' Relativity II

[ n the opening section of Chapter | we discussed the classical observation that, if
. Newton’s second law F = ma holds in a particular reference frame, it also holds in
sty other reference frame that moves with constant velocity relative to it, i.e., in any
fnertial frame. As shown in Section 1-1, the Galilean transformation (Equations 1-3)
{eads to the same accelerations a; = q, in both frames, and forces such as thos\p due to
streiched springs are also the same in both frames. However, according to the Lorentz
transformation, accelerations are not the same in two such reference frames. If a parti-
gle has acceleration a, and velocity «, in frame §, its acceleration in §’, obtained by
wiputing du,/dt’ from Equation 1-24, is

a;

_— 2-1
Y(1 — v,/ c??

a, =

‘Thus, Ffm must transform in a similar way, or Newton’s second law F = ma does not
Hold.

4 It is reasonable to expect that F = ma does not hold at high speeds, for this
B equation implies that a constant force will accelerate a particle to unlimited velocity
i it acts for a long time. However, if a particle’s velocity was greater than ¢ in some
‘reference frame S, we could not transform from § to the rest frame of the particle
E hacause vy becomes imaginary when v > ¢. We can show from the velocity transfor-
& mation that if a particle’s velocity is less than ¢ in some frame S, it is less than ¢ in all
§ Rrames moving relative to § with v < ¢. This result leads us to expect that particles

£ s not relativistically invariant. We will, therefore, need a new law of motion, but one
£ fliit reduces to Newton’s classical version when B {(=v/c) — 0, since F = ma is con-
£ wient with experimental observations when B << 1.

In this chapter we will explere the changes in classical dynamics that are dic-
© tailed by relativity theory, directing particular attention to the same concepts around
E which classical mechanics was developed, namely mass, momentum, and energy.
i We will find these changes to be every bit as dramatic as those we encountered in
¢ €hapter 1, including a Lorentz transformation for momentum and energy and a new
% hwariant quantity to stand beside the invariant spacetime interval As. Then, in the
luiter part of the chapter, we will briefly turn our attenticn to noninertial, or acceler-
iled, reference frames, the realm of the theory of general relativity.

.:FW:

& never have speeds greater than c¢. Thus, we expect that Newton’s second law F = ma
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.Apdx

Fig. 2-1 (a) Elastic collision
of two identical balls as seen
in frame S. The vertical com-
ponent of the velocity of ball
Bisuy/yin Sifitis uyin 5.
(&) The same collision as
seen in §', In this frame ball
A has vertical component of

velocity uyly.

2-1 Relativistic Momentum

Among the most powerful fundamental concepts that you have studic] in physics
until now have been the ideas of conservation of momentum and coi servation of
total energy. As we will discuss a bit further in Chapter 13, each of thes > fundamen-
tal laws arises because of a particular symmetry that exists in the laws of physics. For
example, the conservation of total energy in classical physics is a consec uence of the
symmetry, or invariance, of the laws of physics to translations in time. As a conse-
quence, Newton’s laws work exactly the same way today as they did »/hen he first
wrote them down. The conservation of momentum arises from the iivariance of
physical laws to translations in space. Indeed, Einstein’s first postulate ai.d the result-
ing Lorentz transformation (Equations 1-20 and 1-21) guarantee this latt :r invariance
in all inertial frames.

The simplicity and universality of these conservation laws leads us 12 seek equa-
tions for relativistic mechanics, replacing Equation 1-1 and others, that are consistent
with momentum and energy conservation and are also invariant und:r a Lorentz
transformation. However, it is straightforward to show that the momentu n, as formu-
lated in classical mechanics, does not result in relativistic invariance ¢ f the law of
conservation of momentum. To see that this is so, we will look at an i: olated colli-
sion between two masses, where we avoid the question of how to tran;form forces
because the net external force is zero. In classical mechanics, the tota momentum
p = Zma, is conserved. We can see that relativistically, conservation of the quantity
Zma, is an approximation which holds only at low speeds.

Consider one observer in frame § with a ball A and another in §’ +'ith a ball B.
The balls each have mass m and are identical when measured at rest. Each observer
throws his ball along his y axis with speed u, (measured in his own fram:) so that the
balls collide.! Assuming the balls to be perfectly elastic, each observer will see his
ball rebound with its original speed 1. If the total momentum is to be conserved, the
y component must be zero because the momentum of each ball is merel: reversed by
the collision. However, if we consider the relativistic velocity transfor mations, we
can see that the quantity mu, does not have the same magnitude for eact ball as seen
by either observer.

Let us consider the collision as seen in frame S (Figure 2-1a). In this frame ball
A moves along the y axis with velocity u,, = u,. Ball B has x componex t of velocity
i = v and y component

g = uyply = —up\1 — V/ic? 2-2

Here we have used the velocity transformation equations (1-25) and the facts the u; "
is just —ug and u,p = (). We see that the y component of velocity of bal! B is smaller
in magnitude than that of ball A. The quantity (1 — v¥c?)'? comes fiom the time
dilation factor. The time taken for ball B to travel a given distance along the y axis in
§ is greater than the time measured in §” for the ball to travel this same distance.
Thus in § the total y component of classical momentum is not zero. Sinc e the y com-
ponents of the velocities are reversed in an elastic collision, momentum : s defined by
p = Zmu is not conserved in S. Analysis of this problem in §' leads to the same
conclusion (Figure 2-1b), since the toles of A and B are simply i1 terchanged.?
In the classical limit v << ¢, momentum is conserved, of course, becaus . in that limit
v = 1 and u,z = w,

The reason for defining momentum as ¥mm in classical mechanics is that this
quantity is conserved when there is no net external force, as in our collis on example.



= We now see that this quantity is conserved only in the approximation v << ¢. We
shall define relativistic momentum p of a particle to have the following properties:

| pis conserved in collisions.
4 p approaches rmu as u/c approaches zero.

Let's apply the first of these conditions to the collision of the two balls that we just
stagussed, noting two important points. First, for each observer in Figure 2-1, the speed
af sach ball is unchanged by the elastic collision. It is either i, (for the observer’s own
ball) or (2 + v} = y (for the other ball). Second, the failure of the conservation of

il {.orentz ransformation to find the y components. Tt must have something to do with
Hiw mass! Let us write down the conservation of the y component of the momentum
#f obyerved in S, keeping the masses of the two balls straight by writing m(u) for the
¥ ubserver’s own ball and m(x) for the $* observer’s ball.

muglug — m(uy, = —m(uglug + m{u)i,g 2-3
(before collision) (after collision)

uation 2-3 can be readily rewritten as

mu) _ 4o 2.4
m(uo) uyﬂ

} 1y is small compared to the relative speed v of the reference frames, then it follows
from Equation 2-2 that u,p << v and, therefore, 1 =~ v.

If we can now imagine the limiting case where g — 0, i.e., where each ball is at
feal in its *“home” frame so that the collision becomes a “grazing™ one as B moves
L A at speed v = i, then we conclude from Equations 2-2 and 2-4 that in order for
Juation 2-3 to hold, i.e., for the momentum to be conserved,

mu=v) y

mgg = 0) a1 — viic?

m
0= = T s

Fyuation 2-5 says that the observer in S measures the mass of ball B, moving relative
5 him at speed w, as equal to 1/(1 — #/c¢?)"? times the rest mass of the ball, or its
e measured in the frame in which it is at rest. Notice that observers always mea-
b sire the mass of an object that is in motion with respect to them to be larger than the
- value measured when the object is at rest.

Thus we see that the law of conservation of momentum will be valid in relativ-
ty, provided that we write the momentum p of an object with rest mass m moving
with velocity u relative to an inertial system S to be

mu -
[:b—---—u——,—_l_MZIC2 %MM 2-6

irnewnentum in the collision we described can’t be due to the velocities because we used -

2-1 RELATIVISTIC MOMENTUM 71

The design and construction
of the large particle acceler-
ators throughout the world
are based directly on the
relativistic expressions for
momentum and energy.
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where u is the speed of the particle. We thus take this equation for the def nition of
relativistic momentum. It is clear that this definition meets our second criterion,
because the denominator approaches 1 when u is much less than ¢. From ttis defini-
tion, the momenta of the two balls A and B in Figure 2-1 as seen in § are

Mgy milyg

Pu=T—wic P27 3T = g + upic?

where u,p = ug(l — v¥c?'? and u,g = v. It is similarly straightforward to show that
Pys = —Pyu. Because of the similarity of the factor 1/(1 — w*/c»)'? and vy in the
Lorentz transformation, Equation 2-6 is often written

. 1

p = ymu with ¥ TR 2-7

This use of the symbol vy for two different quantities causes some confusion; the
notation is standard, however, and simplifies many of the equations. We shal use this
notation except when we are also considering transformations between 1eference
frames. Then, to avoid confusion, we shall write out the factor (1 — u?¢%)'? and
reserve <y for 1/(1 — v¥c?)'Y2, where v is the relative speed of the frames. Fizure 2-2
shows a graph of the magnitude of p as a function of w/c. The quantity m(u) in Equa-
tion 2-5 is sometimes called the relativistic mass; however, we shall avoid 1 sing the
term or a symbol for relativistic mass: in this book, m always refers to the miss mea-
sured in the rest frame. In this we are following Einstein’s view. In a letter 0 a col-

league in 1948 he wrote:?

It is not good to introduce the concept of mass M = m/(1 — v¥c)? of a tody
for which no clear definition can be given. It is better to introduce no other 1 1ass
than “the rest mass” m. Instead of introducing M, it is better to mention the
expression for the momentum and energy of a body in motion.
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Fig. 2-2 Relativistic momentum as given by Equation 2-6 versus u/c, where u = speec of the
object relative to an observer. The magnitude of the momentum p is plotted in units of nc. The
fainter dashed line shows the classical momentum mu for comparison.
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;EXAMPLE 2-1 Measured Values of Moving Mass For what value of w/c will the
& measured mass of an object ym exceed the rest mass by a given fraction 7

18 Solution
& From Equation 2-5 we see that

poymom L1
m Y N1 — w?e?
i Solving for uw/c,
| — = ey - —
(f + 17 U+ 172
§ or
V(f+ 2)
ule = ———
f+1

=8 from which we can compute the table of values below or the value of w/c for
' any other . Note that the value of w/c that results in a given fractional increase f in
B the measured value of the mass is independent of m. A diesel locomotive
B moving at a particular w/c will be observed to have the same f as a proton moving
with that u/c.

5% 1070 0.0001 | Earth’s orbital speed

0.0001 0.014 50-eV electron
0.01 (1%) 0.14 quasar 3C 273
1.0 (100%) 0.87 quasar 0Q172
10.0 0.996 muons from cosmic rays

100 0.99995 | some costnic ray protons

£ XAMPLE 2-2 Momentum of a Rocket A high-speed interplanetary probe with a
- mass m = 50,000 kg has been sent toward Pluto at a speed # = 0.8¢c. What is its
? momentum as measured by Mission Control on Earth? If, preparatory to landing
i on Pluto, the probe’s speed is reduced to 0.4c, by how much does its momentum
# change?

73
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1. Assuming that the probe travels in a straight line toward Pluto, its momen-
tum along that direction is given by Equation 2-6:

_ mu
N
_ (50,000 kg)(0.8¢)
~ NT- @87
= 6.7 X 10¢c-kg
=20 X 10%kg-m/s

2. When the probe’s speed is reduced, the momentum declines a ong the
relativistic momentum curve in Figure 2-2. The new value is compu ed from
the ratio:

Pose _ m(OANT = (047
Pose  M(0.8c)N1 — (0.8)
_INT— 087
"~ 2T — a7

=033

3. The reduced momentum pg 4, is then given by:

Posc = 033 pog.
= (0.33%6.7 X 10% ¢ kg)

=22 X 10%c-kg
= 6.6 X 10 kg~ m/s

® Remarks: Notice from Figure 2-2 that the incorrect classical value of py, . would
W have been 4.0 X 104 ¢ -kg. Also, while the probe’s speed was decreased to one-
8 half its initial value, the momentum decreased to one-third of the initial va. ue.

1. In our discussion of the inelastic collision of balls A and B, the collision was
3 a “grazing” one in the limiting case. Suppose instead that the collisiin is
a “head-on” one along the x axis. If the speed of §’ (i.c., ball B) is low, say,

v = (.1¢, what would a spacetime diagram of the collision look like?

2-2 Relativistic Energy

As noted in the preceding secfion, the fundamental character of the principle of con-
servation of total energy Ieads us to seek a definition of total energy in relativity that]
preserves the invariance of that conservation law in transformations between inertial
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yatems. As with the definition of the relativistic momentum, Equation 2-6, we shall
juire that the relativistic total energy E satisfy two conditions:

-1, The total energy E of any isolated system is conserved.
S "3, E will approach the classical value when w/c approaches zero.

Let’s first find a form for K that satisfies the second condition and then see if

It also satisfies the first. We have seen that the quantity mu is not conserved in
" gollisions but that ymu is, with y = 1/(1 — &%c?)'2, We have also noted that New-
fon’'s second law in the form F = ma cannot be correct relativistically, one reason
figing that it leads to the conservation of mu. We can get a hint of the relativisti-
él]ly correct form of the second law by writing it F' = dp/dr. This equation is rela-
Hvistically correct if relativistic momentum p is used. We thus define the force in

Felativity to be

dp _ d(ymu)
F=—="1"" 2-8
dt dr

ﬁew then, as in classical mechanics, we shall define kinetic energy E, as the work
ﬂme by a net force in accelerating a particle from rest to some velocity u. Consider-

Aerial view of the Stanford Linear Accelerator Center (SLAC). Electrons begin their 3-km
#cveleration to relativistic energies in the upper right, cross under Interstate 280 at nearly the
apeed of light, and fan out to several experiment stations in the foreground, where their colli-
aluns in the underground storage ring create short-lived mesons. [Stanford Linear Accelerator
{‘enter, U.S. Department of Energy.]
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using u = dxfdt. The computation of the integral in this equation is not difficult but
requires a bit of algebra. It is left as an exercise (Problem 2-2) to show tt at

w2\-2
d(ymu) = m(l - 5) du

Substituting this into the integrand in Equation 2-8, we obtain

L] " u2 174
E, = f u d(ymu) = f m(l - —2) udu
0 ) c

1
= 2 -—-—-——1
me (\!1 — u?/c? )
or

E = ymc? — mc? 29

Equation 2-9 defines the relativistic kinetic energy. Notice that, as we w: med earlier,
E, is not mi?f2 or even ymu*2. This is strikingly evident in Figure 2-3. However,
consistent with our second condition on the relativistic total energy E, }quation 2-9
does approach mu?f2 when u << c. We can check this assertion by no'ing that for
ulfe << 1, expanding vy by the binomial theorem yields

2

w2\ 12 1u
'y=(l—-é-2-) ="-1+§§+"'

and thus

1a?

~1 2
R

E, = mcz(l +

The expression for kinetic energy in Equation 2-9 consists of two terms. One
term, -ymc?, depends on the speed of the particle (through the factor %), znd the other
term, mc?, is independent of the speed. The quantity mc? is called the rest energy of
the particle, i.e., the energy associated with the rest mass m. The rela:ivistic total
energy E is then defined as the sum of the kinetic energy and the rest energy:

mc?

E=Ek+mcz=?mz=T.—\/7u“?l‘_c2 2-10
Thus, the work done by a net force increases the energy of the system f 'om the rest
energy mc? to ymc? (or increases the measured mass from m to ym).

For a pa(}ﬁclc at rest relative to an observer, E, = 0, and Equation 2- 10 becomes
perhaps the most widely recognized equation in all of physics, Einstein’s famous
E = mc?. When u <<< c Equation 2-10 can be written as

1
E'—simu2 + me?

Before the development of relativity theory, it was thought that mass was 1 conserved
quantity;* consequently, m would always be the same before and after ar interaction
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Kinetic energy (MeV)
¥ig. 2-3 Experimental confirmation of the relativistic relation for kinetic energy. Electrons
wire accelerated to energics up to several MeV in large clectric fields and their velocities were
datermined by measuring their time of flight over 8.4 m. Note that when the velocily ¥ << ¢,
the relativistic and nonrelativistic (i.e., classical) relations are indistinguishable. [W. Bertozzi,
American Journal of Physics, 32, 557 (1964).]

"4 event and mc® would therefore be constant. Since the zero of energy is arbitrary,
. we are always free to include an additive constant; therefore, our definition of the rel-
~ alivistic total energy reduces to the classical kinetic energy for 4 << ¢ and our sec-
" and condition on E is thus satisfied.

_ Be very careful to understand Equation 2-10 correctly. It defines the total energy
~#, and E is what we are secking to conserve for isolated systems in all inertial
-~ frames, not E, and not mc2. Remember, too, the distinction between conserved quan-
ities and invariant quantitics. The former have the same value before and after an
. nleraction in a particular reference frame. The latter have the same value when mea-
. #red by observers in different reference frames. Thus, we are not requiring
glmervers in relatively moving inertial frames to measure the same values for E, but
E rather that £ be unchanged in interactions as measured in each frame. To assist us in
. showing that E as defined by Equation 2-10 is conserved in relativity, we will first
- see how E and p transform between inertial reference frames.

k Lorentz Transformation of E and p

E (‘onsider a particle of rest mass m that has an arbitrary velocity u with respect to -
i frame S as shown in Figure 2-4. System S’ is a second inertial frame moving in the
+ ¢ direction, The particle’s momentum and energy afe given in the § and § systems,
e respectively, by:

I S:

e E = ymc?

§ px = 'Ymux 2_11
e Py = ymu,

g

: P, = ymu,
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N
/{3 —

z z

Fig. 2-4 Particle of mass m moves with velocity u measured in S. Systern 5’ mx ves in the +x
direction at speed v. The Lorentz velocity transformation enables determination of the relations
connecting measurements of the total energy and the components of the momer um in the two
frames of reference.

where
v = IN1 — uic?
InS':
EI' e ,Yrmz
' = r t
e 212
Py = ° miy
P, = Y'mu;
where

Y = INT= w7

Developing the Lorentz transformations for E and p requires that we firs! express y' in
terms of quantities measured in S. (We could just as well express v in terms of primed
quantities. Since this is relativity, it makes no difference which we choose.) The result is

1
T Y N where now YR —a 213

7’ A 1 (1 — vatc?)
"N

Substituting Equation 2-13 into the expression for E' in Equations 2-12 yields
3 v

E!

_ mc? mc:  mctvudc?
N -wid NToate 1-aic

The first term in the brackets you will recognize as E, and the second te 'm, canceling
the ¢ factors, as vp, from Equations 2-11. Thus, we have

E' = y(E - vpp _ 2-14

Similarly, substituting Equation 2-13 and the velocity transformation fr i) into the
expression for p; in Equations 2-12 yields
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L

., mu, B mu, my
Px V1 — W Y N1~ u¥er N1 — w¥c?

# first term in the brackets is p, from Equations 2-11 and, noting that
| — w2c?) 12 = E/fc?, the second term is vE/c2. Thus we have

pi = Wp, ~ VEIc) | 2-15
Paing the same approach, it can be shown (Problem 2-45) that

| pp=p, ad p =p,

logether these relations are the Lorentz transformation for momentum and energy:

pi = y(p, — vEIcY)  p, =p,

, 4 2-16
E' =~(E — vp) P =P
Fhe inverse transformation is
p.="p, +vE'Ic?) p,=p,
E = y(E' + vp)) P =P
! ! 2-17

YT Ve Vi@

'?g”_'i;Note the striking similarity between Equations 2-16 and 2-17 and the Lorentz trans-
 formation of the space and time coordinates, Equations 1-20 and 1-21. The momen-
um p{p,. p,, p,) transforms in relativity exactly like r(x, y, z), and the total energy £ /) L 3
transforms like the time t. We will return to this remarkable result and related matters
“shortly, but first let’s do some examples and then, as promised, show that the energy
defined by Equation 2-10 is conserved in relativity.

. EXAMPLE 2-3 Transforming Energy and Momentum Suppose a micrometcorite
& of mass 1072 kg moves past Earth at a speed of 0.01c. What values will be mea-
; g sured for the energy and momentum of the particle by an observer in a system §'
§ moving relative to Earth at 0.5¢ in the same direction as the micrometeorite?

%

G

Solution

;- Taking the direction of the micrometeorite’s travel as the x axis, its energy and
" momentum as measured by the Earth observer are, using the ¥ << ¢ approxima-
* tion of Equation 2-10:

E =~ imu® + mc? = 107° kg[(0.01c)%2 + ¢?]
E = 1.00005 x 107%¢%J

79
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% and
P = mu, = (107° kg)(0.01¢) = 107! ¢ kg-m/s

For this situation y = 1.1547, so in S’ the measured values of the energy and
momentum will be:

E' = y(E ~ vp,) = (11547)[1.00005 X 107%* — (0.5¢)(10™ ‘c)]
E' = (1.1547)(1.00005 X 107° — 0.5 X 107')¢?
E' = 114898 X 107°¢%]

and

‘= y(p, — VEICY) = (1.1547){107 ¢ — (0.05c)(1.00005 X 10~ c?)/c?
f = (L.1547)(10 11 — 5.00025 X 10~ °)c
‘= —0.566 X 10~ ckg-m/s

SR
i

Thus, the observer in §' measures a total energy nearly 15 percent larger and
% a momentum about 40 percent smaller and in the —x direction.

EXAMPLE 2-4 A More Difficult Lorentz Transformation of Energy S ippose that
a particle with mass m and energy E is moving toward the origin (f a system

yﬂ\ ugind S such that its velocity u makes an angle o with the y axis as shown in Figure 2-5.
o m Using the Lorentz transformation for energy and momentum, det:rmine the
a energy E' of the particle measured by an observer in 5’, which moves 1:2lative to §
<. u s so that the particle moves along the y" axis.
v

Solution
System S’ moves in the —x direction at speed u sin a, as determine 1 from the
Lorentz velocity transformation for u; = 0. Thus, v = —u sin «. Also,

1

E=mc®N1 — e p=mulN1 — u¥c?

Fig. 2-5 The system dis-
cussed in Example 2-4.

and from the latter,

P = —(mu/‘\‘l - uzlcz)sina

In §’ the energy will be

E' = YE - p) _
"'—}- 3 -
N [E — (—usin a)}(—mur1 — u¥cHsin a]

1
= W [E — (mNT — w¥Henudsin® o)
—u
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Muttiplying the second term in the brackets by ¢%¢? and factoring an E from both
terms yield

E' = Ey1 ~ (@/chsin®

 Since # < ¢ and sin a =<' |, we see that ' < E, except fora = O when E' = E, in
which case § and S8’ are the same system. Note, too, that for a > 0, if ¥ — ¢,
E' — E cos a. As we will see later, this is the case for light.

3. Recalling the results of the measurements of time and space intervals by
observers in motion relative to clocks and measuring rods, discuss the results
of corresponding measurements of energy and momentum changes.

Conservation of Energy

A# with our discussion of momentum conservation in relativity, let us consider a col-
fison of two identical particles, each with rest mass m. This time, for a little variety,
we will let the collision be completelyinelastic)-i.e., when the particles collide,
they stick together. There is a system §’, called the zero-momentum frame, in which

- the particles approach each other along the x' axis with equal speeds «—hence equal
- and opposite momenta—as illustrated in Figure 2-64. In this frame the coilision

gesults in the formation of a composite particle of mass M at rest in §'. If $' moves
with respect to a second frame § at speed ¥ =_u in the x direction, then the particle on

~ i right before the collision will be at rest in S and the composite particle will move

t the right at speed u in that frame. This situation is illustrated in Figure 2-65.
Using the total energy as defined by Equation 2-10, we have in 8.

- fetore collision;

2 2

B o 4
bt T T —w¥cr N1 -
2

2-18
_ 2mc

TN - Wt

= Afler collision:

Elpe = Mc? 2-19

. Foergy will be conserved in §” if Efgype = Eopen 1€, if

e

2mc?
T~ M -

this is ensured by the validity of conservation of momentum, in particular by Equa-
1iun 2-53, and so energy is conserved in §’. (Phe validity of Equation 2-20 is important
nndl not trivial. We will consider it in more detail in Example 2-7.) To see if energy as

Ke

wst enieirve A



R AR e

&2

Chapter 2 Relativity IT

{a) ct’y s
4 &’ (after) !
/Woﬂdllne
of M
C‘f. s

¥} s (before) Y} s(atien M
Worldline
; of M

Fig. 2-6 Inelastic collision of two particles of equal rest mass m. (a) In the ze; 0 momentum
frame 5' the particles have equal and opposite velocities and, hence, momenta After the colli-
sion, the composite particle of mass M is at rest in 5'. The diagram on the far 1ight is the
spacetime diagram of the collision from the viewpoint of §’. (b) In system S tl e frame 5’ is
moving to the right at speed « so that the particle on the right is at rest in S, wl ile the left one
moves at 2u, After collision, the composite particle moves to the right at speec u. Again, the
spacetime diagram of the interaction is shown on the far right. All diagrams ar » drawn with the
collision occurring at the origin. :

we have defined it is also conserved in §, we transform to § using the inverse encrgy
transform, Equation 2-17. We then have in 5

Before collision:
Epetore = V(Eietore + VPx)
b = )
= y(%{;) since pe=0 2-21
After collision:
Epper = ¥(Mc? + up)) = yMc?  sinceagain p. =0 2-22

The energy will be conserved in § and, therefore, the law of conserve tion of energy
will hold in all inertial frames if E, ;. = Eaper, 1-€-, if
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2mc?
— | = M, 2 2.
T(V‘l - uzlcz) e 23

which, like Equation 2-20, is ensured by Equation 2-5. Thus, we conclude that the
energy as defined by Equation 2-10 is consistent with a relativistically invariant law
i conservation of energy, satisfying the first of the conditions set forth at the begin-
ning of this section. While this demonstration has not been a general one, that being
teyond the scope of our discussions, you may be assured that our conclusion is quite
generally valid.

). Explain why the result of Example 2-4 does not mean that energy conserva-
tion is violated.

} EXAMPLE 2-5 Mass of Cosmic Ray Muons In Chapter I, muons produced as
secondary particles by cosmic rays were used to illustrate both the relativistic
length contraction and time dilation resulting from their high speed relative to
observers on Earth. That speed is about 0.998¢. If the rest energy of a muon is
105.7 MeV, what will observers on Earth measure for the total energy of a cosmic
ray —produced muon? What will they measure for its mass?

Solution

The electron volt (eV), the amount of energy acquired by a particle with electric
charge equal in magnitude to that on an electron (e) accelerated through a poten-
tial difference of 1 volt, is a convenient unit in physics, as you may have learned.
It is defined as

1.0eV = 1602 X I0°PC X 1.0V = 1,602 X 10°7] 2-4

Commonly used multiples of the eV are the keV (10° eV), the MeV (10° &V), the
GeV (10° V), and the TeV (10'2 eV). Many experiments in physics involve the
measurement and analysis of the energy and/or momentum of particles and sys-
temns of particles, and Equation 2-10 allows us to express the masses of particles
in energy units, rather than the SI unit of mass, the kilogram. That and the conve-
nient size of the eV facilitate® numerous calculations. For example, the mass of an
electron is 9.11 X 107! kg. Its rest energy is given by

E=mc? =911 X 1071 kg-c? = 8.19 X 107#]J

1
E=1819 X 1074 X =511 X 10°eV
T A

E = (0.511 MeV rest energy for the electron

8
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The mass of the particle is often expressed with the same number thu: :

E
m= = = 0.511 MeV/c? mass for the electron

Now, applying the above to the muons produced by the cosmic ray:, each has a
total energy F given by

1 MeV
= ymc? = X 105.7 —=~ X ¢?
E=yme® = m—qoosame < 1057 5 X«

E = 1670 MeV

and a measured mass (see Equation 2-5) of
ym = E/c? = 1670 MeV/c?

This dependence of the measured mass on the speed of the particle h: s been veri-
fied by numerous experiments. Figure 2-7 illustrates a few of those res ults.

6.0

5.0

4.0 :

wmim

3.0

20

1.0

0 0.2 0.4 0.6 08 1.0
ule

Fig. 2-7 A few of the many experimental measurements of the mass of electrons : s a function
of their speed t/c. The data points are plotted onto Equation 2-5, the solid line. Th : data points
represent the work of Kaufinann ( X, 1901), Bucherer (A, 1908), and Bertozzi (@ 1964).
Note that Kaufmann's work preceded the appearance of Einstein’s 1905 paper on :pecial rela-
tivity. [Adapted from Figure 3-4 in R, Resnick and D. Halliday, Basic Concepts in Relativity
and Early Quantum Theory, 2d ed. (New York: Macmillan, 1992).]

EXAMPLE 2-6 Change in the Solar Mass Compute the rate at whicl the sun is
losing mass, given that the mean radius R of Earth’s orbit is 1.50 X 10 km and the
intensity of solar radiation at Earth (called the solar constant) is 1.36 > 10° W/mZ.
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Solution
1. The conversion of mass into energy, a consequence of conservation of energy
in relativity, is implied by Equation 2-10. With u = 0 that equation becomes:

E=mc

2. Assuming that the sun radiates uniformly over a sphere of radius R, the total
power P radiated by the sun is given by:

P = (area of the sphere)(solar constant)
= (@mRH(1.36 X 10° W/m?)
= 47(1.50 X 10 m)*(1.36 X 10° W/m?)
= 3.85 X 10% J/s

3. Thus, every second the sun emits 3.85 X 10? J, which, from Equation 2-10,
is the result of converting an amount of mass m given by:

m = Eic?
385 X 10%]
~ (3.00 X 10° m/s)?
=43 % 10°kg

Remarks: Thus, the sun is losing 4.3 X 10° kg of mass (about 4 million metric
tons) every second! If this rate of mass loss were to remain constant (which it will
for the next few billion years), the sun’s present mass of about 2.0 X 10% kg
= would last “only” for about 10'? more years!

o

Exploring
Another Surprise!

One consequence of the fact that Newton’s second law F = ma is not rclativistically
invariant is yet another su.rprisc——-—th Consider a lever of mass m at

“ rest in § (see Figure 2-8). Since the lever is at rest, the net torque T, due to the
forces F, and F, is zero, i.e. (using magnitudes):

Tt =T+ T, = —F, b+ Fa=10
and, therefore,

F.b=F,a

8
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(ay y B ¥4
Pin
a —. Fy
b s
i e
| v
“E’—_ -y=2
x 8 = 0.866
0 x o x i

Fig. 2-8 (a) A lever in the xy plane of system 5 is free to rotate about the pin £ but is
" beld at rest by the two forces F, and F,. (b) The same lever as seen by an obser ¢rin a
- 8" which is moving with instantacous speed v in the +x direction. For the §* ob erver,
the lever is moving in the —x' direction.

An observer in system 5’ moving with p = 0.866 (y = 2) with respect to S sees the
lever moving in the —x’ direction and measures the torque to be

Tht = T2 + 7, = —Fib' + Fya' = —~F b + (F,/2)(al2)
= —F,b+ F bld = —(3/4)F,b # 0

where F, = F,and F; = F,/2 (seec Problem 2-52) and the lever is rotating!

The resolution of the paradox was first given by the German physicist - ax von
Laue (1879-1960). Recall that the net torque is the rate of change of the angular
momentum L. The §' observer measures the work done per unit time by the two

forces as
For F/: —Fiu= —Fuv
For F: zero, since F, is perpendicular to the motion

and the change in mass Am per unit time of the moving lever as

Ar' At cz A ¢t

Am _ AElc* 1 AE

. The § observer measures a change in the magnitude of the angular momer tam per
unit fime given by

AL bAp' _ bvAm
Toet = Ay Ar' Ar'

. Substituting for Am/At" from above yields

AL’ —Fv v?
ot = Ap = bv 2 M




“; ~As a result of the motion of the lever relative to S an observer in that system sees

_ («?‘rﬂlc force F, doing net work on the lever, thus changing its angular momentum over
£5:time and the paradox vanishes.

af The authors thank Costas Efthimiou for bringing this paradox to our attention.

2-3 Mass/Energy Conversion
gnd Binding Energy

$he identification of the term mc? as rest energy is not merely a convenience. When-
@ver additional energy AE in any form is stored in an object, the mass of the object is
: @cmased by AE/c? This is of particular importance whenever we want to compare
Qe mass of an object that can be broken into constituent parts with the mass of the
arts (for example, an atom containing a nucleus and electrons, or a nucleus contain-
“fhig protons and neutrons). In the case of the atom, the mass changes are usually negii-
%bly small {(see Example 2-8). However, the difference between the mass of a nucleus
d that of its constituent parts (protons and neutrons) is often of great importance.
% As an example, consider Figure 2-9a, in which two particles, each with mass m, are
fnoving toward each other, with speeds «. They collide with a spring that compresses
- 4nd locks shut. (The spring is merely a device for visualizing energy storage.) In the
‘Newtonian mechanics description, the original kinetic energy E; = 2(; mu?) is converted
- ito potential energy of the spring I/. When the spring is unlocked, the potential energy
> ‘psappears as kinetic energy of the particles. In relativity theory, the internal energy of the
. ‘#ystem, E, = U, appears as an increase in rest mass of the system. That is, the mass of
.+ the system M is now greater than 2m by E,/c2. (We shall derive this result in the next
e '-'mple.) This change in mass is too small to be observed for ordinary-sized masses and
- #prings, but it is easily observed in transformations that involve nuclei. For example, in
< #he fission of a 2U nucleus, the energy released as kinetic energy of the fission frag-
- ments is an appreciable fraction of the rest energy of the original nucleus. (See Example
2 712-4.) This energy can be calculated by measuring the difference between the mass of

a) m m
Y— ) @

: M
tig. 2-9 Two objects colliding with a massless spring that locks shut. The total rest mass of
the system M is greater than that of the parts 2m by the amount E/c?, where E; is the internal
encrgy, which in this case is the original kinetic energy. () The event as seen in a reference
frame § in which the final mass M is at rest, (b) The same event as seen in a frame §' moving
to the right at speed « relative to S, so that one of the initial masses is at rest.

2-3 Mass/ENERcY CORVERSION AND BINDING ENERGY

87
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M (%807

The relativistic conversion
of mass into energy is the
fundamental energy source
in the nuclear-reactor-based
systems that produce elec-
tricity in 30 nations and in
large naval vessels and
nuclear submarines.

the original system and the total mass of the fragments, Einstein was the rst to point
out this possibility in 1905, even before the discovery of the atomic nucleus, at the end
of a very short paper that followed his famous article on relativity.” After deriving the
theoretical equivalence of energy and mass, he wrote:

It is not impossible that with bodies whose energy content is variable tc: a high
degree (e.g., with radium salts) the theory may be successfully put to the test.

A To simplify the mathematics, we choose a second reference frame S’ mo /ing to the |
# right with speed v = u relative to frame S so that one of the particles is initially at
M rest, as shown in Figure 2-96. The inittal speed of the other particle in th s frame is

B After collision, the particles move together with speed u toward the eft (since
¢ they are at rest in S). The initial momentum in §’ is

| = —— the left
P; T to the le
The final momentum is _
Mu :
{ = to the left i
Ps N1 — w¥c?

& EXAMPLE 2.7 Change in Rest Mass of the Two-Particle and Sprin;; System o
B Figure 2-9 Derive the increase in the rest mass of a system of two p ticles in a
8 totally inelastic collision. Let m be the mass of each particle so that th:: total mass
€8 of the system is 2m when the particles are at rest and far apart, and 1t M be the
88 rest mass of the systern when it has internal energy E,. The original kit etic energy
i§ in the reference frame S (Figure 2-9a) is

E,=2mc¥y — 1) 2-25

& Solution

$ In a perfectly inelastic collision, momentum conservation implics that both parti-

i cles are at rest after the collision in this frame, which is the center-of-1 1ass frame.

§ The total kinetic energy is therefore lost. We wish to show that if mom :ntum is to

% be conserved in any reference frame moving with a constant velocity r lative to §,
the total mass of the system must increase by Am, given by

E .
Am==F=2my—-1 2-26
C

We therefore wish to show that the total mass of the system with intern: | energy is -
& M, given by

M=2m+ Am = 2ym 2-27

u—v —2u
‘= = 228
Tl 1+ u¥e?

I

mi




% Using Equation 2-28 for «', squaring, dividing by ¢2, and adding —1 to both sides

- . 5 ol ¢ Sl 5 0 i
P (1 + & (1 + et
E Then
m|2u/(1 + u¥cH) 2mu

L —

Pi ™ 0 00ehi1 + wiled) | 1 — wllc?

¥ Conservation of momentum in frame S’ requires that p} = p;, or
: q ¥ =P

Mu  2mu
V1 =t ] — y¥c?

¢ which is Equation 2-27. Thus, the measured value of M would be 2ym.

If the latch in Figure 2-9b were to come unhooked suddenly, the two particles
would fly apart with equal momenta, converting the rest mass Am back into kinetic
anergy. The derivation is similar to that in Example 2-7.

Mass and Binding Energy

When a system of particles is held together by attractive forces, energy is required to
weak up the system and separate the particles. The magnitude of this energy E, is
culled the binding energy of the system. An important result of the theory of special
relutivity which we shall illustrate by example in this section is:

The mass of a bound system is less than that of the separated particles by
E,/c?, where E; is the binding energy.

= In atomic and nuclear physics, masses and energies are typically given in atomic
& hass units (u) and electron volts (eV) rather than in the standard SI units of kilo-
§ grums and joules. The u is related to the corresponding SI units by
&

5 lu = 1.66054 X 10~% kg = 931.5 MeV/? 2-29

{I'he eV was defined in terms of the joule in Equation 2-24.) The rest energies of some
elementary particles and a few light nuclei are given in Table 2-1, from which you can
see by comparing the sums of the masses of the constituent particles with the nuclei
hsted that the mass of a nuclens is not the same as the sum of the masses of its parts.
The simplest example of nuclear binding energy is that of the deuteron ?H, which
«insists of a neutron and a proton bound together. Its rest energy is 1875.61 MeV. The
b of the rest energies of the proton and neutron is 938.27 + 939.57 = 1877.84 MeYV.

2-3 Mass/ENercy CONVERSION anND BINDING ENERGY
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=28% 10
0.5110
| | | 1057
Pi meson - ™ 135
o 139.6

Proton r 938.272
Neutron n 939.565
Deuteron Hord 1875.613
Helion 3He or k 2808.391
Alpha “He or o 3727.379

1 As we will discuss in Chapter 13, there are theoretical reasons and increasingly stron 1 experimen-
tal evidence for the electron neutrinos to have a nonzero mass. There are other types of 1eutrinos
whose masses may be as large as several MeVic2.

Since this is greater than the rest energy of the deuteron, the deuteron can ot sponta-
neously break up into a neutron and a proton without violating conservatior of energy.
The binding energy of the deuteron is 1877.85 — 1875.63 = 2.22 MeV. n order to
break up the deuteron into a proton and a neutron, at least 2.22 MeV mus be added.
This can be done by bombarding deuterons with energetic particles or elect omagnetic
radiation. If a deuteron is formed by combination of a neutron and a proto1 , the same
amount of energy must be released.

% correspondingly smaller. The binding energy of the hydrogen atom (1he energy
needed to remove the electron from the atom) is 13.6 eV. How much n ass is lost
when an electron and a proton form a hydrogen atom?

Solution
The mass of a proton plus that of an electron must be greater than that of the
ydrogen atom by

13.6 eV

208 46 x 107
9315 Movi 38 "

® The mass difference is so small that it is usually neglected.

EXAMPLE 2-8 Binding Energy of the Hydrogen Atom The binding ¢ nergies of ;
the atomic electrons to the nuclei of atoms are typically of the order of (07 times :
: those characteristic of particles in nuclei; consequently, the mass diffe rences are |

H




4 Invariant Mass

Chapter 1 we discovered that, as a consequence of Einstein’s relativity postulates,
i coordinates for space and time arc linearly dependent on one another in the

grentz transformation that connects measurements made in different inertial refer-
$cd rames. Thus, the time ¢ became a coordinate, in addition to the space coordi-
sies £, ¥, and z, in the four-dimensional relativistic “world” that we call spacetime.
noted in passing that the geometry of spacetime was not the familiar Euclidean
@ametry of our three-dimensional world, but the four-dimensional Lorentzian
gadmetry. The difference became apparent when one compared the computation of
s distance r between two points in space with that of the interval between two
ﬁ_j}mﬁ in spacetime. The former is, of course, a vector r whose magnitude is given by
‘w x! + y? + 72 The vector r is unchanged (invariant) under a Galilean transforma-
M in space, and quantities that transform like r are also vectors. The latter we
{led the spacetime interval As, and its magnitude, as we have seen, is given by

(Asy = (cAn? — [(Ax)? + (Ay)* + (A2 -3

#he interval As is the four-dimensional analog of r and, therefore, is called a four-
Yeetor. Just as x, y, and z are the components of the three-vector r, the components of
¢ four-vector As are Ax, Ay, Az, and cAt. We have seen that As is also invariant under
# Larentz transformation in spacetime. Correspondingly, any quantity that transforms
ike As—i.e., is invariant under a Lorentz transformation— will also be a four-vector.
e physical significance of the invariant interval As is quite profound: for dmelike
intervals] As/c = 1 Ythe proper time interval); for spacelike intervals,| As = L, Ythe
proper letigth); and the intervals could be found from measurements made in ary iher-
Ml rame® Mg pd ik

[n the relativistic energy and momentum we have components of another four-
vector, In the preceding sections we saw that momentum and energy, defined by
tiquations 2-6 and 2-10, respectively, were not only both conserved in relativity, but
also together satisfied the Lorentz transformation, Equations 2-16 and 2-17, with the
camponents of the momentum p{p,, p,, p,) transforming like the space components
ol v{x, y, z) and the energy transforming like the time 1. The questions then, are, What
iavariant four-vector are they components of? and, What is its physical significance?
The answers to both turn out to be easy to find and yield for us yet another refativis-
{le surprise. By squaring Equations 2-6 and 2-10, you can readily verify that

E% = (pc)? + (mc?P 231
This very useful relation we will rearrange slightly to
(mc? = E? — (pc)? 2-32

{‘omparing the form of Equation 2-32 with that of Equation 2-30 and knowing that E
and p transform according to the Lorentz transformation, we see that the magnimde
ol the invariant energy/momentim four-vector is the rest energy of the mass m! Thus,
vhservers in all inertial frames will measure the same value for the rest energy of iso-
lifed systems and, since ¢ is constant, the same value for the mass. Note that only in
the rest frame of the mass m, i.e., the frame where p = 0, are the rest energy and the
tolul energy equal. Even though we have written Equation 2-31 for a single particle,
we could as well have written the equations for momentum and energy in terms of

b
H
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the total momentum and total energy of an entire ensemble of nonintel acting parti-
cles with arbitrary velocities. We would only need to write down Equat ions 2-6 and
2-10 for cach particle and add them together. Thus, the Lorentz transf »rmation for
momenium and energy, Equations 2-16 and 2-17, holds for any system of particles,
and so, therefore, does the invariance of the rest energy expressed by Ec uation 2-32.

We may state all of this more formaily by saying that the kinemaric- state of the
system is described by the four-vector As where

(As)? = (cA1y® — [(Ax)* + (AyF + (A2)]
and its dynamic state is described by the energy/momentum four-vector n'c?, given by
(mc?)’ = E* ~ (pcy’

The next example illustrates how this works.

¢ EXAMPLE 2-9 Rest Mass of a Moving Object A particular object is observed to
i move through the laboratory at high speed. Its total energy and the co nponents of

its momentum are measured by lab workers to be (in SI units) £ = <.5 X 1017 ],
 p, = 3.8 X 108kg-m/s, p, = 3.0 X 108 kg - m/s, and p, = 3.0 X 10° kg - m/s. What
is the object’s rest mass?

E Solution A
From Equaticn 2-32 we can write

(mc?P = (4.5 X 10172 — [(3.8 X 10%)* + (3.0 X 10%c)? + (3.0 :< 10°)?]

= (4.5 X 107 — [1.4 X 10" + 9.0 X 10 + 9.0 X 10'¢ ¢?

=20 X 10% - 29 x 10*

= 1.74 X 10%

m = {174 X 10¥)V2/c? = 4.6 kg

Solution B
;M A slightly different but sometimes more convenient calculation tiat doesn’t
@ involve carrying along large exponents makes use of Equation 2-32 di*ided by c*:

. E\? 2 <
/ =(5-0) 233
c c
R Notice that this is simply a unit conversion, expressing each term in (mass)?
& units—e.g., kg? when E and p are in ST units:

R (4.5 X 10"')2 [(3.8 X 103)2 (3.0 X 10*’)2 (3.0 X 10“)2]
m- = 7 - + + -—
. C c c 9
= (5.07 — [(1.257 + (1.0® + (1.0)]

=25 — 3.56
m= (214" = 46kg
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. In the example, we determined the rest energy and mass of a rapidly moving
fbject using measurements made in the laboratory without the need to be in the sys-
$#m in which the object is at rest. This ability is of enormous benefit to nuclear, parti-
gle. and astrophysicists whose work regularly involves particles moving at speeds
#lose to that of light. For particles or objects whose rest mass is known, we can use
the invariant magnitude of the energy/momentum four-vector to determine the values
of other dynamic variables, as illustrated in the next example.

EXAMPLE 2-10 Speed of a Fast Electron The total energy of an electron produced
in a particular nuclear reaction is measured to be 2.40 MeV. Find the electron’s
E momentum and speed in the laboratory frame. (The rest mass of the electron is
B 9.11 X 1073'kg and its rest energy is 0.511 MeV.) '

k¥ Solution
The magnitude of the momentum follows immediately from Equation 2-31:

pe = NE? — (mc?? = V(240 MeV)? — (0.511 MeV)?
= 2.34 MeV
p = 234 MeVic

where we have again made use of the convenience of the eV as an energy unit.
B The resulting momentum unit MeV/c can be readily converted to SI units by con-
verting the MeV to joules and dividing by ¢, i.e.,

1.60 X 10712 J
Vie = e~ = 53 X 1072 ke-
1 MeV/c 2.098 X 10° m/s 534 X 107 kg-m/s

Therefore, the conversion to SI units is easily done, if desired, and yields

534 X 10" 2 kg-m/s
1 MeV/c

p = 234 MeV/c X
p= 125X 107" kg-m/s

The speed of the particle is obtained by noting from Equation 2-32 or from Equa-
tions 2-6 and 2-10 that

u _pc _ 234 MeV

E m = 0.975 2-3

. or

u =0975

It is extremely important to recognize that the invariant rest energy in Equation 2-32
i that of the system and that its value is nor the sum of the rest energies of the particles
of which the system is formed, if the particles move relative to one another. Earlier we
used numerical examples of the binding energy of atoms and nuclei that illustrated this

R TR
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{a) ywr s
u=0.6¢ u=-0.6¢
m=4kg m=4kg
x
L 4
s System
\/;l-—l-— -—-(::, m=10kg
X
CI ¢ .
System v=0.6¢C
m=10kg
7

Fig, 2-10 (a) Two identical particles with rest mass 4 kg approach each other with equa but
oppositely directed momenta. The rest mass of the system made up of the two particles : s not
4 kg +4 kg, because the system’s rest mass includes the mass equivalent of its internal
motions. That value, 10 kg (), would be the result of 2 measurement of the system’s m: 3s
made by an observer in 5, for whom the system is at rest, or by observers in any other in >rtial
frames. (¢) Transforming to $" moving at v = 0.6¢ with respect to S, as described in Exa nple
2-11, also yields m = 10 kg.

fact by showing that the masses of atoms and nuclei were less than the sum »f the
masses of their constituents by an amount Amc? that equaled the observed binding
energy, but those were systems of interacting particles—i.e., there were forces cting
between the constituents. A difference exists, even when the particles do not inter ct. To
see this, let us focus our attention on specifically what mass is invariant.

Consider two identical noninteracting particles, each of rest mass m = 4 kg, mov-
ing toward each other along the x axis of § with momentum of magnitude p, = 3 :-kg,
as illustrated in Figure 2-10a. The energy of each particle, using Equation 2-33, is

Elct = Nm% ¥ (plo) = V@2 + 3% = 5kg

Thus, the total energy of the system is 5¢% + 5¢2 = 10 ¢?- kg, since the energ " is a
scalar. Similarly, the total momentum of the system is 3¢ — 3¢ = 0, sinc: the
momentum is a vector and the momenta are equal and opposite. The rest mass « f the
system is then

m = N(Elc?? — (plc)* = (10)* — (0)* = 10kg

FIRSIR L R SRR PR
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[hus, the system mass of 10 kg is greater than the sum of the masses of the two parti-
gles, 8 kg. (This is in contrast to bound systems, such as atoms, where the system mass
8 smaller than the total of the constituents.) This difference is not binding energy, since
¢ particles are noninteracting. Neither does the 2-kg “mass difference” reside equally
with the two particles. In fact it doesn’t reside in any particular place, but is a property
:pf the entire system. The correct interpretation is that the mass of the system is 10 kg.
While the invariance of the energy/momentum four-vector guarantees that
observers in other inertial frames will also measure 10 kg as the mass of this system, let
s allow for a skeptic or two and transform to another system §’, e.g., the one shown in
Pigure 2-10c, just to be sure. This transformation is examined in the next example.

\\

EXAMPLE 2-11 Lorentz Transformation of System Mass For the system illus-
trated in Figure 2-10, show that an observer in $’, which moves relative to § at
B = 0.6, z2lso measures the mass of the system to be 10 kg.

Solution
1. The mass m measured in 5’ is given by Equation 2-33, which in this case is:

m = [(E'Ic?) — (pife]™
2. FE'isgiven by Equation 2-16:
E' = yE — vp,)

1
= W(IOCZ = 0.6c X Q)
(1.25)(10c?)
=125c* kg

3. piis also given by Equation 2-16:

p: = Y(p. ~ vE/cY)
= (1.25)[0 — (0.6c)(10c%/c?]
= -75c kg

4, Substituting E’ and p, into Equation 2-33 yields:

m = {(12.5¢%c?)? — (—7.5clc)?] '
= [(12.5)2 - (—7.5)%]"2
= 10kg

: Remarks: This result agrees with the value measured in S. The speed of S’ chosen for
this calculation, v = 0.6¢, is convenient in that one of the particles making up the
. System is at rest in §'; however, that has no effect on the generality of the solution.

Thus, we see that it is the rest energy of any isolated system that is invariant,
whether that system be a single atom or the entire universe. And, based on our brief

95
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discusstons thus far, we note that the system’s rest energy may be greater the n, equaj
to, or less than the sum of the rest energies of the constituents depending on ( heir rel-
ative velocities and the detailed character of any interactions between them.

4. Suppose two loaded boxcars, each of mass m = 50 metric tons, roll to vard
each other on level track at identical speeds u, collide, and couple toge ther.
Discuss the mass of this system before and after the collision. What i the
effect of the magnitude of u on your discussion?

5. In 1787 Count Rumford (1753-1814) tried unsuccessfully to measur: an
increase in the weight of a barrel of water when he increased its terper; ture
from 29°F to 61°F. Explain why, relativistically, you would expect suc1 an
increase to occur, and outline an experiment that might, in principle, ditect
the change. Since Count Rumford preceded Einstein by about 100 years, ~vhy
might he have been led to such a measurement?

Massless Particles

Equation 2-32 formally allows positive, negative, and zero values for (mc?)?, just as
was the case for the spacetime interval (As)2. We have been tacitly discussin ! posi-
tive cases thus far in this section; a discussion of possible negative cases ve will
defer until Chapter 13. Here we need to say something about the mc? = O poss ibility.
Note first of all that the idea of zero rest mass has no analog in classical p.ysics,
since-classically E, = mu*2 and p = mu. If m = (), then the momentum and inetic
energy are always zero, too, and the “particle” would seem to be nothing at all. expe-
riencing no second-law forces, doing no work, and so forth. However, for m=2 =0
Equation 2-32 states that, in relativity

E=pc (form = 0) 2-35

and, together with Equation 2-34, that u = ¢; i.e, a particle whose mass i _zero
moves at the speed of light. Similarly, a particle whose speed is measured to be ¢ will
have m = 0 and satisfy £ = pc. :

We must be careful, however, because Equation 2-32 was obtained from tt e rel-
ativistic definitions of E and p,

mc? mu

yme V1 — u?fc? p=ym N1 — w¥c?

As u — ¢, 1/(1 — ?/c?)\? — oo; however, since m is also approaching 0, the qu:ntity
ym, which is tending toward /0, can (and does) remain defined. Indeed, thire is
ample experimental evidence for the existence of particles with mc2 = 0.

Current theories suggest the existence of three such particles. Perhaps the most
important of these and the one thoroughly verified by experiments is the photon, or a
particle of electromagnetic radiation (i.e., light). Classically, electromagnetic radiation
was interpreted via Maxwell’s equations as a wave phenomenon, its energy and
momentum being distributed continuously throughout the space occupied by the v7ave.
It was discovered around 1900 that the classical view of light required modificatin in
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ain situations, the change being a confinement of the energy and momentum of the
gdiation into many tiny packets or bundles, which were referred to as photons. Pho-
3ns move at light speed, of course, and, as we have noted, are required by relativity to
ive mc® = (. Recall that the spacetime interval As for light is also zero. Strictly speak-
g. of course, the second of Einstein’s relativity postulates prevents a Lorentz transfor-
gﬁatwn to the rest system of light, since light moves at ¢ relative to all inertial frames.
Lonsequently, the term rest mass has no operational meaning for light.

EXAMPLE 2-i2 Rest Energy of a System of Photons Remember that the rest
energy of a system of particles is not the sum of the rest energies of the individual
particles, if they move relative to one another. This applies to photons, too! Sup-
pose two photons, one with energy 5 MeV and the second with energy 2 MeV,
approach each other along the x axis. What is the rest energy of this system?

Solution

The momentum of the 5-MeV photon is (from Equation 2-35) p, = 5 MeV/c and
that of the 2-MeV photon is p, = —2 MeV/c. Thus, the energy of the system is
E=5MeV + 2MeV = 7 MeV and its momentum is p = 5 MeV/c —~ 2 MeV/c =
¥ 3 MeV/c. From Equation 2-32 the system’s rest energy is

mc? = (7 MeV)Z — 3 MeVRE = 6.3 MeV!!

_ A second particle whose rest energy is zero is the gluon. This massless particle

* transmits, or carries, the strong interaction between quarks, which are the “building
blocks™ of all fundamental particles, including protons and neutrons. The existence
of gluons is well established experimentally. We will discuss quarks and gluons fur-
ther in Chapter 13. Finally, there are strong theoretical reasons to expect that gravity
{# ransmitted by a massless particle called the graviton, which is related to gravity in
much the same way that the photon is related to the electromagnetic field. Gravitons,
00, move at speed c. While direct detection of the graviton is beyond our current and
foreseeable experimental capabilities, major international cooperative experiments
wie currently under way to detect gravity waves. (See Section 2-5.)

Until recently a fourth particle, the neutrino, was also thought to have zero rest
mass. However, accumulating experimental evidence collected by the Super-
Kamiokande and SNO imaging neutrine detectors, among others, makes it nearly
certain that neutrinos are not massless. We discuss neutrino mass and its implications
further in Chapters 11 and 13.

Creation and Annihilation of Particles

The relativistic equivalence of mass and energy implies still another remarkable pre-
diction which has no classical counterpart. As long as momentum and energy are
conserved in the process,’ elementary particles with mass can combine with their
antiparticles, the masses of both being completely converted to energy in a process
called annihilation. An example is that of an ordinary electron. An electron can orbit
briefly with its antiparticle, called a positron,'° but then the two unite, mutually anni-
hilating and producing two or three photons. The two-photon version of this process
is shown schematically in Figure 2-11. Positrons are produced naturally by cosmic
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_Fig. 2-11 (a) A positron orbits with an electron about their common center of m: ss, shown by
the dot between them. (£) After a short time, typically of the order of 107" for t 1e case -
shown here, the two annihilate, producing two photons. The orbiting electron-pos itron pair,
suggestive of a miniature hydrogen atom, is called positronium.

rays in the upper atmosphere and as the result of the decay of certain radioactive
nuclei. P. A. M. Dirac had predicted their existence in 1928 while inve: tigating the
invariance of the energy/momentum four-vector.

If the speeds of both the electron and the positron 4 << ¢ (not a requ irement for
the process, but it makes the following calcuiation clearer), then the tot: 1 energy of
each particle E == mc? = 0.511 MeV. Therefore, the total energy of the sy: tem in Fig-
ure 2-11a before annihilation is 2mc¢? = 1.022 MeV. Noting also from 1he diagram
that the momenta of the particles are always opposite and equal, the total momentum
of the system is zero. Conservation of momentum then requires that the to :al momen-
tum of the two photons produced also be zero, i.c., that they move in opp ssite direc-
tions relative to the original center of mass and have equal momenta. Siice E = pc
for photons, then they must also have equal energy. Conservation of energy then
requires that the energy of each photon be 0.511 MeV. (Photons are ust ally called
gamma rays when their energies are a few hundred keV or higher.} Notice from
Example 2-12 that the magnitude of the energy/momentum four-vectcr (the rest
energy) is not zero, even though both of the final particles are photons. In this case it
equals the rest energy of the initial system. Analysis of the three-photon a1 nihilation,
although the calculation is a bit more involved, is similar.

~ By now it will not be a surprise to learn that the reverse process, the :reation of
mass from energy, can also occur under the proper circumnstances. The cor version of
mass and energy works both ways. The energy needed to create the new 1r ass can be
provided by the kinetic energy of another massive particle or by the “pure’ energy of
a photon. In either case, in determining what particles might be produced with a
given amount of energy, it ts imporiant to be sure, as was the case with anaihilation,
that the appropriate conservation laws are satisfied. As we will discuss 1 detail in

Decay of a Z into an electron-positron pair in the UA] detectors at CERN. This is the com-
puter image of the first Z event recorded (30 April 1983). The newly created pair leav: : the cen-
tral detector in opposite directions at nearly the speed of Light. [CERN.]
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F{g, 2-12 (a) A photon of energy E and momentum p = Efc encounters an electron at rest.

The photon produces an electron-positron pair (), and the group move off together at speed
“# % 08¢

Chapter 13, this restricts the creation process for certain kinds of particles (including

slectrons, protons, and neutrons) to producing only particle-antiparticle pairs. This

fwans, for example, that the energy in a photon cannot be used to create a single
“glectron, but must produce an electron-positron pair.

To see how the relativistic creation of mass goes, let us consider a particular situ-

#tion, the creation of an electron-positron pair from the energy of a photon. The
“photon moving through space encounters, or “hits,” an electron at rest in frame § as
“fllustrated in Figure 2-12a.'' Usually the photon simply scatters, but occasionally
- pair is created. Encountering the existing electron is important, since it is not possi-
“#le for the photon to produce spontanecusly the two rest masses of the pair and also
“gonserve momentum. (See Problem 2-44.) Some other particle must be nearby, not to
" provide energy to the creation process, but to acquire some of the photon’s initial
- faomentum. In this case we have selected an electron for this purpose, because it pro-
- ¥ides a neat example, but almost any particle would do. (See Example 2-13.)
' While near the electron, the photon suddenly disappears, and an electron-positron
- pulr appears. The process must occur very fast, since the photon, moving at speed ¢, wiil
* gravel across a region as large as an atom in about 107" s, Let’s suppose that the details
- of the interaction that produced this pair are such that the three particles all move off
- tagether toward the right in Figure 2-12b with the same speed #—1.¢., they are all at rest
~Ia §', which moves to the right with speed  relative to 5.!2 What must the energy E, of
- the photon be in order that this particular electron-positron pair be created? To answer
" fhis question, we first write the conservation of energy and momentum:

Before pair creation After pair creation

E = E, + mc E=E=FE +md =
_E‘f Y ¥
Pr—c Pr=Di p

where mc? = rest energy of an electron. In the final system after pair creation, the
* total rest energy is 3mc? in this case. We know this because the invariant rest energy
¢quals the sum of the rest energies of the constituent particles (the original electron
" and the pair) in the system where they do not move relative to one another, i.e.,in §’.
80 in S we have for the system after pair creation:

@Bme?y = E* — (pcy’
EycY?
Umc?y? = (E, + mc?? — (—‘-:—)

9(mc?)?* = EX + 2E, mc? + (nc?? — EJ
Noting that the £2 terms cancel, and dividing the remaining terms by mc?, we see that

E, = 4me

99
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Thus, the initial photon needs energy equal to 4 electron rest energies in order to cre-
ate 2 new electron rest masses in this case. Why is the “extra” energy needed?
Because the three electrons in the final system share momentum E, /c, they must alsc
have kinetic energy E; given by

B =E - 3m? = (E, + m® — 3m?
= 4mc + mc* — 3m = 2mc>

or the initial photon must provide the 2mc® necessary to create th: electron and
positron masses and the additional 2mc? of kinetic energy that they ad the existing
electron will share as a result of momentum conservation. The speed u at which the
group of particles moves in S can be found from u/c = pc/E (Equation 2-34):

E’Y
P 4mc?
ulc = < .

= = =028
(E, + me?)  Smc?

The portion of the incident photon’s energy that is needed to jrovide kinetic
energy in the final system is reduced if the mass of the existing particl : is larger than
that of an electron and, indeed, can be made negligibly small, as illustr ited in the fol-
lowing example. :

B EXAMPLE 2-13 Threshold for Pair Production What 18 the minin wum or thresh-
§ old energy that a photon must have in order to produce an electron positron pair?

B Solution
® The energy E, of the initial photon must be

E,=m?+E,_+m?+E, +Ey

8 where mc? = electron rest energy, E;_ and E;, are the kinetic energies of the electron
B¢ and positron, respectively, and Ey,, = kinetic energy of the existing p uticle of mass
8 M. Since we are looking for the threshold energy, consider the limiti 1g case where
B the pair are created at restin S, ie., E;_ = E;, =0 and comespondinjly p_ = p, =
B 0. Therefore, momentum conservation requires that

Mu
Puitiat = Ey/¢ = Ppinay T

8 where u = speed of recoil of the mass M. Since the masses of singl : atoms are in

 the range of 10° to 10° MeV/c? and the value of E, at the threshold is clearly less
f than about 2 MeV (i.e., it must be less than the value E, = 4mc? = 2.044 MeV),
the speed with which M recoils from the creation event is quite siiall compared
§ with ¢, even for the smallest M available, a single proton! (See Tatle 2-1.) Thus,
g the kinetic energy E,,, =~ % Mu? becomes negligible, and we conclud that the min-
B imum energy £, of the initial photon that can produce an electron-p sitron pair is
&8 2mc?, i.e., that needed just to create the two rest masses.



pme Useful Equations and Approximations

we have seen, in relativistic dynamics it is most often the momentum or energy of
particle that is known rather than speed. We saw that Equation 2-6 for the relativis-
& momentum and Equation 2-10 for the relativistic energy could be combined to
#liminate the speed u and yield the very useful relation

E?* = (pc)* + (mc*y? 2-31

~Extremely Relativistic Case  The triangle shown in Figure 2-13 is sometimes
" gheful in remembering this result. If the energy of a particle is much greater than its
8Kt energy mc?, the second term on the right of Equation 2-31 can be neglected,
fiving the useful approximation

E=pc forE >> mc 2-36

This approximation is accurate to about 1 percent or better if E is greater than about
§mc®. Equation 2-36 is the exact relation between energy and momentum for parti-
-¢les with zero rest mass.

: From Equation 2-36 we see that the momentum of a high-energy particle is sim-
“ply its total energy divided by ¢. A convenient unit of momentum is MeV/c. The
“momentum of a charged particle is usvally determined by measuring the radius of
¢urvature of the path of the particle moving in a magnetic field. If the particle has
‘ éharge g and a velocity w, it experiences a force in a magnetic field B given by

F=quXxB

where F is perpendicular to the plane formed by u and B and, hence, is always
perpendicular to u. Since the magnetic force is always perpendicular to the veloc-
ity, it does no work on the particle {the work-energy theorem also holds in relativ-
lty), so the energy of the particle is constant. From Equation 2-10 we see that if
the energy is constant, -y must be a constant, and therefore the speed u is also con-
stant. Therefore,

dp d(ymu) du
7 i @
For the case u L B, the particle moves in a circle with centripetal acceleration #/R.
{If u is not perpendicular to B, the path is a helix. Since the component of u parallel
to B is unaffected, we shall consider only motion in a plane.) We then have

du u?
uB = = v
s = mo| =)

E = {(pof + (mc?

mc?
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Fig. 2-13 Triangle showing
the relation between energy,
momentuin, and rest mass in
special relativity. Cantion:
Remember that £ and pc are
not relativistically invariant.
The invariant is mc>.
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Fig. 2-14 BgR/mu versus u/c for particle of charge ¢ and mass m moving in a ci cular orbit of
radius R in a magnetic field B. The agreement of the data with the curve predicte I by relativity
theory supports the assumption that the force equals the time rate of change of r¢ lativistic
momentum. [Adapted from I. Kaplan, Nuclear Physics, 2d ed. (Reading, Mass.: . \ddison-
Wesley, 1962), by permission.]

o

or i

BgqR=myu=p 2-37

This is the same as the nonrelativistic expression except for the factor of v. Figure
2-14 shows a plot of BgR/mu versus w/c. It is useful to rewrnte Equat on 2-37 in :
terms of practical but mixed units; the result is i

e

p = 300 BR (q) 238

where p is in MeV/c, B is in tesla, and R is in meters.

'i% EXAMPLE 2-14 Electron in a Magnetic Field What is the approximate adius of the
= path of a 30-MeV electron moving in a magnetic field of 0.05 tesla (= 5( D gauss)?

Solution

1. The radius of the path is given by rearranging Equation 2-38 ar d substitut-
ing g = e:
P
R=——
300B

3

%: 2. In this sitation the total energy E is much greater than the rest « nergy mc?:

E = 30 MeV >> mct = 0.511 MeV
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3. Equation 2-36 may then be used to determine p:

p = Elc
= 30 MeV/c

4. Substituting this approximation for p into Equation 2-38 yields:

_ 30MeVic
" (300)(0.05)
=2m

Remarks: In this case the error made by using the approximation, Equation 2-36,
& rather than the exact solution, Equation 2-31, is only about 0.0! percent.

Vourelativistic Case Nonrelativistic expressions for energy, momentum, and
other quantities are often easier to use than the relativistic ones, so it is important to

~ know when these expressions are accurate enough. As v — 1, all the relativistic

expressions approach the classical ones. In most situations, the kinetic energy or total
shergy is given, so that the most convenient expression for calculating vy is, from

Equation 2-10,
E .
/y L+ bB / 2-39

mc? mc?

When the kinetic energy is much less than the rest energy, -y is approximately 1
and nonrelativistic equations can be used. For example, the classical approxima-
lion E, =~ -21- mu? = p*2m can be used instead of the relativistic expression E; =
(y — Dmc? if E; is much less than mc?. We can get an idea of the accuracy of
these expressions by expanding vy, using the binomial expansion as was done in
Section 2-2, and examining the first term that is neglected in the classical approxi-
mation. We have

and
i”"‘z)z
E,=(y— Dmc?=_—mu®+ = 3
2 mc
Then
E —jmi 3 E
E* 2 C2

For example, if E,/mc? = 1 percent, the error in using the approximation E; =~ (%)muz
{x about 1.5 percent.

10:
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At very low energies, the velocity of a particle can be obtained fron its kinetic
energy E, = (%)mu2 just as in classical mechanics. At very high energies, t1e velocity
of a particle is very near ¢. The following approximation is sometimes 1seful (see
Problem 2-27):

1
E%l--—; for | 2-40
c 2y '

An exact expression for the velocity of a particle in terms of its energy anil momen-
tum was obtained in Example 2-10:

“ 2.41

=%

[

This expression is, of course, not useful if the approximation E =~ pc ha: already
been made.

EXAMPLE 2-15 Different Particles, Same Energy An electron and a proton are each
& accelerated through 10 X 10° V. Find y, the momentum, and the speed for carh.

2 Solution

Since each particle has a charge of magnitude ¢, each acquires a kinetic er ergy of
§ 10 MeV. This is much greater than the 0.511 MeV rest energy of the elect on and
much less than the 938.3 MeV rest energy of the proton. We shall caicu ate the
# momentumn and speed of each particle exactly, and then by means of the nnrela-
& tivistic (proton) or the extreme relativistic (electron) approximations.

#@ 1. We first consider the electron. From Equation 2-39 we have

E, 10 MeV
=14k o+ — 2 2057
Y mc? 05T My 2

Since the total energy is E;, + mc? = 10.511 MeV, we have, from the ntagni-
tnde of the energy/momentum four-vector (Equation 2-31),

pc = VE? —~ (mc?)? = J(10.517 — (0.511)7
= 10.50 MeV

The exact calculation them gives p = 10.50 MeV/c. The high-energy or
extreme relativistic approximation p = Efc = 10.51 MeV/c 15 in jo0d
agreement with the exact result. If we use Equation 2-34, we obtain fo - the
speed wic = pc/E = 10.50 MeV/10.51 MeV = (.999. For comparison the .
approximation of Equation 2-40 gives

u 1{1}\? {1 ¥
-— R —_—— - = —_— - — = 0.
c : 2 (y) ! 2 (20.57) »

2. For the proton, the total enesgy is E, + mc® = 10 MeV + 9383 MeV' =
948.3 MeV. From Equation 2-39 we obtain v=1+ E/mc*= +.
10/938.3 = 1.01. Equation 2-3! gives for the momentum b
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pec = VET — (mc?)? = \[(948.3)2 — (938.3)2
137.4 MeV

The nonrelativistic approximation gives

or

pe = \2mc?E, = V(2)(938.3)(10)
= 137.0 MeV

The speed can be determined from Equation 2-34 exactly or from p = mu
approximately. From Equation 2-34 we obtain

1

[
+a

7.
8.

u

|

= 0.1449

ty R

£

c

g From p = mu, the nonrelativistic expression for p, we obtain
& u_ pc _ 1370 _ 0.1460
i c mc® 9383

2-5 General Relativity

The generalization of relativity theory to noninertial reference frames by Einstein in
(216 is known as the general theory of relativity. This theory is much more difficult
muthematically than the special theory of relativity, and there are fewer situations in

. which it can be tested. Nevertheless, its importance in the areas of astrophysics and
vosmology, and the need to take account of its predictions in the design of such
tlings as global navigation systems, ' call for its inclusion here. A full description of
ihe general theory uses tensor analysis at a quite sophisticated level, well beyond the
wcope of this book, so we will be limited to qualitative or, in some instances, semi-
yuantitative discussions. An additional purpose to the discussion that follows is to
give. you something that few people will ever have, namely, an acquaintance with one
of the most remarkable of all scientific accomplishments and a bit of a feel for the
shan who did it. :

Einstein’s development of the general theory of relativity was not motivated by  The exceptional sensitivity
any experimental enigma. Instead, it grew out of his desire to include the descriptions  of modern electronic sys-
ol all natural phenomena within the framework of the special theory. By 1907 he tems is such that general
reulized that he could accomplish that goal with the single exception of the law of relativistic effects are
gravitation. About that exception he said,* included in the design of

the Global Positioning

{ felt a deep desire to understand the reason behind this [exception]. System (GPS).
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The “reason” came to him, as he said later, while he was sitting in a chair in the
patent office in Bern. He described it like this:'?

Then there occurred to me the happiest thought of my life, in the following
form. The gravitational field has only & relative existence in a way sin ilar to the
electric field generated by magnetoelectric induction. Because for ar observer
Jalling freely from the roof of a house there exisis—at least in his i nmediate
surcoundings—noe gravitational field. [Einstein’s italics] . . . The observer
then has the right to interpret his state as “at rest.”

Out of this “happy thought” grew the principle of equivalence that beca ne Einstein’s
fundamental postulate for general relativity.

Principle of Equivalence

The basis of the general theory of relativity is what we may call Einsteir ’s third pos-
tulate, the principle of equivalence, which states:

A homogeneous gravitational field is completely equivalent to a uhiformly
accelerated reference frame. :

This principle arises in a somewhat different form in Newtonian mecha: ics because
of the apparent identity of gravitational and inertial mass. In a uniform | ravitational
field, all objects fall with the same acceleration g independent of their mass because
the gravitational force is proportional to the (gravitational) mass while t i accelera-
tion vartes inversely with the (inertial) mass. That is, the mass m in

F=ma (inertial m)

and that in

f (gravifational n)

appear to be identical in classical mechanics, although classical theory p ‘ovides no
explanation for this equality. For example, near Earth’s surface, Fg = GMm/r? =
Mgy, & = Mipeir @ = F Recent modemn experiments have shown| My = Mgy | t0
better than one part in 10'2.

To understand what the equivalence principle means, consider a comp wtment in
space far away from any matter and undergoing uniform acceleration a as shown in
Figure 2-15a. If people in the compariment drop objects, they fail to the “f oor” with
acceleration g = —a. If they stand on a spring scale, it will read their “weigh” of mag-
nitude ma. No mechanics experiment can be performed within the compartmes t that will
distinguish whether the compartment is actually accelerating in space or is i rest (or
moving with uniform velocity) in the presence of a uniform gravitational fielc g = —a.

Einstein broadened the principle of equivalence to apply to all physic I experi- §
ments, not just to mechanics. In effect, he assumed that there is no expe; iment of §
any kind that can distinguish uniformly accelerated motion from the presince of a2 3
gravitational field. A direct consequence of the principle is that m a, = m oy is @
requirement, not a coincidence. The principle of equivalenice extends Einst(in’s first
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(b)

¥ig. 2-15 Results from experiments in a uniformly accelerated reference frame (@) cannot be
distinguished from those in a uniform gravitatonal field () if the acceleration a and gravita-
tlunal field g have the same magnitude.

< postulate, the principle of relativity, to all reference frames, noninertial (i.e., accel-
- grated) as well as inertial. It follows that there is no absolute acceleration of a refer-
- 'gnce frame. Acceleration, like velocity, is only relative. '

©QUESTION

6. For his 76th (and last) birthday Einstein received a present designed to
demonstrate the principle of equivalence. It is shown in Figure 2-16. The
object is, starting with the ball hanging down as shown, to put the ball into
the cup with a method that works every time {as opposed to random shaking).
How would you do it? (Note: When it was given to Einstein, he was delighted
and did the experiment correctly immediately.)

Some Predictions of General Relativity

~ In his first paper on general relativity, in 1916, Einstein was able to explain quantita-
" tively a discrepancy of long standing between the measured and (classically) computed
values of the advance of the perihelion of Mercury’s orbit, about 43 arc seconds/
* century. It was the first success of the new theory. A second prediction, the bending to
light in a gravitational field, would seem to be more difficult to measure owing to the very
amall effect. However, it was accurately confirmed less than five years later when
Arthur Eddington measured the deflection of starlight passing near the limb of the sun
during a total solar eclipse. The theory also predicts the slowing of light itself and the
slowing of clocks—i.e., frequencies—in gravitational fields, both of considerable
importance to the determination of astronomical distances and stellar recession rates.
The predicted slowing of clocks, called gravitational redshift, was demonstrated by
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Transparent
plastic sphere

Small
brass ball

String

Woeak spring

Broomstick

Fig. 2-16' Principle of equivalence demonstrator given to Einstein by E. M. Roge rs. The object
is to put the hanging brass ball into the cup by a technique that always works. Th spring is
weak, t00 weak to pull the ball in as it stands, and is stretched even when the ball is in the cup.
The transparent sphere, about 10 cm in diameter, does not open. [From A. P. Fren ch, Albert
Einstein: A Centenary Yolume (Cambridge, Mass.: Harvard University Press, 1979).]

Pound and co-workers in 1960 in Earth’s gravitational field using the ultra iensitive fre-
quency measurmg technique of the Mossbauer effect (see Chapter 11). Th : slowing of
light was conclusively measured in 1971 by Shapiro and co-workers using -adar signals
reflected from several planets, Two of these experimental tests of relativity’s predic-
tions, bending of light and gravitational redshift, are discussed in the E» ploring sec-
tions that follow. The perihelion of Mercury’s orbit and the delay of light : re discussed
in More sections on the Web page. Many other predictions of general relati vity are sub-
Jjects of active current research. Two of these, black holes and gravity waves, are dis-
cussed briefly in the concluding paragraphs of this chapter.

This relativistic effect
results in gravitational E 1 .
xploring

lenses in the cosmos that
Deflection of Light in a Gravitational “ield

focus light from extremely
distant galaxies, greatly
improving their visibility in ‘With the advent of special relativity, several features of the Newtonian law of gravi-
tation Kz = GMm/r’ became conceptually troublesome. One of these was the
% implication from the relativistic concept of mass-energy equivalence 1hat even

telescopes, both on Earth
and in orbit.
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- particles with zero rest mass should exhibit properties like weight and inertia,
> thought of classically as masslike; classical theory does not include such particles.
.. According to the equivalence principle, however, light, too, would experience the
- gravitational force. Indeed, the deflection of a light beam passing through the gravi-
- tational field near a large mass was one of the first consequences of the equivalence
. principle to be tested experimentally.

To see why a deflection of light would be expected, consider Figure 2-17,
which shows a beam of light entering an accelerating compartment. Successive
. positions of the compartment are shown at equal time intervals, Because the
compartment is accelerating, the distance it moves in each time interval increases
. with time. The path of the beam of light, as observed from within the compart-
. ment, is therefore a parabola. But according to the equivalence principle, there is
fiv way to distinguish between an accelerating compartment and one with uni-
form velocity in a uniform gravitational field. We conclude, therefore, that a
> beam of light will accelerate in a gravitational field as do objects with rest mass.
- For example, near the surface of Earth, light will fall with acceleration 9.8 m/s2.
= This is difficult to observe because of the enormous speed of light. For example,
“{n a distance of 3000 km, which takes about 0.01 s to cover, a beam of light
- shouid fall about 0.5 mm. Einstein pointed out that the deflection of a light beam
in a gravitational field might be observed when light from a distani star passes
glose to the sun.! The deflection, or bending, is computed as follows. Rewriting
the spacetime interval As (Equation 1-32) in differential form and converting the
space Cartesian coordinates to polar coordinates (in two space dimensions, since
the deflection occurs in a plane) yields

ds?* = ¢ — (dr? + Pdo?) 2-42

Einstein showed that this expression is slightly modified in the presence of a
(spherical, nonrotating) mass M to become

ds? = y(r)*c*dfr — drify(ry® — ride? 2-43
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Vig. 2-17 (@) Light beam moving int a straight line through a compartment that is under-
going uniform acceleration. The position of the light beam is shown at equally spaced
Umes £, #3, 1y, 44 (b) In the reference frame of the compartment, the light travels in a
parabolic path, as would a ball were it projected horizontally. Note that in both (a) and
{(#) the vertical displacements are greatly exaggerated for emphasis.
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Fig. 2-18 Deflection (greatly
exaggerated) of a beam of
starlight due to the gravita-
tional attraction of the sun.
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wherel‘y(r) =(1- ZGMIczr)"Z) with G = universal gravitational con tant and r =

distancé Trom the center of mass M. The factor y(r) is roughly analo rous to the vy
of special relativity. In the following Exploring section on gravitationa! redshift, we
describe how y(r) arises. For now, y(r) can be thought of as correctin;; for gravita-
tional time dilation (the first term on the right of Equation 2-43) and gravitational
length contraction (the second term).

This situation is illustrated in Figure 2-18, which shows the ligh . from a dis-
tant star just grazing the edge of the sun. The gravitational deflection of the light
{with mass ym = E/¢?) can be treated as a refraction of the light. The s peed of light
is reduced to y(r)c in the vicinity of the mass M, since ¥(r) < 1 (:ee Equation
2-43), thus bending the wave fronts, and hence the beam, toward M. 7his is analo-
gous to the deflection of starlight toward Earth’s surface as a result of he changing
density —hence index of refraction-—of the atmosphere. By integrating Equation
2-43 over the entire trajectory of the light beam (recall that ds = O fr light) as it
passes by M, the total deflection a is found to be!”

o = 4 GMIc*R, 2-44

where Ry = distance of closest approach of the beam to the center >f M. For a
beam just grazing the sun, Ry = solar radius = 6.96 X 10® m. Substituing the val-
ues for G and the solar mass (M = 1.99 X 10% kg) yields o = 1.75 ¢ rc second.'®

Ordinarily, of course, the brightness of the sun prevents astrononr ers {or any-
one else) from seeing stars close to the limbs (edges) of the sun, exc :pt during a
total eclipse. Einstein completed the calculation of o in 1915, and in 1719 expedi-
tions were organized by Eddington'® at two points along the line of otality of a
solar eclipse, both of which were successful in making measurements « f o for sev-
eral stars and in testing the predicted 1/Rg dependence of a. The mea: ured values
of a for grazing beams at the two sites were:

At Sobral (South America):

o - 1.98 * 0.12 arc seconds
At Principe Island (Africa): |

a = 1.61 * 0.30 arc seconds

their average agreeing with the general relativistic prediction to within 2 bout 2 per-
cent. Figure 2-19 illustrates the agreement of the 1/R, dependence wit 2 Equation
2-44. (Einstein learned of the successful measurements via a telegram rom H. A.
Lorentz.) Since 1919, many measurements of a have been made durir g eclipses.
Since the development of radio telescopes, which are not blinded by st inlight and
hence don’t require a total eclipse, many more measurements have been made. The
latest data agree with the deflection predicted by general relativity to within about
0.1 percent.

The gravitational deflection of light is being put to use by modern a itronomers
" via the phenomenon of gravitational lenses to help in the study of gtlaxies and
= other large masses in space. Light from very distant stars and galaxies pi ssing near
or through other galaxies or clusters of galaxies between the source anc Earth can
be bent, or refracted, so as to reach Earth in much the same way that lig it from an
2+ object on a bench in the laboratory can be refracted by a glass lens and thus reach
the eye of an observer. The intervening galaxy cluster can thus produce images of
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— —— Expecied Einstein effect
= Actual measurements
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Light deflection
o (arc seconds)
5

o
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Distance from center of the sun
{solar radii}

: ¥ig. 2-19 The deflection angle « depends on the distance of closest approach Ry
sccording to Equation 2-44. Shown here is a sample of the data for 7 of the 13 stars
measured by the Eddington expeditions. The agreement with the relativistic prediction
is apparent.

the distant source, even magnified and distorted ones, just as the glass lens can.
Figure 2-20a will serve as a reminder of a refracting lens in the laboratory, while
Figure 2-20b illustrates the corresponding action of a gravitational lens. The
sccompanying photograph shows the images of several distant galaxies drawn out
into arcs by the lens effect of the cluster of galaxies in the center. The first con-
firmed discovery of images formed by a gravitational lens was made in 1979 by
D. Walsh and his co-workers. It was the double image of the quasar QSO 0957,
Since then astronomers have found many such images. Their discovery and inter-
pretation is currently an active area of research,

-
b, j Exploring
" Gravitational Redshift

A second prediction of general relativity concerns the rates of clocks and the
frequencies of light in a gravitational field. As a specific case which illustrates the
gravitational redshift as a direct consequence of the equivalence principle, suppose
we consider two identical Light sources (4 and A’) and detectors (B and B’)
located in identical spaceships (§ and §') as illustrated in Figure 2-21 (page 113).
The spaceship S’ in Figure 2-215 is located far from any mass. At time = 0,
3§’ begins to accelerate, and simultaneously an atom in the source A’ emits a light
pulse of its characteristic frequency f;. During the time t (= h/c) for the light to
travel from A’ to B', B' acquires a speed v = ar = gh/c, and the detector at B,
receding from the original location of A', measures the frequency of the incoming
light to be f redshifted by a fractional amount (f, — f)/fy = B for v << ¢. (See
Section 1-5.) Thus,

(fo = Nfe = Afify = B = vic = ghic? 245

Notice that the right side of Equation 2-45 is equal to the gravitational potential
(i.e., the gravitational potential energy per unit mass) Ad = gh between A and B,
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Fig. 2-20 () Ordinary (a)
refracting lens bends light,
causing many rays that would
not otherwise have reached
the observer’s eye to do s0.
Their apparent origin is the
iitiage formed by the lens.
Notice that the image is not
the same size as the object
{magnification) and, although
fot shown here, the shape of
the lens can cause the image
shape to be different from that
of the object. (b) Gravita-
donal lens has the same
siffects on the fight from
éﬁstant galaxies seen at Earth.

finages of distant galaxies are
Fawn out into arcs by the
Eﬁigssive cluster of galaxies
Abell 2218, whose enormous
&gvitaﬁoual field acts as a
éns to magnify, brighten, and
distort the images. Abell
2218 is about 2 billion ¢ - y

{pm Farth. The arcs in this
ﬁnuary 2000 Hubble Space
“iescope photograph are
ges of galaxies 10 to 20
on ¢y away. [NASA/
Stience VU Visuals
Bnlimited ]




#ig. 2-21 (a) System S is at rest in the gravitational field of the planet. (b) Spaceship 5’,
~far from any mass, accelerates witha = —g.

divided by 2. According to the equivalence principle, the detector at B in § must
- ylso measure the frequency of the arriving light to be £, even though § is at rest on
he planet and, therefore, the shift cannot be due to the Doppler effect! Since the
vibrating atom that produced the light pulse at A can be considered to be a clock,
“ and since no “cycles” of the vibration are lost on the pulse’s trip from A to 8, the
- observer at B must conclude that the clock at A runs slow, compared with an identi-
" ¢al clock (or an identical atom) located at B. Since A is at the lower potential, the
observer concludes that clocks run more slowly the lower the gravitational poten-
 tial, This shift of clock rates to lower frequencies, and hence longer wavelengths, in
 lower gravitational potentials is the gravitational redshift.

: In the more general case of a spherical, nonrotating mass M, the change in
- gravitational potential between the surface at some distance R from the center and a
point at infinity is given by

@

Ad = j GM i = oM (-1 | =4 2-46
e 1 L. R
¢ and the factor by which gravity shifts the light frequency is found from

Aflfy = (fa — F)If; = GMICR

. . Ffifo =1 — GMIcR (gravitational redshift) 2-47

,:

Cosar
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i;- Notice that if the light is moving the other way, i.c., from high to low  ravitational
potential, the limits of integration in Equation 2-46 are reversed and Ec uation 2-47

becomes
fifo=1+ GMI/CR (gravitational blueshift) 2-48

Analyzing the frequency of Starﬁght for gravitational effects is e ceptiopally

- difficult because several shifts are present. For example, the light is gr: vitationally

redshifted as it leaves the star and blueshifted as it arrives at Earth. T ie blueshift
near Earth is negligibly small with current measuring technology; hwever, the
Doppler redshift due to the receding of nearby stars and distant galaxies 1rom us as a
part of the general expansion of the universe is typically much larger tl.an gravita-
tional effects and, together with thermal frequency broadening in the st llar atmos-

% pheres, results in large uncertainties in measurements. Thus, it is quite remarkable

that the relativistic prediction of Equation 2-48 has been tested in th: relatively
small gravitational field of Earth. R. V. Pound and his co-workers,” first : n 1960 and
then again in 1964 with improved precision, measured the shift in the fi equency of
14.4-keV gamma rays emitted by 'Fe falling through a height & of oily 22.5 m.
Using the Mossbauer effect, an extremely sensitive frequency shift mea: uring tech-

‘nique developed in 1958, their measurements agreed with the predicte:| fractional

blueshift gh/c? = 2.45 X 107! to within | percent. A number of tests o *Equations
2-47 and 2-48 have been conducted—using atomic clocks carried in aircraft, as
described in Section 14; and, in 1980, by R. F. C. Vessot and his co-wo kers, using
a precision microwave transmitter carried to 10,000 km from Earth in a s 'ace probe.

- These, too, agree with the relativistically predicted frequency shift, the [ tter to one
¢, part in 14,000.

7. The frequency f in Equation 2-47 can be shifted 10 zero by an a)propriate

value of M/R. What would be the corresponding value of R for a st: r with the
mass of the sun? Speculate on the significance of this result.

More

The inability of Newtonian gravitational theery to accou it correctly
for the observed rate at which the major axis of Mercury s orbit pre-
cessed about the sun was a troubling problem, pointing 1s it did to
some subtle failure of the theory. Einstein’s first paper on jeneral rel-
ativity quantitaﬂvely explamed the advance of the Perihel on of Mer-
cury’s Orbit, setting the stage | for. general relativity to supp ant the old
Newtonian theory. A clear descnpuon of the relativistc explana-
tion is on the home page: www.whfreeman. com/modphys csde  See
- also Equahons 2-49 threngh 2. 51 here, as well as Figur: 2-22 and
“Table 22..
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More

. General relativity includes a gxawzatmnal mteracmm for particles
-with zero rest mass, such as photons, which are exclided in New-
: tonian theory. One consequence. is -the pmd:cu_on of a Delay
v of Light in a Gravitational Field. This phenomenon and its subse-
£ ‘quent . chservation are. described qualitatively on the home page:

\ -www.whireeman: comlmodphys:cwe See alse Equaben 2-52 here,
“as-well as Figures 2-23 and 2-24..

Bluck Holes  Black holes were first predicted by Oppenheimer and Snyder in 1939.
According to the general theory of relativity, if the density of an object such as a star is
jreat enough, the gravitational attraction will be so large that nothing can escape, not
@ven light or other electromagnetic radiation. It is as if space itself were being drawn
- {nward faster than light could move outward through it. A remarkable property of such
' an object is that nothing that happens inside it can be communicated to the outside
. world. This occurs when the gravitational potential at the surface of the mass M
- becomes so large that the frequency of radiation emitted at the surface is gravitationally
- pedshifted to zero. From Equation 2-47 we see that the frequency will be zero when the
. mdius of the mass has the critical value R; = GM/c?. This result is a consequence of
: the principle of equivalence, but Equation 2-47 is a v <3< ¢ approximation. A precise
derivation of the critical value of R, called the Schwarzschild radius, yields

i
k i
1

2GM
R = Cz" 2-53

. For an object of mass equal to that of our sun to be a black hole, its radius would be
gbout 3 km. A large number of possible black holes have been identified by astronomers
in recent years, one of them at the center of the Milky Way. (See Chapter 14.)
: An interesting historical note is that Equation 2-53 was first derived by the
nineteenth-century French physicist Pierre Laplace using Newtonian mechanics
t» compute the escape velocity v, from a planet of mass M before anyone had ever
heard of Einstein or black holes. The result, derived in first-year physics courses by
setting the kinetic energy of the escaping object equal to-the gravitational potential at
the surface of the planet (or star), is

’2GM
v, =
,

Setting v, = ¢ gives Equation 2-53. Laplace obtained the correct result by making
iwo fundamental errors that just happened to cancel one another!

{/ravitational Waves Einstein’s formulation of general relativity in 1916
explicitly predicted the existence of gravitational radiation. He showed that, just
ax accelerated electric charges generate time-dependent electromagnetic fields in

£
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This application of Michel-
son's interferometer may
well lead to the first direct
detection of “ripples,” or
waves in spacetime.

Fig. 2-25 Gravitational waves, intense ripples in the fabric of spacetime, are expected
to be generated by a merging binary system of neutron stars or black holes. The
amplitude decreases with distance due to the 1/R fall-off and because waves farther
from the source were emitted at an earlier time, when the emission was weaker. [Image
courtesy of Caltech/LIGO.]

space—i.e., electromagnetic waves—accelerated masses would create tine-
dependent gravitational fields in space—1i.e., gravitational waves that propa; ate
from their source at the speed of light. The gravitational waves are propagaling
warpages, or distortions of spacetime. Figure 2-25 illustrates gravitational racia-
tion emitted by two merging black holes distorting the otherwise flat “fabric” of
spacetime.

The best experimental evidence that exists thus far in support of the giavitatio jal
wave prediction is indirect. In 1974 Hulse and Taylor?* discovered the first bin iry
pulsar, i.e., a pair of neutron siars orbiting each other, one of which was emitt ng
periodic flashes of electromagnetic radiation {pulses). In an exquisitely prec se
experiment they showed that the gradual decrease in the orbital period of the pair vas
in good agreement with the general relativistic prediction for the rate of loss of gra /-
tational energy via the emission of gravitational waves.

Experiments are currently under way in several countries to detect gravitatiol al
waves arriving at Earth directly. One of the most promising is LIGO (Laser Interfi -
ometer Gravitational-Wave Observatory), a pair of large Michelson interferomete ‘s,
one in Louisiana and the other 3030 km away in Washington, operating in coin i-
dence. Figure 2-26 illustrates one of the LIGO interferometers. Each arm is 4 km
long. The laser beams are reflected back and forth by the mirrors dozens of tim:s
before recombining at the photodetector, making the effective lengths of the arris
about 400 km. The arrival of a gravitational wave would stretch one arm of tle
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g -
4 km Light storage arm
M are mirrorsitest masses
1 M

M M
s ! l— Light storage arm
5
: Laser Beam L
splitier fe——— 4k ———]

1 Phatodetector

;?ig. 2-26 The LIGO detectors are equal-arm Michelson interferometers. The mirrors, each

;‘35 ¢m in diameter by 10 cm thick and isolated from Earth’s motions, are also the test masses
3

_#f the gravitational wave detector. Arrival of a gravitational wave would change the length of
¢ gach arm by about the diameter of an atomic nucleus and result in interference fringes at the
© photodetector.

=

“ imterferometer by about 1/1000th of the diameter of an atom and squeeze the other
#rm by the same minuscule amouni! Nonetheless, that tiny change in the lengths is
= wufficient to put the recombining laser beams slightly out of phase and produce
. Interference fringes. The two LIGO interferometers must record the event within 10
- of each other for the signal to be interpreted as a gravitational wave. LIGO
. gompleted its two-year, low-sensitivity initial operational phase and went online in
mid-2002. None of the half-dozen experiments under way around the world has yet
- gonfirmed detection of a gravitational wave.2’
There is still an enormous amount to be learned about the predictions and
. implications of general relativity—not just about such things as black holes and
. gravity waves, but also, for example, about gravity and spacetime in the very early
~ universe, when forces were unified and the constituents were closely packed.
These and other fascinating matters are investigated more specifically in the areas
ol astrophysics and cosmology (Chapter 14) and particle physics (Chapter 13),
{ields linked together by general relativity, perhaps the grandest of Einstein’s great
scientific achievements.

R

Queg

8. Speculate on what the two emrors made by Laplace in deriving Equation 2-53
might have been.
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surmmary

. Relhuv:snc monentum L p=ymm _ o 2.7
R . The relativistic fmomentum is conserved and approaches mu for
v << ey = (1 — w2y ' in Bquation 2-7, where u = particle
- speed in §. :
2. Relafivistic energy E = ymc o _ 2-10
' The relativistic t._otal e_ne}gy is-conserved.
; EE =Tm62 _ mz' ; . 2.9
SRR Therestenergyxsmcz y—(l —:ﬁ/cz)‘ mEquatians_z-gand_Z—lO.
3, Lorentz tansformation for Eand P p, =10 ~ VB p=p, 216
Ee T E‘ YE-vp)  P=R
R _ . ‘where v = relative speed-of the systems and y = (1 — ¥/c?)™2
4 Mass!enmgy conversion . " Whenever additional energy AE in any form is stored.in an object, the ; est
S mamoftheob;actlsmcmasedbyt\m = AF/c2.
5. Invariant mass (mc?)? = E? — (pcy? _ 232
L The energy and momentum of any systém combine to form an invariar
) _ four-vector whose magnitude is the rest energy of.,_thAe mass m.
6 Force in relaumy The force F = ma is not invariant in relativity. Relativistic force is definc d as
L dp _ d(yrm) '
- dr dt
7. General relativity pﬂnﬁple A homogeneous gravitational field is compietely equivalent to a unifomn ly
. of eqmvalance “accelerated frame.
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Nores

t. This gedankenexperiment (“thought experiment”) is
“Bised on one first suggested by G. N. Lewis and R. C. Tol-
an, Philosophical Magazine, 18, 510 (1909).

1. You can see that this is so by rotating Figure 2-1a
{ihrough 180° on its own plane; it then matches Figure 2-1b
_Banctly.

Y C. G. Adler, American Journal of Physics, 55, 739

4 This idea grew out of the results of the measurements of
‘#asses in chemical reactions in the nineteenth century,
-which, within the limits of experimental uncertainties of the
-fime, were always observed to conserve mass. The conserva-
floi of energy had a similar origin in the experiments of
James Joule (1818—1889) as interpreted by Hermann von
Helmholtz (1821-1894). This is not an unusual way for con-
servation laws to originate; they still do it this way.

%. The approximation of Equation 2-10 used in this discus-
sion was, of course, not developed from Newton’s equations.
The rest energy mc? has no classical counterpart.

(. “Facilitates” means that we don’t have to make frequent
upit conversions or carry along large powers of 10 with
#early every factor in many calculations. However, a word of
gaution is in order: Always remember that the eV is not a
hasic ST unit. When making calculations whose results are to
I in ST units, don’t forget to convert the eV!

*. A. Einstein, Annalen der Physik, 17, 1905.

k. Strictly speaking, the time component should be written
# At, where { = (—1)"2. The i is the origin of the minus sign
Iy the spacetime interval, as well as in Equation 2-32 for the

L T

§§ energy/momentitm four-vector and other four-vectors in both
& apecial and general relativity. Its inclusion was a contribution
£ of Hermann Minkowski (1864-1909), a Russian-German

tnathematician, who developed the geometric interpretation
ol relativity and who was one of Einstein’s professors in
& Yurich. Consideration of the four-dimensional geometry is
heyond the scope of our discussions, so we will not be con-
verned with the i.

‘. Other conservation laws of physics must also be satis-
ficd, e.g., electric charge, angular momentum.
it The positron is a particle with the same mass as an ordi-
nary electron, but with a positive electric charge of the same
magnitude as that carried by the electron. It and other
unliparticles will be discussed in Chapters 11 and 13.
it Since electrons are thought to be point particles, i.e.,
they have no space dimensions, it isn't clear what it means to
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gous to a hydrogen atom. (See caption for Figure 2-12.)
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Introduction to General Relativity (New York: McGraw-Hill,
1965).
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19. A copy of Einstein’s work (he was then in Berlin) was
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21. These values are relative to the fixed stars.

22. A. Einstein, “The Foundation of the General Theory of
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PROBLEMS

Level |

NASA and the European Space Agency are des gning a
space-based gravity wave detector, LISA, that will h: ve arms
5 million kilometers Iong. The three satellites that L SA will
compiise are scheduled for launch in 2011.

Section 2-1 Relativistic Momentum and Section 2-2 Relativistic Energy

2-1. Show that p,, = —p,p where p,, and p,p are the relativistic momenta of € balls

on Figure 2-1, given by

PyA =

My mityg

P —uilc?

p =
v 'Jl — (ulp + up)/c?

Uyg =V

2-2. Show that d(ymu) = m(1 — u¥c» ™3 du.

2-3.  An electron of rest energy mc? = 0.511 MeV moves with respect to the labiratory
at speed u = 0.6 c. Find (@) v, (b) p in units of MeV/e, (c) E, and (d) E,.

2-4. How much energy would be required to accelerate a particle of mass m from rest to
a speed of (a) 0.5¢, (#) 0.9 ¢, and (c) 0.99 ¢? Express your answers as multiples of the

rest energy.

2-5. Two 1-kg masses are separated by a spring of negligible mass. They are ] ushed
together, compressing the spring. If the work done in compressing the spring is 10 I, find
the change in mass of the system in kilograms. Does the mass increase or decrease?

2-6. At what value of w/c does the measured mass of a particle exceed its rest miss by
(a) 10%, (b) a factor of 5, and (c) a factor of 20?7

2-7. A cosmic ray proton is moving at such a speed that it can travel from the m on to
Earth in 1.5 s. (@) At what fraction of the speed of light is the proton moving? (&) W hat is
its kinetic energy? (¢} What value would be measured for its mass by an observer in the
Earth reference frame? (d) What percent error is made in the kinetic energy by usiig the
classical relation? ( The Earth-moon distance is 3.8 X 107 km. Ignore Earth’s rotatio 1.)
2-8. How much work must be done on a proton to increase its speed from (@) 0. 5c to
0.16¢? (b) 0.85¢ to 0.86¢? (¢) 0.95¢ 1o 0.96¢? Notice that the change in the speed is the

same in each case.

2-9. The Relativistic Heavy lon Collider (RHIC) at Brookhaven is colliding fully ic nized
gold (Au) nuclei accelerated to an energy of 200 GeV per nucleon. Each Au nuclew: con-
tains 197 nucleons. (a) What is the speed of each Au nucleus just before collision? (b) What
1s the momentum of each at that instant? (¢) What energy and momentum would be mea- -
sured for one of the Au nuclei by an observer in the rest system of the other Au nucleu: ? :
2-10. (a) Compute the rest energy of 1 g of dirt. (b)) If you could convert this e 1ergy .
entirely into electrical energy and sell it for 10 cents per kilowatt-hour, how much n oney .
would you get? (c) If you could power a 100-W light bulb with the energy, for how long -

could you keep the bulb lit?

2-11. An electron with rest energy of 0.511 MeV moves with speed « = 0,2c. Fir d its ‘
total energy, kinetic energy, and momentum, f




A proton with rest energy of 938 MeV has a total energy of 1400 MeV. (a) What is
ed? (b) What is its momentum?

e total energy of a particle is twice its rest energy. (a) Fmd u/c for the particle.
ow that its momentum is given by p = (3) mc

=iil An electren in a hydrogen atom has a speed about the proton of 2.2 X 10° m/s.
“{ti)-By what percent do the relativistic and Newtonian values of E, differ? () By what
pércent do the momentum values differ?

=14, Suppose that you seal an ordinary 60-W light bulb and a suitable battery inside a
Pansparent enclosure and suspend the system from a very sensitive balance. {a} Compute
‘ihe change in the mass of the system if the Iamp is on continuously for one year at full
ﬁémr. (b) What difference, if any, would it make if the inner surface of the container
were a perfect reflector?

Zaction 2-3 Mass/Energy Conversion and Binding Energy

4:16. Use Appendix A and Table 2-1 to find how much energy is needed to remove one
oton from a “He atom, leaving a *H atom plus a proton and an electron.

#217. Use Appendix A and Table 2-1 to find how much energy is required to remove one
of the neutrons from a *H atom to yield a 2H atom plus a neutron?

318, The energy released when sodium and chlorine combine to form NaCl is 4.2 eV.
(&) What is the increase in mass (in unified mass units) when a molecule of NaCl is dissoci-
#fed into an atom of Na and an atom of C1? (b) What percentage error is made in neglecting
{his mass difference? (The mass of Na is about 23 u, and that of Cl is about 35.5 u.}

214, In a nuclear fusion reaction two 2H atoms are combined to produce ‘He. (g) Calculate
‘lw decrease in rest mass in unified mass vnits, () How much energy is released in this
tenction? () How many such reactions must take place per second to produce | W of power?
2:20. Calculate the rate of conversion of rest mass to energy (in kg/h) needed to produce
100 MW.

#-11. When a beam of high-energy protons collides with protons at rest in the laboratory
t¢.g.. in a container of water or liquid hydrogen), neutral pions (") are produced by the
seaction p + p — p + p + = Compute the threshold energy of the protons in the beam
for this reaction to occur. (See Table 2-1 and Example 2-11.)

4-22. The energy released in the fission of a Z°U nucleus is about 200 MeV. How much
rest mass (in kg) is converted to energy in this fission?
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Lection 2-4 Invariant Mass

3.13. The K particle decays according to the equation K® — w* + &, If a particular K°

decays while it is at rest in the laboratory, what are the kinetic energies of each of the two

pions? {The rest mass of the K% is 497.7 MeV/c2)

1-24. Compute the force exerted on the palm of your hand by the beam from a 1.0-W

flasilight (@} if your hand absorbs the light, and (b) if the light reflects from your hand.

What would be the mass of a particle that exerts that same force in each case if you hold

it at Earth’s surface?

1-25. An electron-positron pair combined as positronium is at rest in the laboratory. The

jrair annihilate, producing a pair of photons (gamma rays) moving in opposite directions

i the lab. Show that the invariant rest energy of the gamma rays is equal to that of the

clectron pair.

1-26. Show that Equation 2-31 can be written E = mc*(1 + p¥m3c%)*? and use the bino-

sial expansion to show that, when pc is much less than me2, E = mc? + p*f2m.

2-27. An electron of rest energy 0.511 MeV has a total energy of 5 MeV. (a) Find its
ntum in vnits of MeV/e, (b) Find w/c.

1.28, Make a sketch of the total energy of an electron E as a function of its momentum p.

{Sce Equations 2-36 and 2-41 for the behavior of E at large and small values of p.)
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Chapter 2 Relativity II

2-29, What is the speed of a particle that is observed to have momentum 500 veV/c and

energy 1746 MeV. What is the particle’s mass (in MeV/c2)?

2-30. An electron of total energy 4.0 MeV moves perpendicular to a uniforn. magnetic

field along a circular path whose radivs is 4.2 cm. (@) What is the strength of th : magnetic
? (b) By what factor does ym exceed m? !

2-31_/A proton is bent into a circular path of radius 2 m by a magnetic fiel. of 0.5 T.

(a) What is the momentum of the proton? (b) What is its kinctic energy?

Section 2-5 General Relativity

2-32. Compute the deflection angle « for light from a distant star that would, according
to general relativity, be measured by an observer on the moon as the light graze s the edge
of Earth.

2-33. A set of twins work in the Sears Tower, a very tall office building in Chi :ago. One
works on the top floor and the other works in the basement. Considering gene: al relativ-
ity, which twin will age more slowly? (a) They will age at the same rate. (&) The twin
who works on the top floor will age more slowly. (c) The twin who works in the basement
will age more slowly. () It depends on the building’s speed. (¢) None of the previous
choices is correct.

2-34. Jupiter makes 8.43 -orbits/century and exhibits an orbital eccentricity ¢ = 0.048.
Jupiter is 5.2 AU from the sun and has a mass 318 times the Earth’s 5.98 X 10% kg. What
does general relativity predict for the rate of precession of Jupiter’s perihelion? ([t has not
yet been measured.) (The astronomical unit AU = the mean Earth-sun distance = 1.50 X

i 11 m)
@A synchronous satellite “parked” in orbit over the equator is used to relay

microwave transmissions between stations on the ground. To what frequency must the
satellite’s receiver be tuned if the frequency of the transmission from Earth i exactly
9.375 GHz? (Ignore all Doppler effects.)

2-36. A particular distant star is found to be 92 ¢ -y from Earth. On a direct line between
us and the star and 35 ¢ -y from the distant star is a dense white dwarf star wil 1 a mass
equal to 3 times the sun’s mass M, and a radius of 10* km. Deflection of the 1i tht beam
from the distant star by the white dwarf causes us to see it as a pair of circular arcs like
those shown in Figure 2-20(%). Find the angle 2o formed by the lines of sight ¢ the two
arcs.

Level I

2-37. A clock is placed on a satellite that orbits Earth v ith a period of 90 min a: an alti-
tude of 300 km. By what time interval will this clock differ from an identical +:lock on
Earth after 1 year? (Include both special and general relativistic effects.)

2-38. Referring to Example 2-11, find the total energy £’ as measured in § wherc p’ = 0.
2-39, In the Stanford linear collider, small bundles of electrons and positrons are fired at
each other. In the laboratory’s frame of reference, each bundle is about 1 ¢m 1yng and
10 pum in diameter. In the collision region, each particle has an energy of 50 GeV, and the
electrons and positrons are moving in opposite directions. (¢) How long and how wide is
each bundie in its own reference frame? (b) What must be the minimum proper 1 :ngth of
the accelerator for a bundle to have both its ends simultaneously in the accelerator in its
own reference frame? ( The actual Iength of the accelerator is less than 1000 m.) () What
is the length of a positron bundle in the reference frame of the electron bundle? (') What
are the momentum and energy of the electrons in the rest frame of the positrons?

2-40. The rest energy of a proton is about 938 MeV. I its kinetic energy is also 978 MeV,
find (a) its momentum and (b) its speed.

2-41. A spaceship of mass 10° kg is coasting through space when suddenly it b >comes
necessary to accelerate. The ship ejects 10° kg of fuel in a very short time at a seed of
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#f2 relative to the ship. (a) Neglecting any change in the rest mass of the system, calculate
‘{he speed of the ship in the frame in which it was initially at rest. (b) Calculate the speed
of the ship using classical Newtonian mechanics. (¢} Use your results from (a) to estimate
the change in the rest mass of the system. _
$-41. Professor Spenditt, oblivious to economics and politics, proposes the construction
of a circular proton accelerator around Earth’s circumference using bending magnets that
provide a magnetic field of 1.5 T. (a) What would be the kinetic energy of protons orbit-
g in this field in a circle of radius Rz7 (b) What would be the period of rotation of these
protons?
4-43. In ancient Egypt the annual flood of the Nile was predicted by the rise of Sirius
tthe Dog Star). Sirius is one of a binary pair whose companion is a white dwarf, Orbital
analysis of the pair indicates that the dwarf’s mass is 2 X 10% kg (i.e., about one solar
ss). Comparison of spectral lines emitted by the white dwarf with those emitted by the
same element on Earth shows a fractional frequency shift of 7 X 1074 Assuming this to
fe due to a gravitational redshift, compute the density of the white dwarf. {For compari-
won, the sun’s density is 1409 kg/m?.)
@ Show that the creation of an electron-position pair (or any particle-antiparticle pair,
w that matter) by a single photon is not possible in isolation, i.e., that additional mass (or
tediation} must be present. {(Hint: Use the conservation laws.)
- 345, With inertial systems S and S" arranged with their corresponding axes parallel and
&' moving in the +x direction, it was apparent that the Lorentz transformation for y and z
~would be ¥’ =y and z' = z. The transformation for the y and z components of the
momentum are not so apparent, however. Show that, as stated in Equations 2-16 and

217, p, = p,and p; = p,. /" 7.

{evel 11|

2 -46. Two identical particles of rest mass m are each moving toward the other with speed
u in frame §. The particles collide inelastically with a spring that locks shut (Figure 2-9)
and come to rest in S, and their initial kinetic energy is transformed into potential energy.
In this problem you are going to show that the conservation of momentum in reference
frame S', in which one of the particles is initially at rest, requires that the total rest mass
of the system after the collision be 2m/(1 — %)\ (a)} Show that the speed of the parti-
¢le not at rest in frame S’ is

2u

[ —
1 + w?c?

u

and use this result to show that

w? 1 — w¥c?

1+ ue

th) Show that the initial momentum in frame S’ is p' = 2mul(1 — /). (c) After the col-
tision, the composite particle moves with speed u in $' (since it is at rest in ). Write the
total momentum after the collision in terms of the final rest mass M, and show that the
vonservation of momentum implies that M = 2m/(1 — u¥/c?)'2, (d) Show that the total
energy is conserved in each reference frame.

47 An antiproton p has the same rest energy as a proton. It is created in the reaction p +
p—=>p+p+p+ p. Inan experiment, protons at rest in the laboratory are bombarded with
protons of kinetic energy E,, which must be great enough so that kinetic energy equal to
2mc? can be converted into the rest energy of the two particles. In the frame of the laboratory,
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the total kinetic energy cannot be converted into rest energy because of conseivation of
momentum. However, in the zero-momentum reference frame in which the two i1 itial pro-
tons are moving toward each other with equal speed «, the total kinetic energy ca 1 be con-
verted into rest energy. (@) Find the speed of each proton u such that the total kinet ¢ energy
in the zero-momentum frame is 2mc2. (b) Transform to the laboratory’s frame in v hich one
proton is at rest, and find the speed 1’ of the other proton. (¢) Show that the kinetic « ‘nergy of
the moving proton in the laboratory’s frame is E, = 6mc2.

-48.)In a simple thought experiment, Einstein showed that there is mass associ: ted with
electromagnetic radiation. Consider a box of length L and mass M resting on a fri stionless
surface. At the left wall of the box is a light source that emits radiation of energy %, which
is absorbed at the right wall of the box. According to classical electromagnetic thi ory, this
radiation carrics momentum of magnitude p = Efc. (e} Find the recoil velocity ol the box
such that momentum is conserved when the light is emitted. (Since p is small : nd M is
large, you may use classical mechanics.) (b) When the light is absorbed at the right wall of .
the box, the box stops, so the total momentum remains zero. If we neglect the very small
velocity of the box, the time it takes for the radiation to travel across the box is £ ¢ = Lic.
Find the distance moved by the box in this time. (¢) Show that if the center of ma s of the
systeimn is to remain at the same place, the radiation must carry mass m = E/¢2,

2-49. A pion spontaneously decays into a muon and an antineutrino according to (among
other processes} 1 ~— p~ + V. Current experimental evidence indicates that the mass m
of the 7, is no greater that about 190 keV and may, in fact, be zero. Assuming that he pion
decays at rest in the laboratory, compute the energies and momenta of the muon atr d muon
antineutrino (a) if the mass of the antineutrino is zero and (b) if its mass is 190 k=V. The
mass of the pion is 139.56755 MeV/c? and the mass of the muon is 105.65839 Me' /2,
2-50. Use Equation 2-47 to obtain the gravitational redshift in terms of the wavel :ngth A.
Use that result to determine the shift in wavelength of light emitted by a white dv-arf star
at 720.00 nm. Assume the white dwarf has the same mass as the sun (1.99 X 10% ¢g), but
a radius equal to only 1 percent of the solar radius Rg. (R = 6.96 X 10°m.)

2-51. For a particle moving in the xy plane of S, show that the y* component of th > accel-
eration is given by

o = ay auwvlc?
Y4 - uyled (1 - upvicd)?

2-52. Consider an object of mass m at rest in § acted upon by a force F with com)onents
F.and F,. System §' moves with instantaneous velocity v in the +x direction. L efining
the force with Equation 2-8 and using the Lorentz velocity transformation, shq w that
() F; = F,and (B) F, = F,/v. (Hint: See Problem 2-51.)

2-53. An unstable particle of mass M decays into two identical particles, each ¢ F mass
m. Obtain an expression for the velocities of the two decay particles in the Iab frame
{a) if M is at rest in the lab and (b) if M has total energy 4mc? when it decays : nd the
decay particles move afong the direction of M.




