m.
B =05

2. The spatial separation of the two events Ax = x, — x, is then:
Ax =y (g + vig) ~ v (g + vt])
3. The yxyterms cancel:
Ax = yol(t; — 17) = wAr
4. Since At' is the proper time interval 1, Equation 1-28 yields:
Ax = vyr = vAt

5. Using the situation in Figure 1-26 as a numerical example, whire B = 0.5
and y = 1.15, we have:

Ax =+ % Adet’) = (L.15)(0.5))

=115m

g8 EXAMPLE 1-10 The Pregnant Elephant! Elephants have a gestatio| period of
B 21 months. Suppose that a freshly impregnated elephant is placed on 1 spaceship
8 and sent toward a distant space jungle at v = 0.75¢. If we monitor radi » transmis-
& sions from the spaceship, how long after launch might we expect to h :ar the first
8 squealing trumpet from the newborn calf?

Solution

1. In$’, the rest frame of the elephant, the time interval from law ch to birth
15 T = 21 months. In the Earth frame S, the time interval is Az, given by
Equation 1-28:

1
Atl =W=—mrl_:|:3—i7

1
= == (21 month
V1 - (0.75)2( mons)

= 31.7 months
2, At that time the radio signal announcing the happy event starts to ¥ard Earth

at speed ¢, but from where? Using the result of Example 1-9, siice launch
the spaceship has moved Ax in § given by:

Ax = yvr = yBct
= (1.51)0.75)(21c - months)
= 23.8¢c - months

where ¢ - month is the distance light travels in one month.
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3. Notice that there is no need to convert Ax into meters, since our interest is
in how long it will take the radio signal to travel this distance in S. That time
is At,, given by:

An, = Axfe
= 23 8¢ - months/c
= 23.8 months

4. Thus, the good news will arrive at Earth at time At after launch where:

AI = All + Atz
=317+ 238
= 55.5 months

- Remarks: This result, too, is readily obtained from a spacetime diagram. Figure 1-27
. illustrates the general appearance of the spacetime diagram for this example, show-
- ing the elephant’s worldline and the worldline of the radio signal.

QUESTION

B. You are standing on a corner and a friend is driving past in an automobile.
Both of you note the times when the car passes two different intersections
and determine from your watch readings the time that elapses between the
two events. Which of you has determined the proper time interval?

The time dilation of Equation 1-28 is easy to see in a spacetime diagram such as
Figure 1-26, using the same round trip for a light pulse used above. Let the light flash
loave x' = 0 at ¢’ = 0 when the S and §” origins coincided. The flash travels to x' =
| m, reflects from a mirror located there, and returns to x” = 0. Let § = 0.5. The dot-
ted line shows the worldline of the lighit beam, reflecting at (x" = 1, ¢’ = 1) and
seturning to x* = 0 at ¢# = 2 m. Note that the S observer records the latter event at
¢t > 2 m; i.c., the observer in § sees the §' clock running slow.

Experimental tests of the time dilation prediction have been performed using
macroscopic clocks, in particular, accurate atomic clocks. In 1975, C. O. Alley con-
ducted a test of both general and special relativity in which a set of atomic clocks were
varried by a U.S. Navy antisubmarine patrol aircraft while it flew back and forth over
the same path for 15 hours at altitudes between 8000 m and 10,000 m over Chesapeake

Bay. The clocks in the plane were compared by laser pulses with an identical group.of.

vlocks on the ground. (See Figure 1-14 for one way such a comparison might be done.)
Nince the experiment was primarily intended to test the gravitational effect on clocks
predicted by general relativity (sce Section 2-5), the aircraft was deliberately flown at
the rather sedate average speed of 270 knots (140 m/s) = 4.7 X 1077¢ so as to mini-
iize the time dilation due to the relative speeds of the clocks. Even so, after deducting
the effect of gravitation as predicted by general relativity, the airborne clocks lost an
uverage of 5.6 X 107 s due to the relative speed during the 15-hour flight. This result
ngrees with the prediction of special relativity, 5.7 X 10~° s to within 2 percent, even at
this low relative speed. The experimental results leave little basis for further debate as
t whether traveling clocks of all kinds lose time cn a round trip. They do.

s
~t

ct X
{c* mo) ct

Radio

56.5k signal

31.7

Fig. 1-27 Sketch of the
spacetime diagram for
Example 1-10. B = 0.75.
The colored line is the
worldline of the pregnant
elephant. The worldiine of
the radio signal is the
dashed line at 45° toward the
upper left.
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Length Contraction

A phenomenon closely related to time dilation is length contraction. " he length of
an object measured in the reference frame in which the object is at -est is called
its proper length L,. In a reference frame in which the object is moving, the mea-
sured length parallel to the direction of motion is shorter than its p oper length.
Consider a rod at rest in the frame S’ with one end at x}, and the other end at x) as
illustrated in Figure 1-28. The length of the rod in this frame is its g roper length
L, = x} — x}. Some care must be taken to find the length of the rod i1 frame S. In
this frame, the rod is moving to the right with speed v, the speed of f ame §’. The
length of the rod in frame S is defined as L = x, — x;, where x, is th: position of
one end at some time #,, and x, is the position of the other end at # e same time
t; = t, as measured in frame S. Since the rod is at rest in §', ¢; need not equal #).
Equation 1-20 is convenient to use to calculate x, — x, at some time f because it
relates x, x', and ¢, whereas Equation 1-21 is not convenient because it relates x,
x' and t';

N=y@-v) and x;=v{x — v

Since t; = 1, we obtain

B =xn ==~ x) =\ - 50— x)
or
¥
L“——-'7L‘p2 l—?Lp 1-30
ct(m)
cf’ (m)
2_

x" {(m)

&N,.

= ——————

(x2)  x(m)

Fig. 1-28 A measuring rod, a meterstick in this case, lies at rest in 5’ betweent x5 = 2 m and
x1 = 1 m. System S’ moves with B = 0.62 relative to 5. Since the rod is in motio 1, § must
measure the locations of the ends of the rod x, and x, simultaneously in order to ] ave made
a valid length measurement. L is obviously shorter than L, By direct measureme it from the
diagram (use a millimeter scale) L/IL, = 0.78 = 1/y.
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Thus the length of a rod is smaller when it is measured in a frame with respect

to which it is moving. Before Einstein’s paper was published, Lorentz and / ; }D <
I“itzGerald had independently shown that the null result of the Michelson-Morley -
experiment could be explained by assuming that the lengths in the direction of

the interferometer’s motion contracted by the amount given in Equation 1-30.

'ur that reason, the length contraction is often called the Lorentz-FitzGerald
contraction,

T e e

PXAMPLE 1-11 Speed of § A stick that has a proper length of 1 m moves in a
direction parallel to its length with speed v relative to you. The length of the stick
as measured by you is 0.914 meter. What is the speed v?

. Solution
* 1. The length of the stick measured in a frame relative to which it is moving
with speed v is related to its proper length by Equation 1-30:

oL 1
Y
2. Rearranging to solve for y;
3. Substituting the values of L, and L:
im 1

YT 001dm VI = vie2

4. Solving for v:

V1 =2 = 0914

1 — v¥c? = (0.914)? = 0.835
vic? =1 — 0.835 = 0.165
v = 0.165¢2
v = 0.406¢

e

It is important to remember that the relativistic contraction of moving lengths
tccurs only parallel to the relative motion of the reference frames. In particular,
abservers in relatively moving systems measure the same values for lengths in the y
and ¥’ and in the z and 7’ directions perpendicular to their relative motion. The result
{v that observers measure different shapes and angles for two- and three-dimensional
objects. (See Example 1-12 and Figures 1-29 and 1-30.)
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EXAMPLE 1-12 The Shape of a Moving Square Consider the square in the x’y’
plane of $" with one side making a 30° angle with the x’ axis as in Figure 1-30q.
If 5’ moves with § = 0.5 relative to S, what are the shape and orientation of the
figure in §7

Solution
The S observer measures the x components of each side to be shorter 1y a factor
1/ than those measured in S’. Thus, S measures

A = [cos? 30 + sin? 30?2 A" = 0.9684'
B = [sin? 30 + cos? 30/y?]'2 B’ = 0.9018'

Since the figure is a square in §', A’ = B’. In addition, the angles betw een B and
the x axis and between A and the x axis are given by, respectively,

o — tan"[ B'sin 30 :IZ ta"-l[T sm30} P

B’ cos 30/y cos 30
A'cos 30 cos 30
= e — | = -1 = 4
$ = tan [A’ sin 30/«,] tan ["’ sin 30] 63

Thus, § concludes from geometry that the interior angle at vertex 1 is n it 90°, but
180° — (63.4° + 33.7°) = 82.9°—i.e., the figure is not a square, but a parallelo-
gram whose shorter sides make 33.7° angles with the x axis! Its shape aid orienta-
tion in § are shown in Figure 1-305.

o]

Fig. 1-29 The appearance of rapidly moving objects depends on both length contrac tion in
the direction of motion and the time when the observed light left the object. (@) The aray of
clocks and measuring rods that represents 8" as viewed by an observer in S with § = 0.

(b) When 5’ approaches the § observer with B = 0.9, the distortion of the lattice bec ymes
apparent. This is what an observer on a cosmic ray proton might see as it passes intc the
lattice of a cubic crystal such as NaCl. [P-K. Hsiung, R. Dunn, and C. Cox. Courtes ' of

C. Cox, Adobe Systems, Inc., San Jose, CA.)

it i kb
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X . b
@ ri S —V.osc ® i S

Fig. 1-30 Length contraction distorts the shape and orientation of two- and three-dimensional
vbjects. The observer in 5 measures the square shown in §° as a rotated parallelogram.

Muon Decay

An interesting example of both time dilation and length contraction is afforded by the
appearance of muons as secondary radiation from cosmic rays. Muons decay accord-
ing to the statistical law of radioactivity:

N@) = Noe™? 1-31

where Np is the original number of muons at time f = 0, N(#) is the number
remaining at time 1, and 7 is the mean lifetime (a proper time interval), which is
about 2 ps for muons. Since muons are created (from the decay of pions) high in
the atmosphere, usually several thousand meters above sea level, few muons
should reach sea level. A typical muon moving with speed 0.998¢ would travel
onty about 600 m in 2 ps. However, the lifetime of the muon measured in Earth’s
reference frame is increased according to time dilation (Equation 1-28) by the fac-
tor 1/(1 — v¥c*)'?, which is 15 for this particular speed. The mean lifetime mea-
sured in Earth’s reference frame is therefore 30 ps, and 2 muon with speed 0.998¢
travels about 9000 m in this time. From the muon’s point of view, it lives only
2 us, but the atmosphere is rushing past it with a speed of 0.998¢. The distance of
9000 m in Earth’s frame is thus contracted to only 600 m in the muon’s frame, as
indicated in Figure 1-31.

It is easy to distinguish experimentally between the classical and relativistic pre-
dictions of the observations of muons at sea level. Suppose that we observe 10%
muons at an altitude of 9000 m in some time interval with a muon detector. How
many-would we expect to observe at sea level in the same time interval? According
to the nonrelativistic prediction, the time it takes for these muons to travel 9000 m is
{9000 m)/0.998¢c =~ 30 ps, which is 15 lifetimes. Substituting Ny = 10® and ¢ = 157
into Equation 1-31, we obtain

N=10%"5 =306

We would thus expect all but about 31 of the original 100 million muons to decay
hefore reaching sea level.

According to the relativistic prediction, Earth must travel only the contracted
distance of 600 m in the rest frame of the muon. This takes only 2 ps = 17. There-
{ore the number of muons expected at sea level is

Experiments with muons
moving near the speed o
light are performed at mi ny
accelerator laboratories
throughout the world
despite their short mean
life. Time dilation results i1
much lenger mean lives
relative to the laboratory,
providing plenty of time t)
do experiments.
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Fig. 1-31 Although muons
are created high above Earth,
and their mean lifetime is
only about 2 ps when at rest,
many appear at Earth’s sur-
face. (a) In Earth’s reference
frame, a typical muon mov-
ing at 0.998¢ has a mean
lifetime of 30 ps and travels
9000 m in this time. (b) In the
reference frame of the muon,
the distance traveled by Earth
is only 600 m in the muon’s
lifetime of 2 ps. (¢} L varies
only slightly from L, until v
is of the order of 0.1¢. L— (0
asv—c.

Relativity i

N=10%"! = 3.68 x 10/

Thus relativity predicts that we would observe 36.8 million muons in the s.une time
interval. Experiments of this type have confirmed the relativistic predictions.

The Spacetime Interval = INV//AE(A AT

We have seen earlier in this section that time intervals and lengths (= sp: ce inter-
vals), quantities that were absolutes, or invariants, for relatively moving vbservers
using the classical Galilean coordinate transformation, are not invariants i1 special
relativity. The Lorentz transformation and the relativity of simultaniity lead
observers in inertial frames to conclude that lengths moving relative to therr are con-
tracted and time intervals are stretched, both by the factor <. The question naturally
arises: Is there any quantity involving the space and time coordinates that is invariant
under a Lorentz transformation? The answer to that question is yes, :nd as it
happens, we have already dealt with a special case of that invariant quantity when we
first obtained the correct form of the Lorentz transformation. It is called tl e space-
time interval, or usually just the interval, As, and is given by :

(As) = (cAf)? — [Ax® + Ay + AZ) 1-32

or, specializing it to the one-space-dimensional systems that we have been d scussing,

(As)? = (cAn)?* — (Ax)? 1-33

It may help to think of Equations 1-32 and 1-33 like this:
[interval)? = [separation in time)? — [separation in space]?

The interval As is the only measurable quantity describing pairs of events n space-
time for which observers in all inertial frames will obtain the same numeri al value.
The negative sign in Equations 1-32 and 1-33 implies that (As)* may be positive,
negative, or zero depending on the relative sizes of the time and space sej-arations.
With the sign of (As)? nature is telling us about the causal relation betwee:: the two
events. Notice that whichever of the three possibilities characterizes a pai- for one
observer, it does so for all observers, since As is invariant. The interval is ca led time-
like if the time separation is the larger and spacelike if the space separation >redomi-
nates. If the two terms are equal, so that As = 0, then it is called lightlike,

Timelike Interval Consider a material particle!® or object, e.g., the el :;phant in
Figure 1-27, that moves relative to S. Since no material particle has ever b en mea-
sured traveling faster than light, particles always travel less than 1 m of distance in
1 m of light travel time. We saw that to be the case in Example 1-10, where the time
interval between launch and birth of the baby was 31.7 months on the S clock, during
which time the elephant had moved a distance of 23.8 ¢ - months. Equation .-33 then
yields (cAf)? — (Ax¥ = (31.7¢F — (23.8¢)* = (21.0c)? = (As)? and the irterval in
§ is As = 21.0 ¢ - months. The time interval term being the larger, As is 2 timelike
interval and we say that material particles have timelike worldlines. Such v orldlines



1-4 TiME DiLATION AND LENGTH CONTRACTION 43

lic within the shaded area of the spacetime diagram in Figure 1-21. Note that in the
clephant’s frame S’ the separation in space between the launch and birth is zero and
4t is 21.0 months. Thus As = 21.0 ¢ - months in §', too. That is what we mean by
the interval being invariant: observers in both § and §' measure the same number for
ihe separation of the two events in spacetime.

The proper time interval T between two events can be determined frem Equation
£-33 using space and time measurements made in any inertial frame, since we can
write that equation as

% = J(AD? — (Axdci

Since Ar = 7 when Ax = 0—i.e., for the time interval recorded on a clock in a sys-
e moving such that the clock is located at each event as it occurs —in that case

VAR — AxicP =P —0=1= % 1-34

Notice that this yields the correct proper time v = 21.0 months in the elephant
example.

R R ST

Spacelike Interval When two events are separated in space by an interval
whose square is greater than the value of (cAf?, then As is called spacelike. In that
case it is convenient for us to write Equation 1-33 in the form

(As)? = (Ax)? — (cAe)? 1-35

e L R b

w0 that, as with timelike intervals, (As)? is not negative.!® Events that are spacelike
- evcur sufficiently far apart in space and close together in time that no inertial frame
¢ ¢ould move fast enough to carry a clock from one event to the other. For example,
" suppose two observers in Earth frame S, one in San Francisco and one in London,
agree to cach generate a light flash at the same instant, so that cAt = Om in § and
&x = 1.08 X 107 m. For ary other inertial frame (cA#)? > 0 and we see from Equa-
tign 1-35 that (Ax)? must be greater than (1.08 X 107)? in order that As be invariant.
In other words, 1.08 X 107 m is as close in space as the two events can be in any sys-
{sm; consequently, it will not be possible to find a system moving fast enough to
- move a clock from one event to the other. A speed greater than ¢, in this case infi-
 Hitely greater, would be needed. Notice that the value of As = L, the proper length.
- Jukt as with the proper time 7, measurements of space and time intervals in any iner-
lial system can be used to determine L,

Livhtlike (or Null) Interval The relation between two events is lightlike if As
in Bguation 1-33 equals zero. In that case

cAt = Ax 1-36

nnd a light pulse that leaves the first event as it occurs will just reach the second as
it vecurs.
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'-*;;-»-c mﬁ‘ﬂbw""//é inte ke

- X

Absolute ™

World!ina_of_' Worldline 0\
light ioving in light moving in
+x direction ~x direction

Fig. 1-32 The relative temporal order of events for pairs characterized by timelike i itervals,
such as A and B, is the same for all inertial observers. Events in the upper shaded ar :a will all
occur in the future of A; those in the lower shaded area occurred in A’s past. Events ¥hose
intervals are spacelike, such as A and C, can be measured as occurring in either order, depend-
ing on the relative motion of the frames. Thus, C occurs after A in S, but before A in §”.

The existence of the lightiike interval in relativity has no counterpart in the
world of our everyday experience, where the geometry of space is Euclidean. In
order for the distance between two points in space to be zero, the separat on of the
points in each of the three space dimensions must be zero. However, in spa etime the
interval between two events may be zero, even though the intervals in spact. and time
may individually be quite large. Notice, too, that pairs of events separatec by light-
like intervals have both the proper time interval and proper length equal to z ero, since
As =0

Things that move at the speed of light'” have lightlike worldlines. As we saw
earlier (see Figure 1-22), the worldline of light bisects the angles between he cr and
x axes in a spacetime diagram. Timelike intervals lie in the shaded areas of Figure
1-32 and share the common characteristic that their relative order in time is the same
for observers in all inertial systems. Events A and B in Figure 1-32 are stch a pair.
Observers in both § and §° agree that A occurs before B, although they of course
measure different values for the space and time separations. Causal evants, i.e.,
events that depend upon or affect one another in some fashion, such as your birth and
that of your mother, have timelike intervals. On the other hand, the temporz | order of
events with spacelike intervals, such as A and C in Figure 1-32, depends up«n the rel-
ative motion of the systems. As you can see in the diagram, A occurs befoe Cin S,
but C occurs first in §’. Thus, the relative order of pairs of events is absol ite in the
shaded areas, but elsewhere may be in either order.

9. In 1987 light arrived at Earth from the explosion of a star (a supern«va) in
the Large Magellanic Cloud, a small companion galaxy to the Milk:- Way,
located about 170,000 ¢y away. Describe events that together w:th the
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explosion of the star would be separated from it by (a) a spacelike interval,
{b) a lightlike interval, and (c) a timelike interval.

i 'XAMPLE 1-13 Characterizing Spacetime Intervals Figure 1-33 is the spacetime

<+ diagram of a laboratory showing three events, the emission of light from an atom

“ in each of three samples.

¥ 1. Determine whether the interval between each of the three possible pairs of

E events is timelike, spacelike, or lightlike.

2. Would it have been possible in any of the pairs for one of the events to have
been caused by the other? If so, which?

&
£

£ Solution _
{. The spacetime coordinates of the events are:

2&3[8-5]|6-9 9 9 |lightlike
1&318-2]6-1 36 25 | timelike

2. Yes, event 3 may possibly have been caused by either event 1, since 3 is in
the absolute future of 1, or event 2, since 2 and 3 can just be connected by
a flash of light.

~ Event3

% Event 2
B

Evpﬁ"tm 1

1

i
0 i
[¢] 2 4 6 8 10

X (m)
Eig 1-33 A spacetime diagram of three events whose intervals As are found in Example 1-13.
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1-5 The Doppler Effect

In the Doppler effect for sound the change in frequency for a given velocity v
depends on whether it is the source or receiver that is moving with that ;peed. Such a
distinction is possible for sound because there is a medium (the air) rel: tive to which
the motion takes place, and so it is not surprising that the motion of the source or the
receiver relative to the still air can be distinguished. Such a distinciion between
motion of the source or receiver cannot be made for light or other elt ctromagnetic
waves in a vacuum as a consequence of Einstein’s second postulate; herefore, the
classical expressions for the Doppler effect cannot be correct for light. We will now ;
derive the relativistic Doppler effect equations that are correct for light. ‘

Consider a light source moving toward an observer or receiver at A in Figure 1-34« :
at velocity v The source is emitting a train of light waves toward receivers . { and B while -
approaching A and receding from B. Figure 1-34b shows the spacetime liagram of S,

(a)

2]
Worldline of Worldline of
light wave light wave
toward B toward A
B A X
(c) Observer (d) Kandig's
Y4 x(inS) ¥ experimer t
s s yirce
6 {measured 5 ) v
in 5) o B
T X Source X Ganma
Recéiver 'Y’

Fig. 1-34 Doppler effect in light, as in sound, arises from the relative motion of he source and:
teceiver; however, the independence of the speed of light on that motion leads to different
expressions for the frequency shift. {#) A source approaches observer A and rece les from
observer B. The spacetime diagram of the system S in which A and B are at rest : nd the source
moves at velocity v illustrates the two situations. (b) The source located at x” = (- (the x' axis
is omitted) moves along its worldline, the ct’ axis. The N waves emitted toward .. in time At
occupy space Ax = cAt — vAt, whereas those headed for B occupy Ax = cAr + vAr. In three
dimensions the observer in 5 may see light emitted at some angle & with respect o the x axis
as in (c). In that case a transverse Doppler effect occurs. (d) Kiindig’s apparatus ‘or measuring ;
the transverse Doppler effect.




I the system in which A and B are at rest. The source is located at x' = 0 (the x' axis is not
2 shown), and, of course, its worldline is the ¢t axis. Let the source emit a train of N elec-
. Imagnetic waves in each direction beginning when the § and $' origins were coinci-
% deot. First, let’s consider the train of waves headed toward A. During the time Az over

which the source emits the N waves, the first wave emitted will have traveled a distance
_ «Ar and the source itself a distance vAz in 8. Thus, the N waves are seen by the observer
% at A to occupy a distance cAr — vAr and, correspondingly, their wavelength X is given by

& = cAt — vAt
N

5Ty o,

il the frequency f = o/k is

R

cN 1 N

C
N (c-wAr 1-8 At

f=

e

The frequency of the source in §', called the proper frequency, is given by fy =
ofh' = N/Ar', where Ar' is measured in S’, the rest system of the source. The time inter-
- vl Ar' = 7 is the proper time, since the light waves, in particular the first and the Nth,
g; ate all emitted at x’ = 0; hence Ax” = 0 between the first and the Nth in §’. Thus, Az and
= Ar' are related by Equation 1-28 for time dilation, so A7 = yAr'. Thus, when the source
- iiid receiver are moving toward each other, the observer A in S measures the frequency

A

: =13 a 1-By 7
; 1 - B2 1+

: This differs from the classical equation only in the addition of the time dilation fac-
gbr Note that f > f, for the source and observer approaching one another. Since for
gﬂﬂble light this cotresponds to a shift toward the blue part of the spectrum it is
1 “eénlled a blueshift.

. Suppose the source and receiver are moving away from one another, as for
e gbserver B in Figure 1-34b. Observer B, in S, sees the N waves occupying a distance

EgAr + vAi, and the same analysis shows that observer B in § measures the frequency
£ J1 -2 1~
g f= 15 —f = 178 fo (receding) 1-39

* Nutice that f < f, for the observer and source receding from one another. Since for
¢ vinible [ight this corresponds to a shift toward the red part of the spectrum, it is called
. & redshift. It is left as a problem for you to show that the same results are obtained
" when the analysis is done in the frame in which the source is at rest.

In the event that v << ¢ (i.e., B << 1), as is often the case for light sources mov-
ing on Earth, uscful (and easily remembered) approximations of Equations 1-38 and
{:39 can be obtained. Using Equation 1-38 as an example and rewriting it in the form

1-5 THE DorrLER EFFECT 4,

The use of Doppler radar to
track weather systems is a
direct gpplication of special
relativity.
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[=H+ BB

the two quantities in parentheses can be expanded by the binomial thec rem to yield

3

i 1 i 3
f”—‘-_fb(1+—2—ﬂ—"8—ﬁ+...)(l-i-‘z—B+?Bz+...)

Multiplying out and discarding terms of higher order than B yield

flih=1+p (approaching)

and, similarly,
Sflfe=1=pB  (receding)

and |Af/f,| = B inboth situations, where Af = f; — f

W EXAMPLE 1-14. Rotation of the Sun The sun rotates at the equa or once in
& about 254 days. The sun’s radius is 7.0 X 10* m. Compute the Dopple - effect that
j--" you would expect to observe at the left and right edges (limbs} of the « un near the
B equator for light of wavelength A = 550 nm = 550 X 10~ m (yellov light). Is
8 this a redshift or a blueshift?

8 Solution
8/ The speed of limbs v = (circumference)/(time for one revolution) or
2nR 21 (7.0 X 105 m

VT T 05ad. 36005h - 24fvd - 2000 ms

& v << s0 we may use the approximation eguations. Using Aflf; = } we have
B Af = Bfy = Bc/hg = v/hg or Af = 2000/550 X 107° = 3.64 X 10° Hz. jince f, =
@l c/\, = (3 X 10® m/s)/(550 X 107%) = 5.45 X 10" Hz, Af represents : fractional
& change in frequency of B, or about one part in 10°. It is a redshift for th > receding
& limb, a blueshift for the approaching one. :

Doppler Effect of Starlight

In 1929, E. P. Hubble became the first astronomer to suggest that the v niverse is
expanding.'® He made that suggestion and offered a simple equation to de scribe the
expansion on the basis of measurements of the Doppler shift of the freqq encies of
light emitted toward us by distant galaxies. Light from distant galaxies is always
shifted toward frequencies lower than those emitted by similar sources nearby.
Since the general expression connecting the frequency f and wavelength \ of light
1s ¢ = fA\, the shift corresponds to longer wavelengths. As noted above, the color
red is on the longer-wavelength side of the vistble spectrum (sce Chapter 4}, so the
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wodshift 1s used to describe the Doppler effect for a receding source. Similarly,
Mueshift describes light emitted by stars, typically stars in our galaxy, that are
approaching us.

Astronomers define the redshift of light from astronomical sources by the
vapession z = (fy — f)f, where f = frequency measured in the frame of the star or
paluxy and f = frequency measured at the receiver on Earth. This allows us to write
{ - v/cinterms of z as

_ z+ 1P -1

= —— -4
G+ 1P+1 1-40

B

l:quation 1-39 is the appropriate one to use for such calculations, rather than the
ajyproximations, since galactic recession velocities can be quite large. For example,
ilw yuasar 2000-330, has a measured z = 3.78, which implies from Equation 1-40
fhat it is receding from Earth at 0.91¢.

B | XAMPLE 1-15 Redshift of Starlight The longest wavelength of light emitted by
& hydrogen in the Balmer series (see Chapter 4) has a wavelength of A; = 656 nm.
£ In light from a distant galaxy, this wavelength is measured as A = 1458 nm. Find
& the speed at which the galaxy is receding from Earth.

Solution
L. The recession speed is the v in § = v/c. Since A > A, this is a redshift and
Equation 1-39 applies:

1-8
1+

f= Jo

[

Rewriting Equation 1-39 in terms of the wavelengths:

1-8_Jf_ N
1+8 £, A
Y. Squaring both sides and substituting values for A, and A:

I—_B_(Ro)z_(.__ﬁs_ﬁ_nﬂ_)t
1+8 ) " \Tassem, ~ 3202

4.  Solving for B:

1— B = (0202)(1 + B)
12028 = 1 — 0.202 = 0.798
0.798

T 1202

= 0.664

5. The galaxy is thus receding at speed v, where:

v = ¢p = 0.664c
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Transverse Doppler Effect

: Our discussion of the Doppler effect in Section 1-5 involved only one s jace dimen-
' sion wherein the source, observer, and direction of the relative motion : 11 lie on the
.- x axis. In three space dimensions, where they may not be colinear, 2 mc re complete
* analysis, though beyond the scope of our discussion, makes only a smz [l change in
‘Equation 1-37. If the source moves along the positive x axis, but the ob: erver views
~the light emitted at some angle 8 with the x axis, as shown in Figure 1-34c, Equa-
_ tion 1-37 becomes

F 1
= e 1-37
f v 1—PBcosH 4

'When 0 = 0, this becomes the equation for the source and receiver a yproaching,
- and when 8 = m it becomes that for them receding. Equation 1-37a als » makes the
uite surprising prediction that even when viewed perpendicular to the lirection of
otion, where 8 = m/2, the observer will still see a frequency shift, ¢ e so-called
ransverse Doppler effect, f = fyly. Note that f<f, since y > 1. It iz sometimes
ferred to as the second-order Doppler effect. It is the result of time di ation of the
‘moving source.

Following a suggestion first made by Einstein in 1907, Kiindig in 1962 made
an excellent quantitative verification of the transverse Doppler effect 1? He used
4.4-keV gamma rays emilted by a particular isotope of Fe as the light source (see
':_Chapter 11). The source was at rest in the laboratory, on the axis of . n ultracen-
: trifuge, and the receiver (an Fe absorber foil) was mounted on the ult acentrifuge
“rim, as shown in Figure 1-34d. Using the extremely sensitive frequenc: measuring
technique called the Mossbauer effect (see Chapter 11), Kiindig found : transverse
> Doppler effect in agreement with the relativistic prediction within *1 [ ercent over
- arange of relative speeds up to about 400 m/s.

1-6 The Twin Paradox and Other Surprises

The consequences of Einstein’s postulates—the Lorentz transformatic n, relativistic
velocity addition, time dilation, length contraction, and the relativity >f simultane-
ity—lead to a large number of predictions which are unexpected and :ven startling
when compared with our experiences in a macroscopic world whe:e § =0 and
geometry obeys the Euclidean rules. Still other predictions seem downr ght paradoxi-
cal, with relatively moving observers obtaining equally valid but app: rently totally

O -

inconsistent results. This chapter concludes with the discussion of a fe v such exam- :

ples that will help you hone your understanding of special relativity.

Twin Paradox

Perhaps the most famous of the paradoxes in special relativity is that of the twins,
or, as it is sometimes called, the clock paradox. It arises out of the time dilation
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{Equation 1-28) and goes like this. Homer and Ulysses are identical twins. Ulysses
travels at a constant high speed to a star beyond our solar system and returns to
arth while his twin Homer remains at home. When the traveler Ulysses returns
home, he finds his twin brother much aged compared to himself —in agreement, we
shall see, with the prediction of relativity. The paradox arises out of the contention
ihat the motion is relative and either twin could regard the other as the traveler, in
which case each twin should find the other to be younger than he and we have a log- <
ical contradiction—a paradox. Let’s illustrate the paradox with a specific example. —
Let Earth and the destination star be in the same inertial frame §. Two other frames @
& and §" move relative to § at v = +0.8c and v = —0.8¢, respectively. Thus v =
$/3 in both cases. The spaceship carrying Ulysses accelerates quickly from S to 87, g gt
then coasts with S’ to the star, again accelerates quickly from §' to 57, coasts with §”
back to Earth, and brakes to a stop alongside Homer.
It is easy to analyze the problem from Homer’s point of view on Earth. Sup-
pose, according to Homer’s clock, Ulysses coasts in S’ for a time interval Ar = 5y
and in 5" for an equal time. Thus Homer is 10 y older when Ulysses returns. The
time interval in $* betweed the events of Ulysses’ leaving Earth and arriving at the
astar is shorter because it is proper time. The time it takes to reach the star by
Ulysses’ clock is

U'/?E&J n ¢ - olAer
¢ Since the same time is required for the return trip, Ulysses will have recorded 6 y for
¢ the round trip and will be 4 y younger than Homer upon his return.

The difficulty in this situation seems to be for Ulysses to understand why his
twin aged 10 y during his absence. If we consider Ulysses as being at rest and Homer
¢ as% moving away, Homer’s clock should run slow and measure only 3/y = 1.8 y, and
> it appears that Ulysses should expect Homer to have aged only 3.6 y during the
round trip. This is, of course, the paradox. Both predictions can’t be right. However,
% this approach makes the incorrect assumption that the twins’ situations are symmetri-
¥ ¢al and interchangeable. They are not. Homer remains in a single inertial frame,
§ whereas Ulysses changes inertial frames, as illustrated in Figure 1-33a, the space-
¢ time diagram for Ulysses’ trip. While the turnaround may take only a minute fraction
of the total time, it is absolutely essential if the twins’ clocks are to come together
. again so that we can compare their ages (readings).

i A correct analysis can be made using the invariant interval As from Equation

{-33 rewritten as
z . E)Z - 2 _ (__Ax)z
T = ( i (Ary .

where the left side is constant and equal to ()%, the proper time interval squared, and
the right side refers to measurements made in any inertial frame. Thus Ulysses, along
¢ gach of his worldlines in Figure 1-35a, has Ax = 0 and, of course, measures At = 7 =
1y, or 6 y for the round trip. Homer, on the other hand, measures

(AD? = (7P + (%)2
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(a) Ulysses' returning

Q

worldline
e 7 B =-0.8 (58" frame)
:3 Turnaround
g _~" point (at star)
[
™,
] Ulysses’ oulgoing
g \ worldiine
I B = 0.8 (S frame)

o

{b) ot 5
332;?.\ % Ulysses’ returning
{through A} TN worldline

§ Light
=) worldline
g (through Q)
w
H]
E
Q
x

Ulysses’ outgoing

wortdline

—— e —+

O| X

Fig. £-35 (a) The spacetime diagram of Ulysses’ journey to a distant star in the inert: al frame in
which Homer and the star are at rest. (b) Divisions on the ¢t axis correspond to years n Homer’s
clock. The broken lines show the paths (worldlines) of light flashes transmitted by ea h twin with
a frequency of one/year on his clock. Note the markedly different frequencies at the r :ceivers.

and since (Ax/c)® is always positive, he always measures Ar > 1. In thi; situation
Ax = 0.8cAt so

(A = (3 ¥y + (0.8cAv/c)?

or
(A?(0.36) = (3)° ,
3
At = 63 =5 ¥y

or 10 y for the round trip, as we saw earlier. The reason that the twins’ situ: tions can-
not be treated symmetrically is becanse the special theory of relativity can jredict the
behavior of accelerated systems, such as Ulysses at the turnaround, proviied that in
the formulation of the physical laws we take the view of an jnertial, i.e., anacceler-
ated, observer Homer. That’s what we have done. Thus, we can ot do the
same analysis in the rest frame of Ulysses’ spaceship because it does not re nain in an
inertial frame during the round trip; hence, it falls outside of the special thec ry, and no
paradox arises. The laws of physics can be reformulated so as to be in ariant for
accelerated observers, which is the role of general relativity (see Chapter '), but the
result is the same: Ulysses returns younger that Homer by just the amount « alculated.
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% I'XAMPLE 1-16 Twin Paradox and the Doppler Effect This example, first sug-
“* gested by C. G. Darwin,® may help you understand what each twin sees during
** Ulysses’” journey. Homer and Ulysses agree that once each year, on the anniver-
sary of the launch date of Ulysses’ spaceship (when their clocks were together),
each twin will send a light signal to the other. Figure 1-355 shows the light signals
cach sends. Homer sends 10 light flashes (the ¢t axis, Homer’s worldline, is
= divided into 10 equal intervals corresponding to the 10 years of the jowrney on
= Homer’s clock) and Ulysses sends 6 light flashes (each of Ulysses’ worldlines is
:c,_-i; divided into 3 equal intervals corresponding to 3 years on Ulysses’ clock). Note
% that each transmits his final light flash as they are reunited at B. Although each
i (ransmits light signals with a frequency of 1 per year, they obviously do not
é{ receive them at that frequency. For example, Ulysses sees no signals from Homer
7 during the first 3 years! How can we explain the observed frequencies?

& Solution

£ The Doppler effect provides the explanation. As the twins (and clocks) recede
£ from each other, the frequency of their signals is reduced from the proper fre-
% quency f, according to Equation 1-39, and we have

f_.ji-B_L{1—-08 1

fi \j1+3" \J1+0.3“3

: which is exactly what both twins see (refer to Figure 1-35b): Homer receives 3
# flashes in the first 9 years and Ulysses 1 flash in his first 3 years; ie., f= (1/3) fy
£ for both.

After the turnaround they are approaching each other and Equation 1-38 yields

f \[1+3 1+08 _,
1-08

and again this agrees with what the twins see: Homer receives 3 flashes during the
final (10th) year and Ulysses receives 9 flashes durmg his final 3 years; i.e.. f= 3f;
for both,

,.).15&

10. The different ages of the twins upon being reunited are an example of the rel-
ativity of simultaneity that was discussed earlier. Explain how that accounts
for the fact that their biological clocks are no longer synchronized.

53
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The Pole and Barn Paradox

An interesting problem involving length contraction developed by E. F. Taylor and
J. A. Wheeler® involves putting a long pole into a short barn. One versi»n goes as
follows. A runner carries a pole 10 m long toward the open front door of a small bam
5 nt long. A farmer stands near the barn so that he can see both the front a1 d the back
doors of the barn, the latter being a closed swinging door, as shown in Fig ure 1-374.
The runner carrying the pole at speed v enters the barn and at some instant the farmer
sees the pole completely contained in the barn and closes the front door, t} us putting
a 10-m pole into a 5-m bam, The minimum speed of the runner v that is ne :essary for
the farmer to accomplish this feat may be computed from Equation 1-30, giving the
relativistic length contraction L = L,/y, where L, = proper length of the g le (10 m)
and L = length of the pole measured by the farmer, to be equal to the lei gth of the
barn (5 m). Therefore, we have

L

5

1
YT e
1 — vt = (5/10)?
wick =1 — (5102 = 0.75
v = (.866¢ or B =0.866

A paradox seems to arise when this situation is viewed in the rest system »f the run-
ner. For him the pole, being at rest in the same inertial system, has its prc per length
of 10 m. However, the runner measures the length of the barn to be

L=1Lty=5y1—- P

L=25m

How can he possibly fit the 10-m pole into the length-contracted 2.5-m >arn? The
answer is that he can’t, and the paradox vanishes, but how can that be? To 1 nderstand
the answer, we need to examine two events—the coincidences of both the front
and back ends of the pole, respectively, with the rear and front doors of the bam—in
the inertial frame of the farmer and in that of the runner.

These are illustrated by the spacetime diagrams of the inertial fram:: § of the
farmer and bam (Figure 1-37b) and that of the runner §' (Figure 1-37¢). Both dia-
grams are drawn with the front end of the pole coinciding with the front d sor of the

" barn at the instant the clocks are started. In Figure 1-375 the worldlines « 7 the barn

doors are, of course, vertical, while those of the two ends of the pole mak:: an angle
8 = tan}(1/B) = 49.1° with the x axis. Note that in S the front of the po e reaches
the rear door of the barn at cf = 5 m/0.866 = 5.8 m simultancously with “he arrival
of the back end of the pole at the front door; ie., at that instant in S te pole is
entirely contained in the barn.

In the runner’s rest system S’ it is the worldlines of the ends of the po e that are
vertical, while those of the front and rear doors of the barn make angles of  9.1° with
the —x' axis (since the barn moves in the —x" direction at v). Now we sc¢ z that the
rear door passes the front of the pole at ct’ = 2.5 m/0.866 = 2.9 m, but the ront door
of the barn doesn’t reach the rear of the pole until ¢’ = 10 m/0.866 = 1. m. Thus
the first of those two events occurs before the second, and the runner neve - sees the
pole entirely contained in the bamn. Once again, the relativity of simultam ity is the



H »'é‘:"'l-'ﬁéﬁ%f,?ﬁ'm
Y

S R TR S o e e

A e

]

35
ct (c) ct’
Front door | Rear door ¢ Front of pole
Pole entirely '° ] 7 * 10+
within barn ! ‘
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- Fig 1-37 (a) A runner carrying a 10-m pole moves quickly enough so that the farmer will see the pole entirely contained in
the barn. The spacetime diagrams from the point of view of the farmer’s inertial frame (b) and that of the runner (c). The
fenolution of the paradox is in the fact that the events of interest, shown by the large dots in each diagram, are simultaneous

_iit 5, but notin §'.

: kpy-~events simultaneous in one inertial frame are not simultaneous when viewed

H

©QUESTION:”

from another inertial frame.

0

{1. Suppose that the barn’s back wall was made from armor-plate steel and had

no door. What would the farmer and the runner see then?

Headlight Effect

We have made frequent use of Einstein’s second postulate asserting that the speed
of light is independent of the source motion for all inertial observers; however, the
same is not true for the direction of light. Consider a light source in S’ that emits
lght uniformly in all directions. A beam of that light emitted at an angle &' with
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Fig. 1-38 (a) The source at rest in §" moves with B = 0.7 with respect to S. (¢ Light emitted
uniformly in §' appears to S concentrated into a cone in the forward direction. ays shown in
{a) are 18° apart. Rays shown in () make angles calculated from Equation 1-4 3. The two
colored rays shown are comresponding ones.

respect to the x* axis is shown in Figure 1-38a4. During a time At’ tl e x" displace -
ment of the beam is Ax’, and these are related to 6’ by

Ax’ Ax'
= = ' 1-41
A - Aery |

The direction of the beam relative to the x axis in § is similarly given b -

=cos 1-42

Applying the inverse Lorentz transformation to Equation 1-42 yields

Ar  y(AX' + vAr)
cAf  ey(Ar + vAX'I)

cos B =

Dividing the numerator and denominator by At" and then by ¢, we obtain

Ax/AY +v)  AXIA(ct') + vic

cos B = =
v v _Ax
+ —_ ¥ ! + —
c(l czAxlAt) 1 - A(cr)
and substituting from Equation 1-41 yields
cos 6’ + B z
0= ——— 1-43 |
cos 1+ Pcosd’ 3

Considering the half of the light emitted by the source in §’ into the f »rward hemis;
sphere, i.c., rays with 8 between +m/2, note that Equation 1-43 restri 'ts the angley
8 measured in § for those rays (50 percent of all the light) to lie setween 6 w
*cos ™! B. For example, for B = 0.5, the observer in S would see ha f of the tots§
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light emitted by the source in §’ to lie between 6 = £60°, i.e., in a cone of hall

angle 60° whose axis is along the direction of the velocity of the source. For values

it B near unity, 9 is very small, e.g., B = .99 yields 6 = &.1°, This means that the

phwerver in S sees half of alt the light emitted by the source to be concentrated Int¢  n determining the

a forward cone with that half angle. (See Figure 1-385.) Note, too, that the remain-  brightness of stars and

1iig 50 percent of the emitted light is distributed throughout the remaining 344° of  galaxies, a critical parame ter
the two-dimensional diagram.”® As a result of the headlight effect, light from a  in understanding them,
dircctly approaching source appears far more intense than that from the same astronomers must corrac
wiurce at rest. For the same reason, light from a directly receding source will for the headlight effect,
appear much dimmer than that from the same source at rest. This result has sub-  particularly at high velocit es
stantial applications in experimental particle physics and astrophysics. relative to Earth.

§2. Notice from Equation 1-43 that some light emitted by the moving source

into the rear hemisphere is seen by the observer in § as having been emit-
ted into the forward hemisphere. Explain how that can be, using physical
arguments.

| Superluminal Speeds

= We conclude this chapter with a few comments about things that move faster than
" light. The Lorentz transformations (Equations 1-20 and 1-21) have no meaning in the
_. event that the relative speeds of two inertial frames exceed the speed of light. This is

generally taken to be a prohibition on the moving of mass; energy, and information
* faster than ¢. However, it is possible for certain processes to proceed at speeds greater
" than ¢ and for the speeds of moving objects to appear to be greater than ¢ without
- contradicting relativity theory. A common example of the first of these is the motion
& of the point where the blades of a giant pair of scissors intersect as the scissors are
« quickly closed, sometimes called the scissors paradox. Figure 1-39 shows the situa-
- tion. A long straight rod (one blade) makes an angle § with the x axis (the second
blade) and moves in the —y direction at constant speed v, = Ay/As. During time Ar,

Fig. 1-39 As the long, straight rod moves vertically downward, the intersection of the “blades,”
peint £, moves toward the right at speed v, = Ax/Ar. In terms of v, and 8, v, = v,/tan 0.
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Meteorite
first glow
v At
c At
! Last glow
— wave front
(c— v} At
First glow
wave front

§2 Eye

Fig. 1-40 A meteorite moves
directly toward the observer’s
eye at speed v. The spatial
distance between the wave
fronts is (c — v}Ar as they
move at ¢, so the time inter-
val between their arrival at
the observer is not Az, but
At,,., which is (c ~ WA#e =
(1 — B)At; and the apparent
speed of approach is v, =
vAlAL,, = Bel(l — B).

the intersection of the blades, point £, moves to the right a distance Ax. Note rom the
figure that Ay/Ax = tan 6. The speed with which P moves to the right is

Ax v, Ax
v = Axilt Ayfv, Axtan$
or
v, = wftan 8

Since tan 6 — 0 as 8 — 0, it will always be possible to find a value of ) close

" enough to zero so that v, > ¢ for any (nonzero) value of v, As real sciss s are

closed, the angle gets progressively smaller, so in principle all that one ne ds for
v, > ¢ are long blades so that 0 — 0.

QUESTION

13. Use a diagram like Figure 1-32 to explain why the motion of point P can 10t be
used to convey information to observers along the blades.

The point P in the scissors paradox is, of course, a2 geometric point, 0t a

material object, so it is not surprising that it could appear to move at speeds g eater -

than ¢. As an example of an object with mass appearing to do so, consider : tiny
meteorite moving through space directly toward you at high speed v As it «aters

" Earth’s atmosphere, about 9 km above the surface, frictional heating causes it to

glow, and the first light from the glow starts toward your eye. After some time £ ¢ the
frictional heating has evaporated all of the meteorite’s matter, the glow is e xtin-
guished, and its final light starts toward your eye, as illustrated in Figure 1-40. D wing
the time between the first and the final glow, the meteorite traveled a distance vAr,

' During that same time interval light from the first glow has traveled toward youw eye

a distance cAr. Thus, the space interval between the first and final glows is give 1 by

Ay = cAt — vAt = Ar(c — v}

:"' and the visual time interval at your eye Az, between the asrival of the first and
. final light is

Arc — v)
c

-Ate,, = Aylc = = A{1 ~ B)

" and, finally, the apparent visual speed v, that you record is

v At v At Be
Vp ™ =

A, A(I-p) 1-p 145

Clearly, = 0.5 yields v, = ¢ and any larger B yields v, > c. For example, ame e- - 2
- orite approaching you at v = 0.8¢ is perceived to be moving at v, = 4¢. Certiin

galactic structures may also be observed to move at superluminal speeds, as 11¢e

~ sequence of images of galaxy 3C120 in Figure 1-41 illustrates.




As a final example of things that move faster than ¢, it has been proposed
that particles with mass might exist whose speeds would always be faster than
ight speed. One basis for this suggestion is an appealing symmetry: ordinary
articles always have v << ¢, and photons and other massless particles have v = ¢,
0 the existence of particles with v > ¢ would give a sort of satisfying complete-
ess to the classification of particles. Called tachyons, their existence would
resent relativity with serious but not necessarily insurmountable problems of
nfinite creation energies and causality paradoxes, e.g., alteration of history. (See
@rthe next example,) No compelling theoretical arguments preclude their existence
nd eventual discovery; however, experimental searches to date for tachyons

a spacetime diagram of the laboratory frame § the worldline of a particle with
> ¢ created at the origin traveling in the +x direction makes an angle less than
3° with the x axis; i.e., it is below the light worldline, as shown in Figure 1-42.
“After some time the tachyon reaches a tachyon detector mounted on a spaceship
~moving rapidly away at v < ¢ in the +x direction. The spaceship frame S’ is
::.shown in the figure at P The detector immediately creates a new tachyon, send-
:“Ing it off in the —x' direction and, of course, into the future of ', i.e., with ¢’ >
i {1 The second tachyon returns to the laboratory at x = 0, but at a time ct before
" the first tachyon was emitted, having traveled into the past of § to point M, where
i~ ¢t << 0. Having sent an object into our own past, we would then have the ability
i” to alter events that occur after M and produce causal contradictions. For exampie,
. the laboratory tachyon detector could be coupled to equipment that created the
* first tachyon via a computer programmed to cancel emission of the first tachyon

if the second tachyon is detected. (Shades of the Terminator!) It is logical contra-

dictions such as this which, together with the experimental results referred to

_above, lead to the conclusion that faster-than-light particles do not exist.

ct} Light worldline
) ) /Si/
cf
>
s
P
o Ja-
i / 7 X
M /

tig. 1-42 A rachyor emitted at O in S, the laboratory frame, catches up with a spaceship mov-

ing at high speed at P, Its detection triggers the emission of a second tachyon at P back toward
the laboratory at x = 0. The second tachyon arrives at the laboratory at ¢t << 0, i.c., before the
cmission of the first tachyon.

3C 120

Fig, 1-41 This sequence f
16 images of active galaxy
3C120 made by J.-L. Gon 2z
and co-workers between
November 1997 and Marc
1999 reveals a region in th
relativistic jet, marked wit |
an arrow in the lowest ima e,
that flashes on and off ove a
period of a few months am !
moves in the plane of the s <y
at about 4.4 times the spee |
of light. 3C120 is about

450 x 10° ¢+ y from Earth
with a redshift of 7 = 0.03 i
LJ. L. Gomez et al.. Scienc |
September 2000, p. 2317.]
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‘}. Polish astronomer (1473-1543). His book describing
Beliocentric (ie., sun-centered) orbits for the planets was
Wblished only a few weeks before his death. He had hesi-
Hitad to release it for many years, fearing that it might be
sginsidered heretical. It is not known whether or not he saw
1he published book.

1. Events are described by measurements made in a coordi-
ate system which defines a frame of reference. The question
Was, Where is the reference frame in which the law of inertia
valid? Newton knew that no rotating system, e.g., Earth or
“the sun, would work and suggested the distant “fixed stars”

the fundamental inertial reference frame. .

3, The speed of light is exactly 299,792458 m/s. This
“¥lue sets the definition of the standard meter as being the
istance light travels in 1/299,792 458 5.

4, Over time, an entire continuous spectrum of electromag-
futic waves has been discovered, ranging from extremely
low-frequency (radio) waves to extremely high-frequency
waves (gamma rays), all moving at speed c.

8. Albert A. Michelson (1852-1931), an American expeti-
mental physicist whose development of precision optical
#.. Insuuments and their use in precise measurements of the
- wpeed of light and the length of the standard meter eamed him
3. the Nobel Prize in 1907. Edward W. Morley (1838-1923),
American chemist and physicist and professor at Western
Reserve College during the pefiod when Michelson was a
professor at the nearby Case School of Applied Science.

fi. Albert A. Michelson and Edward W. Morley, American
Journal of Science, XXXTV, no. 203 (November 1887).

7. Note that the width depends on the small angle between

y and M,. A very small angle results in relatively few wide

fringes, a larger angle in many narrow fringes.

K. Since the source producing the waves, the sodium lamp,
was at rest relative to the interferometer, the frequency would
he constant,
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he did not recognize its importance at the time. An expert ¢1
electromagnetic theory, he was one of the first to suggest th: t
atoms of matter might consist of charged particles whos:
oscillations could account for the emission of light. Loren' z
used this hypothesis to explain the splitting of spectral line s
in a magnetic field discovered by his student Pieter Zeema: ,
with whom he shared the 1902 Nobel Prize.
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PROBLEMS

tevel I
Section 1-1 The Experimental Basis of Relativity

1-1. A small airplane takes off from a field into an 18 m/s west wind. After 1{ minutes
it has moved 25 km west, 16 ki north, and 0.5 ki upward with respect to 1he wind.
What are its position coordinates at that time relative to the point where i left the
ground?

1-2. In one series of measurements of the speed of light, Michelson used a path: length L
of 27.4 km (17 mi). (a) What is the time needed for light to make the round tr p of dis-
tance 2L7? (b) What is the classical correction term in seconds in Equation 1-7, ; ssuming
Earth’s speed is v = 107%? (c) From about 1600 measurements, Michelson an ived at a
result for the speed of light of 299,796 = 4 km/s. Is this experimental value accurate
enough to be sensitive to the correction term in Equation 1-7?

I-3. A shift of one fringe in the Michelson-Morley experiment would result fron a differ-
ence of one wavelength or a change of one period of vibration in the round-trip tra el of the
light when the interferometer is rotated by 90°. What speed would Michelson h: ve com-
puted for Earth’s motion through the ether had the experiment seen a shift of one fr nge?
1-4. In the “old days” (circa 1935) pilots used to race small, relatively high- sowered
airplanes around courses marked by a pylon on the ground at each end of the cou se. Sup-
pose two such evenly matched racers fly at airspeeds of 130 mph. (Remember, ¢ is was a
long time ago!) Each flies one complete round trip of 25 miles, but their courses are per-
pendicular to one another and there is a 20 mph wind blowing steadily parall¢f to one
course. {a) Which pilot wins the race and by how much? (b) Relative to the axe: of their
respective courses, what headings must the two pilots use?

1-5. Paul Ehrenfest™ suggested the following thought experiment to illustrate the dra-
matically different observations that might be expected, dependent on whetl er light
moved relative to a stationary ether or according to Einstein’s second postulate:

Suppose that you are seated at the center of a huge dark sphere with a radiu . of
3 X 10* m and with its inner surface highly reflective. A source at the ce: iter
emits a very brief flash of light which moves outward through the darkness + ith
uniform intensity as an expandisg spherical wave.

What would you see during the first 3 seconds after the emission of the flash i1 (a) the
sphere moved through the ether at a constant 30 kmn/s, and (b) if Einstein’s secon | postu-
late is correct? ‘

1-6.) Einstein reported that as a boy he wondered about the following puzzle. If y ou hold
a mirror at arm’s length and look at your reflection, what will happen as you begir to run?
In particular, suppose you run with speed v = 0.99¢c. Will you still be able to sce your-
self? If so, what would your image look like, and why?

1-7.  Verify by calculation that the result of the Michelson-Morley experiment p aces an
upper limit on Earth’s speed relative to the ether of about 5 km/s.

1-8.) Consider two inertial reference frames. When an observer in each frame 1 easures
the following quantities, which measurements made by the two observers must y eld the
same results? Explain your reason for each answer.

(a) The distance between two events

(b) The value of the mass of a proton

(¢} The speed of light

{d) The time interval between two events

{e) Newton’s first law

() The order of the elements in the periodic table
(g) The value of the electron charge




wrtion -2 Einstein's Postulates

-4, Assume that the train shown in Figure 1-15 is 1.0km long as measured by the
pbserver at C' and is moving at 150 km/h. What time interval between the arrival of the
prve fronts at C' is measured by the observer at Cin §7

-10. Suppose that A’, B', and ' are at rest in frame §’, which moves with respect to § at
#peed v in the +x direction. Let B' be located exactly midway between A” and C'. At 1" =
“a light flash occurs at B’ and expands outward as a spherical wave. (@) According to an
plerver in §', do the wave fronts arrive at A’ and C’ simultaneously? (#) According to an
ghserver in S, do the wave fronts arrive at A’ and €' simultaneously? (¢} If you answered
#a to either (a) or (b), what is the difference in their arrival times and at which point did
the front arrive first?

Section 1-3 The Lorentz Transformation

»{1. Make a graph of the relativistic factor y = 1/(1 — v¥c?)'? as a function of B = v/c.
s¢ at least 10 values of (B ranging from 0 up to 0.995.

»}2. Two events happen at the same point xj in frame S’ at times #{ and #. (a) Use
Hauations 1-21 to show that in frame S the time interval between the events is greater
“han 15 — 1] by a factor v. (b) Why are Equations 1-20 less convenient than Equations
> 1«21 for this problem?

‘1-13. Suppose that an event occurs in inertial frame § with coordinates x = 75m, y =
j8m,z=40mat? = 2.0 X 1075 s. The inertial frame S’ moves in the +x direction with
¢ w= 0.85¢. The origins of § and §* coincidu% att = t' = 0. (@) What are the coordinates of
the event in S'? (b) Use the inverse transformation on the results of (a) to obtain the origi-
nal coordinates. ‘

{-14. Show that the null effect of the Michelson-Morley experiment can be accounted for
if the interferometer arm paraliel to the motion is shortened by a factor of (1 — v¥/cH12.

tey Earth, what is the speed of one relative to the other? (b) If the speed of each relative to
Harth is 30,000 /s (about 100 times the speed of sound), what is the speed of one rela-
. tive to the other?

{-16. Starting with the Lorentz transformation for the components of the velocity (Equa-
tion 1-24), derive the transformation for the components of the acceleration.

{-17. Consider a clock at rest at the origin of the laboratory frame. (a) Draw a spacetime
diagram that illustrates that this clock ticks slow when observed from the reference frame
of a rocket moving with respect to the laboratory at v = (.8c. (b) When 10 s have elapsed
on the rocket clock, how many have ticked by on the lab clock?

I-{8. A light beam moves along the y' axis with speed ¢ in frame S’, which is moving to
the right with speed v relative to frame S. (a) Find «, and &, the x and y components of
the velocity of the light beam in frame §. (5) Show that the magnitude of the velocity of
the light beam in S is c.

£-19. A particle moves with speed 0.9¢ along the x” axis of frame $§”, which moves with
speed 0.9¢ in the positive x* direction relative to frame S’. Frame $' moves with speed
1.9¢ in the positive x direction relative to frame S. (a) Find the speed of the particle rela-
tive to frame $'. (b) Find the speed of the particle relative to frame S.

A NI

~wction 1-4 Time Dilation and Length Contraction

{-20. Use the binomial expansion to derive the following results for values of v << ¢ and
use when applicable in the problems that follow.

(@ v*1+%§

1-15. Two spaceships are approaching each other. (a) If the speed of each is 0.9¢ relative -

ProBLEMS

13
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1-21, How great must the relative speed of two observers be for their ti ne-interval mea-
surements to differ by 1 percent (see Problem 1-20)?

1-22. Supersonic jets achieve maximum speeds of about 3 X 1075%. (a) 3y what percent-
age would you observe such a jet to be contracted in length? (b) During a time of 1 y =
3.16 X 107 s on your clock, how much time would elapse on the pilot’s ¢ lock? How many
minutes are lost by the pilot’s clock in 1 year of your time?

1-23. A meterstick moves paraliel to its length with speed v = 0.6¢ relative to you.
(a) Compute the length of the stick measured by you. (b) How long dc s it take for the
stick to pass you? (¢) Draw a spacetime diagram from the viewpoint of your frame with
the front of the meterstick at x = 0 when ¢ = 0. Show how the answers o (a) and (b) are
obtained from the diagram.

1-24. The. proper mean lifetime of o mesons (pions) is 2.6 X 107%s. I| a beam of such
particles has speed (1.9¢, (a) What would their mean life be as measured i1 the laboratory?
{b) How far would they travel (on the average) before they decay? (c) ¥ vhat would your
answer be 1o part (b) if you neglected time dilation? (d) What is the inte val in spacetime
between creation of a typical pion and its decay?

1-25. You have been posted to a remote region of space to monitor traf ic. Near the end
of a quiet shift, a spacecraft streaks past. Your laser-based measuring d :vice reports the
spacecraft’s length to be 85m. The identification transponder repots it to be the
NCXXB-12, a cargo craft of proper length 100 m. In transmitting you - report to head-
quarters, what speed should you give for this spacecraft?

1-26. A spaceship departs from Earth for the star Alpha Centauri, whic 1 is 4 light-years
-away. The spaceship travels at 0.75¢c. How long does it take to get there (a) as measured
on Earth and (b) as measured by a passenger on the spaceship?

1-27. Two spaceships pass each other traveling in opposite directions. A passenger on
ship A, which she knows to be 100 m long, notes that ship Bis moving with a speed of
0.92¢ relative to A and that the length of B is 36 m. What are the lengths . f the two space-
ships measured by a passenger in B?

1-28. A meterstick at rest in 5’ is tilted at an angle of 30° to the x' axis. If §" moves at B =
0.8, how long is the meterstick as measured in § and what angle does it mak : with the x axis?
£-29. A rectangular box at rest in §' has sides @" = 2m, &' =2 m, and ¢’ =4 m and is
oriented as shown in Figure 1-43. §' moves with B = 0.65 with respect o the laboratory
frame S. (@) Compute the volume of the box in $* and in §. (#) Draw an : ccurate diagram
Fig. 1-43 Problem 1-29. of the box as seen by an observer in §. -

Section 1-5 The Doppler Effect

1-30, How fast must you be moving toward a red light (A = 650 nm) for it to appear yel-
low (A = 590 nm)? green (A = 525 nm)? blue (A = 460 nm)?

1-3I\A distant galaxy is moving away from us at speed 1.85 X ¥ m s. Calculate the
fractional redshift (A" — Ag)/A; of the light from this galaxy.

1-32. The light from a nearby star is observed to be shifted toward the bl se by 2 percent,
i.e., fps = 1.02fy. Is the star approaching or receding from Earth? How f: st is it moving?
{Assume motion is directly toward or away from Earth, 50 as to avoid supe: luminal speeds.)
1-33. Stars typically emit the red light of atomic hydrogen with wave zngth 656.3 nm
{called the H, spectral line). Compute the wavelength of that light observ :d at Earth from
stars receding directly from us with relative speed v = 1073, v = 10-% and v = 107 !¢,
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-section 1-6 The Twin Paradox and Other Surprises

1.34. A friend of yours who is the same age as you travels at 0.999¢ to a star 15 light-
‘yeurs away. She spends 10 years on one of the star’s planets and returns at 0.99%9¢. How
hmi has she been away, (a) as mmeasured by you and (b) as measured by her?

'_1-38) You poiot a laser flashlight at the moon, producing a spot of light on the moon’s
surface. At what minimum angular speed must you sweep the laser beam in order for the
light spot to streak across the moon’s surface with speed v > ¢? Why can’t you transmit
jaformation between research bases on the moon with the flying spot?

§-36. A clock is placed in a satellite that orbits Earth with a period of 108 min. (a) By
whut time interval will this clock differ from an identical clock on Earth after 1y?
() How much time will have passed on Earth when the two clocks differ by 1.0 57 (As-
sume special relativity applies and neglect general relativity.}

1-37. Einstein used trains for a number of relativity thought experiments, since they were
the fastest objects commonly recognized in those days. Let’s consider a train moving at
(1.63c along a straight track at night. Its headlight produces a beam with an angular spread
of 60° according to the engineer. If you are standing alongside the track (rails are 1.5 m
apart), how far from you is the train when its approaching headlight suddenly disappears?
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1-38. In 1971 four portable atomic clocks were flown around the world in jet aircraft, two
eustbound and two westbound, to test the time dilation predictions of relativity.2® (a) If
the westbound plane flew at an average speed of 1500 km/h relative to the surface, how
fong would it have had to fly for the clock on board to lose 1 s relative to the reference
elock on the ground at the U.S. Naval Observatory? (b) In the actual experiment the
planes circumflew Earth once and the observed discrepancy of the clocks was 273 ns.
What was the plane’s average speed?

(-39, Show that the spacetime interval As is invariant under the Lorentz transformation,
i.2.. show that :

(c Anf® — (Ax)* = (c Ar')* — (AxX')?

1-40. A friend of yours who is the same age as you travels to the star Alpha Centauri,
which is 4 ¢ - y away, and returns immediately. He claims that the entire trip took just
6 years. (@) How fast did he travel? (b) How old are you when he returns? (¢) Draw a
spacetime diagram that verifies your answer to (a) and ().

1-41, A clock is placed in a satellite that orbits Earth with a period of 90 min. By what
time interval will this clock differ from an identical clock on Earth after 1 year? (Assume
that special relativity applies.)

t-42. In frame S, event B occurs 2 ps after event A and at Ax =-1.5 km from event A.
{«) How fast must an observer be moving along the +.x axis so that events A and B occur
simultaneously? (b) Is it possible for event B to precede event A for some observer?
{¢) Draw a spacetime diagram that illustrates your answers to (a} and (&). {(d) Compute
the spacetime interval and proper distance between the events.

1-43. A burst of w* mesons travels down an evacuated beam tube at Fermilab moving
at B =092 with respect to the laboratory. (a) Compute vy for this group of pions.
th) The proper mean lifetime of pions is 2.6 X 10~% s. What mean lifetime is measured
in the lab? (c) If the burst contained 50,000 pions, how many remain after the group has
traveled 50 m down the beam tube? (d) What would be the answer to {c} ignoring time
dilation?

1-44. H. A. Lorentz suggested 15 years before Einstein’s 1905 paper that the null effect
ol the Michelson-Morley experiment could be accounted for by a contraction of that arm
of the interferometer lying parallel to Earth’s motion through the ether to a length
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L = L(1 — v¥c?)~"2, He thought of this, incorrectly, as an actual shrinking of matter. By
about how many atomic diameters would the material in the parallel arm o the interfer-
ometer have had to shrink in order to account for the absence of the expect d shift of 0.4
of a fringe width? (Assume the diameter of atoms to be about 10~ m.)

1-45. Observers in reference frame § see an explosion located at ¥, = 480 m. A second
explosion occurs 5 ps later at x; = 1200 m. In reference frame S, which is noving along
the +x axis at speed v, the explosions occur at the same point in space. (a) I waw a space-
time diagram describing this situation. (5) Determine v from the diagram. (¢) Calibrate
the ct’ axis and determine the separation in time in ps between the two - :xplosions as
measured in S'. (d) Verify your results by calculation.

1-46. Two spaceships, each 100 m long when measured at rest, travel towa d each other
with speeds of 0.85¢ relative to Earth. (a) How long is each ship as measure: by someone
on Earth? (b) How fast is each ship traveling as measured by an observer n the other?
(c) How long is one ship when measured by an observer on the other? (d) . ut time ¢ = 0
on Earth, the fronts of the ships are together as they just begin to pass each ¢ thet. At what
time on Earth are their ends together? (¢) Sketch accurately scaled diagrams in the frame
of one of the ships showing the passing of the other ship.

1-47. If v is much less than ¢, the Doppler frequency shift is approximai:ly given by
Aflfy = %P, both classically and relativistically. A radar transmitter-receiv :r bounces a
signal off an aircraft and observes a fractional increase in the frequency o Aflf, = 8 X
1077. What is the speed of the aircraft? (Assume the aircraft to be moving di ectly toward
the transmitter.)

1-48. Derive Equation 1-38 for the frequency received by an observer movir g with speed
v toward a stationary source of electromagnetic waves.

1-49, Frames § and §' are moving relative to each other along the x and x' a ces. They set
their clocks to ¢ = ' = ( when their origins coincide. In frame S, event | o xcurs at x;, =
lc-yand# = 1yandevent 2 occurs at x; = 2.0 ¢ - y and 1, = 0.5 y. These events occur
simultancously in frame §'. () Find the magnitude and direction of the velo ity of §* rel-
ative 1o 5. (b) At what time do both of these events occur as measured in S? (¢) Compute
the spacetime interval As between the events. (d) Is the interval spacelike timelike, or
lightlike? (¢) What is the proper distance L, between the events?

1-50. Do Problem 1-49 parts (a) and (b) using a spacetime diagram.

1-51. An observer in frame § standing at the origin observes two flashes of :olored light
separated spatially by Ax = 2400 m. A blue flash occurs first, followed b a red flash
5 ps later. An observer in ' moving along the x axis at speed v relative to 5 : Iso observes
the flashes 5 s apart and with a separation of 2400 m, but the red flash is o served first.
Find the magnitude and direction of v.

1-52. A cosmic ray proton streaks through the lab with velocity 0.85¢ at an angle of 50°
with the +x direction (in the xy plane of the lab). Compute the magnitude : nd direction
of the proton’s velocity when viewed from frame §’ moving with g = 0.72.
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1-53. A meterstick is parallel to the x axis in § and is moving in the +y dire :tion at con-
stant speed v,. Use a spacetime diagram from the viewpoint of S to show th it the meter- |
stick will appear tilted at an angle 8’ with respect to the x’ axis of $" movii g in the +x :
direction at B = 0.65. Compute the angle 8" measured in S’ :
1-54. The equation for the spherical wave front of a light pulse that begins at the origin at
time £ = 0 is x* + 2 + 2 — (ct)? = 0. Using the Lorentz transformation, sh »w that such
a light pulse also has a spherical wave front in S by showing that x> + y* + 22 — (c1)? =
Oin §". ' '
1-55. An interesting paradox has been suggested by R. Shaw?” that goes like this. A very

thin steel plate with a circular hole I m in diameter centered on the y axis li s parallel to
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the xz plane in frame § and moves in the +y direction at constant speed v, as illustrated in
Pigure 1-44. A meterstick lying on the x axis moves in the +x direction with § = vfc. The
sivel plate arrives at the y = O plane at the same instant that the center of the meterstick
‘eaches the origin of 5. Since the meterstick is observed by observers in § to be con-
tracted, it passes through the 1-m hole in the plate with no problem. A paradox appears to
4rise when one considers that an observer in ', the rest system of the meterstick, mea-
- ‘sures the diameter of the hole in the plate to be contracted in the x dimension and, hence,
;1_ becomes too small to pass the meterstick, resulting in a collision. Resolve the paradox.
: Will there be a collision?

1-56. Two events in § are separated by a distance D = x, — x; and a time T = £, — ¢,.
. {a) Use the Lorentz transformation to show that in frame §’, which is moving with speed
v relative to 5, the time separation is #5 — ] = (T — vD/c?). (b) Show that the events can
2. be simultaneous in frame S" only if D is greater than cT. (c} If one of the events is the
" eause of the other, the separation D must be less than ¢T since D/c is the smallest time
that a signal can take to travel from x, to x, in frame 5. Show that if D is less that T, ¢, is
greater than ¢] in all reference frames. (d) Suppose that a signal could be sent with speed
@' > ¢ so that in frame § the cause precedes the effect by the time T = D/c’. Show that
- there is then a reference frame moving with speed v less than ¢ in which the effect pre-
cedes the cause. :

I-57. Two observers agree to test time dilation. They use identical clocks and one
observer in frame S’ moves with speed v = 0.6¢ relative to the other observer in frame S.
When their origins coincide, they start their clocks. They agree 10 send a signal when
their clocks read 60 min and to send a confirmation signal when each receives the other’s
signal. (@) When does the observer in S receive the first signal from the observer in 5'?
(#) When does he receive the confirmation signal? (¢) Make a table showing the times in
§ when the observer sent the first signal, received the first signal, and received the confir-
mation signal. How does this table compare with one constracted by the observer in §'?
1-58. The compact disc in a CD-ROM drive rotates with angular speed w. There is a
clock at the center of the disc and one at a distance r from the center. In an inertial refer-
ence frame, the clock at distance r is moving with speed u = rw. Show that from time
dilation in special relativity, time intervals At, for the clock at rest and A, for the moving
clock are related by

Af:,. - Ato . r2(02
At 2¢2

if rm <<

ProsLEMS

67



68

Chapter I  Relativity I

1-59. Two rockets A and B leave a space station with velocity vectors v, aud vp, relative
to the station frame S, perpendicular to one another. (@) Determine the velc ity of A rela-
tive to B, vp,. (§) Determine the velocity of B relative to A, v,z (¢} Explai why v,5 and
vz, do not point in opposite directions.
1-60. Suppose a system S consisting of a cubic lattice of metersticks and synchronized
clocks, e.g., the eight clocks closest to you in Figure 1-14, moves from le t to right (the
+x direction) at high speed. The metersticks paratle! to the x direction are, « f course, con-
tracted and the cube would be measured by an observer in a system S’ to be foreshortened
in that direction. However, recalling that your eye constructs images froin light waves
which reach it simultaneously, not those leaving the source simultaneousk , sketch what
your eye would see in this case. Scale contractions and show any anglzs accurately.
(Assume the moving cube to be farther than 10 m from your eye.)
1-61. Figure 1-125 (in the More section about the Michelson-Morley expe iment) shows
an eclipsing binary. Suppose the period of the motion is T and the binary i3 a distance L
from Earth, where L is sufficiently large so that points A and B in Figure 1- 2b are a half-
orbit apart. Consider the motion of one of the stars and (a) show that the : tar would ap-
pear to move from A to B in time T2 + 2Lv/(¢Z — +?) and from B to A n time 7/2 ~
2Lvi{c2 — v?), assuming classical velocity addition applies to light, i.e., that emission the-
ories of light were correct. (b) What rotational period would cause the star 1> appear to be
at both A and B simultancously?
1-62. Show that if a particle moves at an angle 8 with respect to the x axis v ith speed u in
system S, it moves at an angie 8" with the x’ axis in S given by

sin @

tan’ = ————
¥ (cos § — viu)




