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41 Atomic Spe?lra mong his many experiments, Newton found that sunlight passing through a small
42 Rutherford’s opening in a window shutter could be refracted by a glass prism so that it would Lens
Nuciear Model fall on a screen. The white sunlight thus refracted was spread into a rainbow-colored
4-3  The Rohr Model  band—a spectrum. He had discovered dispersion, and his experimental arrangement N2
of the Hydrogen was the prototype of the modern spectroscope (Figure 4-1a). When, 150 years Hater, ;}?\ﬁ‘*“’
Atom Fraunhofer' dispersed sunlight using an experimental setap similar to that shown in Sourca of
4-4  X-Ray Spectra Figure 4-15 to test prisms made of glasses that he had developed, he found that the wavalengths
45  The Franck- soiar spectrum was crossed by more than 600 namrow, or sharp, dark lines.? Soon after, Ay and Ay
- . a number of scientists observed sharp bright lines in the spectra of light emitted by P>y Jit before falling on
H'ertz Fxperiment flames, arcs, and sparks. Spectroscopy quickly became an important area of research, Fig.4-1 (a) Light from the source passes through a simall h?:l:ml:g}Dm.the prism fmeg at
446 Cnitique of Rohr It soon became clear that chemical elements and compounds emit three general the prism. The purposc of the sft is to ensure that all the 1& v:inus frequencies that may be
Ihm‘l:y and of the types of spectra. Continuous spectra, emitted mainly by incandescent solids, show no the same angle so that the d's%e;:zln?y :;spnwslﬁﬁlu:;um overlap. (&) The source emits only
n:}elcdlmsi'::m"m lines at all, bri ght.or dark, in spectroscopes of the higljcst possible resolving power, milm?::;m:: ':;.clsuume!:s]ocawd at the focal point of the lens 0 that pa.ullel Tight
6 Band spectra consist of very closely packed groups of lines that appear to be continu- s through the narrow slit, projecting a narrow line onto the face of the prism. Ordinary
ous in instruments of low resolving power. These are emitted when small pieces of E::::rsi on in the prism bends the shorter wavelength through the larger total angle, separating
solid materials are placed in the source flame or electrodes. The fine spectra men- the two wavelengths at the screen. In this armng each length appears on the screen
tioned already arise when the source contains unbound chemical elements. The lines {or on film replacing the screen) as a narrow line, which is an image of the slit. Such a spectrum
and bands turned out to be characteristic of individual elements and chemical com- was dubbed a *line spectrum” for that reason. Prisms have been nllmust entuel_y replaced in
pounds when excited under specific conditions. Indeed, the spectra could be used as modern spectrascopes by diffraction gratings, which have much higher resolving power.
a highly sensitive test for the presence of elements and compounds. Line spectra . e Pl oo toio moce copbich
raised an enormous theoretical problem: although classieal physics could accoun for this chapter. Fuil expianation of the fincs and bands fequies m‘;m ’
the existence of a continuous spectrum (if not its detailed shape, as we saw with cated quantum theory, which we will begin studying in Chapter 5.
blackbodies), it could in no way explain why sharp lines and bands should exist.
\ Explaining the origin of the sharp lines and accounting for the primary features of -
| the spectrum of hydrogen, the simplest element, was a major success of the so-cailed 4-1] Atomic Spect]’a
old” quantum theory begun by Planck and Einstein and will be the main topic in The characteristic radiation emitted by atorus of individual ?tements ina ﬂam.e orin
a gas excited by an electrical discharge was a subject of vigorous study during the
late nineteenth century. When viewed through a spectroscope, this radmuo_n.appcars
as a set of discrete lines, each of a particular color or wavelength; the positions and . i
intensities of the lines are characteristic of the element. The wave]engt]m of thF:sc The unigueness of the u:e
lines could be determined with great precision, and much effort went into .ﬁndmg spectra of the elements has
and interpreting regularities in the spectra. A major breakthmu.gh w_'as mad!: in 1885 enabieq astronomers l-u'

. . ] by a Swiss schoolteacher, Johann Batmer, who found that the lines in ﬂ.le. visible and  determine |he.compc.:sstt|0.n
Voltaire's depiction of 0 ol trum of hydrogen could be represented by the empirical formula  of stars, chemists o identify
Newton's discovery of ear ultraviolet spec Y unknown compounds, and
dispersion. [Elémens de la n theme parks to have laser
Philosophie de Newton, A, = 3646 5—nm 41 shows.

Amsterdam, 1735.) n -4
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Fig. 4-2 (4} Emission line
spectrum «f hydrogen in the
visible and near ultraviolet.
The lines appear dark
because the spectrum was
phutographed: hence. the
bright lines are exposed
(dark) areas on the film. The
names of the first five lines
are shown, as is the point
beyond which no lines
appear, H., called the fimit of
the series. (b} A portion

of the emission spectram of
sodium. The twa very clowe
bright lines at 589 nm are the
D, and Dy lines. They are the
principal radiation from
sodium street lighting. (¢} A
portion of the emission spec-
trum of mercury. (d) Part of
the dark line (absorption)
spectram of sodiom. White
light shining through sodium
vapor is absorbed at certain
wavelengths, resulting in no
expasure of the film at those
points. Notice that the line at
259.4 nm is visible here in
both the bright and dark line
spectra. Note that frequency
increases toward the right,
wavelength toward the left in
the four spectra shown,

where n is a variable integer which takes on the values n = 3, 4,5, . . . . Figure
4-2a shows the set of spectral lines of hydrogen (now known as the Balmer series)
whose wavelengths arc given by Balmer’s formula. For example, the wavelength of
the H, line could be found by letting » = 3 in Equation 4-1 (try it!), and other inte.
gers each predicted a line that was found in the spectrum. Balmer suggesied that hig
formula might be a special case of a more general expression applicable to the spec.
tra of other elements when ionized to a single electron, i.e., hydrogen-like elements,
Such an expression, found independently by J. R. Rydberg and W. Ritz and thys
called the Rvdberg-Ritz formula, gives the reciprocal wavelengih?® as

| 1 |
A—;=R(;7;) for n>m 4.2

where m and n are integers and R, the Rydberg constant, is the same for all series of

spectral lines of the same element and varies only slightly, and in a regular way, from
element to element. For hydrogen, the value of R is Ry = 1.096776 X 10" m~'. For

Sodium

Marcury

4-2 Rutnvrrorbd's Nucpiear Moenpe

very heavy elements, R approaches the value of R, = 1.097373 X 107 m !, Such
empirical expressions were successful in predicting other spectra, such as other
pydrogen lines outside the visible spectrum.

e
¥ N AMPLE 1 1 fydrogen Spectral Series The hydrogen Balmer series reciprocal
s wavelengths are those given by Equation 4-2 withm = Zandn = 3, 4,5, , . . .

I For example, the first line of the series, Hy, wouldbeform = 2,n =3

ECariet

. /. P
=gl ]==R=1523x%10Pm"’
w oMy )% m

Ayy = 656.5 nm

. R T T KT

Other series of hydrogen spectral lines were found for m = 1 (by Lyman) and
m = 3 (by Paschen). Compute the wavelengths of the first lines of the Lyman and
. Paschen series.

bt

£ Solution
}4' For the Lyman series (m = 1), the first line isform = 1, n = 2.

| 1 1 3
—_—= — — = |=~-R =8 ¥ -1
™ .I'l'(l2 22) 4R 822 X 10f m

A2 = 121.6 nm (in the ultraviolet)

For the Paschen series {m = 3), the first lineis form = 3, n = 4;

1 1 1 7
— =Rl= —-=l=——-Rp=5312 %1 !
Y9 ’?(32 42) aa R =339 om

A = 1876 nm (in the infrared)

All of the lines predicted by the Rydberg-Ritz formula for the Lyman and Paschen

series are found experimentally. Note that no lines are predicted to lic beyond
P A, = I/R = 912 nm for the Lyman series and A, = %R = 820.6 nm for the
:* Paschen series and none are found experimentally.

4-2 Rutherford’s Nuclear Model

Many attempts were made to construct a model of the atom that yielded the Balmer
and Rydberg-Ritz formulas. It was known that an atom was about 10-'® m in diame-
ter, that it contained electrons much lighter than the atom, and that it was electrically
feutral, The most popular model was that of J. I. Thomson, already quite successful in
&xplaining chemical reactions, Thomson attempted various models consisting of elec-
trons embedded in a fluid that contained most of the mass of the atom and had enough
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Hans Geiger and Emest
Rutherford in their
Manchester laboratory.
[Courtesy of University
of Manchester]

(a) (]

Fig. 4.3 Thomson's model of the atom: (a) A sphere of positive charge with electrons embedded
in it 50 that the net charge would normally be zero, The atom shown would have been aluminum.
(b) An o particle scattered by such an atom would have a scatiering angle 8 much smaller than 1°,

pusiuve cnarge 10 make the atom electrically neutral. {See Figure 4-3a.) He then
searched for configurations that were stable and had normal modes of vibration cotre-
sponding 10 the known frequency spectrum. One difficulty with all such models
was that electrostatic forces alone cannot produce stable equilibrium. Thus, the
charges were required to move and, if they stayed within the atom, to accelerate; how-
ever, the acceleration would result in continuous radiation, which is not observed.
Despite elaborate mathematical calculations, Thomson was unable 1o obtain from his
model a set of frequencies of vibration that corresponded with the frequencies of
observed spectra.

The Thomson model of the atom was replaced by one based on the results of a
set of experiments conducted by Ernest Rutherford* and his students H. W. Geiger
and E. Marsden. Rutherford was investigating radioactivity and had shown that the
radiations from uranium consisted of at least two types, which he labeled o and B.
He showed, by an experiment similar to that of J. J. Thomson, that g/m for the o was
half that of the proton. Suspecting that the a particles were doubly ionized helium,
Rutherford and his co-workers in a classic experiment let a radioactive substance
decay in a previously evacuated chamber; then, by spectroscopy, they detected the
spectral lines of ordinary helium gas in the chamber, Realizing that this energetic,
massive a particle would make an excellent probe for “feeling about™ within the inte-
riors of other atoms, Rutherford began a series of experiments with this purpose,

In these latter experiments, a narrow beam of « particles fell on a zinc sulfide
screen, which emitted visible light scintillations when struck (Figure 4-4), The distrl-
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pution of scintiflations on the screen was observed when various l.hin metal foils were

Jaced between it and the source. Most of the & particles were either undeflected, or
deflected through very small angles of the order of 1°. Quite unexpectedly, however,
a few o particles were deflected through angles as large as %0° or more. If the atom
consisted of a positively charged sphere of radius 10° 0 m, containing electrons as in
the Thomson model, only a very small deflection could ?esult from a su}gle encounter
between an ¢ particle and an atom, even if the particle penetrated into the atom.

{&) Radioactive

amnrra B

Poshield TR

Scintlitaticn
screen 5

Fig. 4-4 Schematic diagram of the apparatus used by Geiger and Marsder_l to test I_lumerfnrd’s
atomnic model. (a) The beam of o particles is defined by the small hole Drin the shield sur-
rounding the radicactive source R of 7'*Bi (called RaC in Rutherford’s Flay). The' o beam
strikes an ultrathin gold foil F (about 2000 atoms thick}, and the e pnmcle.s are individually
scattered through various angles. Those scattering at the angle 8 shown strike & s.mall screen §
coated with a scintillator, 6., 8 material that emits tiny fiashes of light (scintillations) wh.en
struck by an o particle. The scintitlations wete viewed by the observer through a small micro-
scope M. The scintillation screen—microscope combination could be rotated ab(l:put the center of
the foil, The region traversed by the a beam is evacuated. The experiment consisted of courft-
ing the nwmber of scintillations as a function of 8. (b) A diagram of the actual _npparams as u_
appeared in Geiger and Marsden's paper describing the results. Thc letter key is the same as in
(a). [Par1 (b) from H. Geiger and E. Marsden, Philosophical Review, 25, 507 (1913).]
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Indeed. calculations showed that the Thomson atomic model could not possibly
account for the number of large-angle scatterings that Rutherford saw. The unexpected
scatterings at large angles were described by Rutherford with these words:

[t was quite the most incredible event thal ever happened to me in my life. It
was as incredible as if you fired a 13-inch shell at a piece of tissue paper and it
came back and hit you.

Ruthorfard’e Crattariva Thonee aud tha Nacalane Adaas
" i povsamna fas Munsioae Lo

The question is, then, Why would one obtain the large-angle scattering that Ruther-
ford saw? The trouble with the Thomson atom is that it is too “soft"—the maximum
force experienced by the a is too weak to give a large deflection. If the positive charge
of the atom is concentrated in a more compact region, however, a much larger force
will occur at near impacts. Rutherford concluded that the large-angle scattering
obtained experimentally could result only from a single encounter of the o particle
with a massive charge confined to a volume much smaller than that of the whole atom,
Assuming this “nucleus” to be a point charge, he calculated the expected angular dis-
tribution for the scattered « particles. His predictions of the dependence of scafteting
probability on angle, nuclear charge, and kinetic energy were completely verified in
a series of experiments cartied out in his laboratory by Geiger and Marsden.

We shall not go through Rutherford’s derivation in detail, but merely outline the
assumptions and conclusions. Figure 4-5 shows the geometry of an a particle being
scattered by 2 nucleus, which we take 1o be a point charge Q at the origin. Initially, the
@ particle approaches with speed v along a line a distance b from a parallel line COA
through the origin. The force on the a particle is F = kg (/2 given by Coulomb's
law (see Figure 4-6). After scattering, when the o particle is again far from the
nucleus, it is moving with the same speed v parallel to the line OB, which makes an
angle 8 with line COA, (Since the potential energy is again zero, the final speed must
be equal to the initial speed by conservation of energy, assuming, as Rutherford did,
that the massive nucleus remains fixed during the scattering.) The distance 5 is called
the impact parameter; and the angle 9, the scattering angle. The path of the o particle

A

¥ig. 4-5 Rutherford scattering geometry. The nucleus is assumed to be a point charge ( at the
origin €. At any distance r the o particle experiences a repulsive force kg (Mr’. The o particle
travels along a hyperbolic path that is initially parallel 1o line 04 a distance b from it and
finally parallel to line OB, which makes an angle 8 with OA. The scattering angle & can be
related to the impact parameter b by classical mechanics.
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can be shown to be a hyperbola, and the scattering angle 8 can be related to the impact
parameter b from the laws of classical mechanics. The result is

kg.Q 8
b= ? coti 4-3

OF course, it is not possible to choose or know the impact parameter for any o par-
ticle; but, recalling the values of the cotangent between (° and 90°, all such parti-
cles with impact parameters less than or equal to a particular  will be scattered
theough an angle @ preater than or equal to that given by Equation 4-3; i.e., the
smaller the impact parameter, the larger the scattering angle (Figure 4-7). Let the
intensity of the incident o particle beam be [, particles per second per unit area.
The number per second scattered by one nucleus through angles greater than
equals the number per second that have impact parameters iess than #(8). This
number is wH,.

The quantity w5, which has the dimensions of an area, is called the cross

thus

on o for scattering through angles avaater than 8. The cross sect

LT —

b,

L ST

I
'y

Area nb]
Area nbg

Iig. 3-6 Force on a point
charge versus distance r trom
the center of a uniformly
charged sphere of radius R
QOutside the sphere the force
is proportional to Q/r? where
(@ is the total charge. [nside

- the sphere, the force is pro-

portional 10 ¢'/#* = QriR,
where g’ = (/R is the
rharoe within a cnhera nf
radius £ The maximum force
occursat # = R.

The particle-scattering tech-
nique devised by Rutherford
to “lock” at atoms now

has wide application
throughout physics. Scatter
ing of high-energy electrans
from protons and neutrons
provided our first experi-
mental hint of the existence
of quarks.

Fig. 4-7 Two o particles with
equal kinetic energies
approach the positive charge
@ = +Ze with impact param-
eters by and &y, where by < b,
According to Equation 4-3, the
angle 8, through which «, is
scattered will be larger than 6,.
In general, all o particles with
impact paramelers smaller
than a particular value of b
will have scattering angles
larger than the cormesponding
value of 8 from Equation 4-3.
The area 78 is called the
cross section for scattering
with angles greater than 0.
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Fig. 4-8 The total number of (2X79%1.44 eV -nm)
nuclei of foil atoms in the ! = W =224 x 10 "nm
area covered by the beam is
nAt where n is the number of =228 X 107" m
foil atoms per unit volume, A Area A of beam
is the area of the beamn, and ¢ 4, Substituting these into Equation 4-5 yields f-
is the thickness of the foil.
atoms
. f=m228 X 10"‘m)2(5.9 x 10% = )(IO_Gm)
‘\'._%’/ Number of nuciai - =vo0Av — v
in beam is nAt

Remarks: This is in good agreement with Geiger and Marsden’s measurement of
o . . about I in 8000 in their first trial. Thus, the nuclear model is in good agreement
defined_as the number scattered’ t v ident with their results.
intensity. The total number of particles scattered per second is obtained by muitiply-
ing kT, by the number of nuclei in the scattering foil (this assumes the foil to be
thin enough to make the chance of overlap negligible). Let # be the number of nuclei
per unit volume:

On the strength of the good agreement between the nuclear atomic model and
the measured fraction of the incident o particles scattered at angles 8 = 90°, Ruther-
ford derived an expression, based on the nuclear model, for the number of « particles
AN that would be scattered at any angle 8. That number, which also depends on the
44 atomic number Z and thickness ¢ of the scatteting foil, on the intensity T, of the inci-
dent o particles and their kinetic energy E,, and on the geometry of the detector
{4, is the detector area and r is the foil-detector distance), is given by

_ plg/iem’) N(atoms/mol) _ pN, atoms
M(g/mol) M o

For a foil of thickness 1, the total number of nuclei “seen™ by the beam is nAt, where
A is the area of the beam (Figure 4-8). The total number scattered per second through I zeh
angles grealer than @ is thus wb*lymA. If we divide this by the number of o particles AN = (M)(——) —_— 4-6
incident per second /,A, we get the fraction f scauered through angles greater than 9 : r? 2E,/ sin'(8/2)

Within the uncestainties of their experiments, which involved visually observing several

= nb’nt 4.5
d hundred thousand o particles, Geiger and Marsden verified every one of the predictions
of Rutherford's formula over four orders of magnitude of AN. The excellent agreement
I of their data with Equation 4-6 firmly established the nuclear atomic mode] as the cor-
EXAMPLE 4-2 Scattered Fraction f Calculate the fraction of an incident beam rect basis for further studies of atomic and nuclear phenomena, {See Figure 4-12.)

of o particles of kinetic energy 5 MeV that Geiger and Marsden expected to see

for B = 90° from a gold foil (Z = 79) 1076 m thick. a4 (by 180 ' TG T T
Solution
1. The fraction f is related to the impact parameter b, the number density of 3 L e T S I
nuclei n, and the thickness 1 by Equation 4-5: §
= ﬂbznl ‘:% 2 é 80~ -~ _ B _Il R rw —
= 3
2. The particle density n is given by Equation 4-4: g Sitver c 1
1
= PNa _ (193 glen’X6.02 X 10 atoms/mol) / ‘[Alumlnu .
M 197 g/mol L \
= 22 3 % 1 |
5.90 X 107 atoms/cm® = 5.90 X 10% atoms/m 0 iy oa o8 T2 e p
g AN Foll thicknees 1, cm of alr equiv.

3. The impact parameter b is related to 8 by Equation 4-3: .
pactp v Eq Fig. 4.12 () Geiger and Marsden's data for & scattering from thin gold and silver foils. The graph is a log-log plot to show the

kg, 8 k0 data over several orders of magnitude. Note that scattering angle increases downward zlong the vertical axis. (b) Geiger and
b= _"% cot S = DTNk B Mzrsden also measured the dependence of AN on t predicted by Equation 4-6 for foils made from a wide range of elements, this
My 2 2K, 2 being an equally critical test. Results for four of the elements used are shown.
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(a}

L

Fig, 4-13 () If the o particle
does not penetrate the nuclear
charge, the nucleus can be
cotysidered a point charge
located at the center. (b) If
the particle has enough
energy o penetrate the
nucleus, the Rutherford scat-
tering law does not held, but
would require modification to
gccount for that portion of the
nuclear charge “behind” the
penetrating o particle.

The Nucleat Atom

More

Rutherford's derivation of Equation 4-6 was based on his atomic
model and the well-known Coulomb scatteting process of charged
particles. Rutherford’s Prediction and Geiger and Marsden’s Results
are described on the home page: www.whfreeman.com/modphysicsde
See also Equations 4-7 through 4-10 here, as well as Figures 4-9
through 4-12,

The Size of the Nucleus

The fact that the force law is shown to be correct, confirming Rutherford’s model,
does not imply that the nucieus is a mathematical point charge, however. The force
law would be the same even if the nucleus were a ball of charge of some radius R,
as long as the a particle did not penetrate the ball. (See Figures 4-5 and 4-13.) For
a given scattering angle, the distance of closest approach of the a particle to the
nucleus can be calculated from the geometry of the collision. For the largest angle,
near 180°, the collision is nearly “head-on.” The corresponding distance of closest
approach r, is thus an experimental upper limit on the size of the target nucleus, We
can calculate the distance of closest approach for a head-on collision r, by noting that
conservation of energy requires the potential energy at this distance to equal the orig-
inal kinetic energy:

(V+ Ege, = (V+ Ep),,

1 X
0+ Emﬂ‘;]ll@er = (—'—r-"' + 0)"

d
k4.0

1
Zm"vz iy

or

kqﬂQ
2V

ry= 4-11

For the case of 7.7-MeV a particles, the distance of closest approach for a head-on
collision is

A4 eV -nm

rg= ('*—W——"—z)(?,;(; IOi:Vn ) =3X 10 mm=3%X10""m

For other collisions, the distance of closest approach is somewhat greater, but for o par-
ticles scattered at larpe anglés it is of the same order of magnitude. The excellent agree-
ment of Geiger and Marsden's data at large angles with the prediction of Equation 4-6
thus indicates that the radius of the gold nucleus is no larger than about 3 X 10~ m. If
higher-energy particles could be used, the distance of closest approach would be
smaller; and as the energy of the o patticles increased, we might expect that evenually
the particles would penetrate the nucleus. Since, in that event, the force law is no longer
F = kq,0ir?, the data would not agree with the peint-nucleus calculation, Rutherford
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h Hm‘ilnun‘i
I )
E%m -—{7,(7 E .
212 osh- j_ bl
0

0 06 08 10 1.2 14 16 18
s 1074 m

did not have higher-energy « particles available, but he could reduce the distance of
dosest approach by using targets of lower atomic numbers.® For the case of aluminum,
with Z = 13, the most energetic a particles that he had available (7.7 MeV from 2'*Bi),
scattered at large angles did not follow the predictions of Equation 4-6. However, when
their kinetic energy was reduced by passing the beam through thin mica sheets of vari-
ous thicknesses, the data again followed the prediction of Equation 4-6. Rutherford’s
data are shown in Figure 4-14. The valve of r; (calculated from Equation 4-11) at
which the data begin to deviate from the prediction can be thought of as the surface of
the nucleus. From these data, Rutherford estimated the radius of the aluminum nucleus
to be about 1.0 X 107" m. (The radius of the Al nucleus is actually about 3.6 X
107" m. See Chap. 11.)

A unit of length convenient for describing nuclear sizes is the fermi, or fem-
wometer (fm), defined by | fm = 10~1* m. As we shall see in Chapter 11, the nuclear
radius varies from about 1 to 10 fim from the lightest to the heaviest atoms.

EXAMPLE 4-3 Rutherford Scattering at Angle @ In a perticular experiment,
ne particles from 2%Ra are scattered at § = 45° from a silver foil and 450 particles
are counted each minute at the scintilladon detector. If everything is kept the same
except that the detector is moved to observe particles scattered at 90°, how many
will be counted per minute?

Solution
Using Equation 4-6, we have that AN = 450 when 8 = 45°, but we don't have any

of the other parameters available. Letting all of the quantities in the parentheses
equal a constant C, we have

AN = 450 = Csin™* (%:)
of
C =450 sin‘(4—5:)
2
When the detector is moved to 8 = 90, the value of C is unchanged, so

o0° 45° 90°
= Csin-qd =] = ; ti_ -l 22
AN = Csin (2) 450 sin 2)sm (2)

= 38.6 =~ 39 particles/min

Fig. 4-14 Data from

Rutherford's group showing
observed o scattering al a |
large fixed angle versus !
values of ry computed from

Equation 4-11 for various

kinetic energies.
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FXAMPLE 4-4 Alpha Scattering A beam of o panicles with E, = 6.0 Mey
impinges on a silver foil 1.0 wm thick. The beam curment is 1.0 nA. How many
« parucies wlil De counted by a small scintllation detector of area equal to
5 mm? {ocated 2.0 cm from the foil at an angle of 75°7 (For silver Z = 47, p =
10.5 gm/cm®, and M = 108.)

Solution
1. The number counted AN is given by Equation 4-6:

AN = (IQA,cm) (_kzil)z 1
2 2E,/ sin*(812)

2. Since each a particle has g, = 2¢, {is:

I = (L0 X 107* AX2 X 1.60 X 107" Cla)!
=3.12 X 10° afs

3. The kinetic energy of each o is:

E, = (6.0 MeV)(1.60 X 1071 IMeV)
=9.60x10°1]

4. Fursiiver, n is given by:

n = pN.J/M
(110.5 giem®)(6.02 X 10 atoms/mol)
N 108 g/mol
= 5.85 X 10?2 atoms/em’® = 5.85 X 10% atoms/m®

5. Substituting the given values and computed results into Equation 4-6 gives
AN:

(312 X 10° a/s)5 X 107 m?)(5.85 X 10% atoms/m’) (10~ m)
- (2 X 10722 sin* (75%2)
[(9 x 10°M47)(1.60 X 10~ '9)2]
(2)9.60 X 1071

AN

= 528 as

f EXAMPLE 4-5 Radius of the Au Nucleus The radius of the gold (Au) nucieus
. has been measured by high-energy electron scattering as 6.6 fm. What kinetic
. energy a particles would Rutherford have needed so that for 180° scattering, the
& o particle would just reach the nuclear surface before reversing direction?
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From Equation 4-11, we have

I Solution

Lo kaQ (O X 10)2)T9(LE X 107
2™ r 66 % 1077
= 552X 10712] = 34.5 MeV,

Alpha particles of such energy are not emitted by naturally radioactive materials
and hence were not accessible to Rutherford. Thus, he could not have performed
an experiment for Au equivalent to that for Al iliustrated by Figure 4-14.

QUESTIONS

1. Why can't the impact parameter for a particular « particle be chosen?
2. Why is it necessary to use a very thin target foil?

3. Why could Rutherford place a lower limit on the radius of the Al nucleus but
not on the Au nucleus?

4. How could you use the data in Figure 4-12a to determine the charge on a sil-
ver nucieus relative to that on a gold nucleps?

5. How would you expect the data (not the curve) to change in Figure 4-12 if the
foil were so thick that an appreciable number of gold nuclei were hidden
from the beam by being in the “shadow” of the other gold nuclei?

4-3 The Bohr Model of the Hydrogen Atom

In 1913, the Danish physicist Niels H. D. Bohr'® proposed a model of the hydrogen
atorn which combined the work of Planck, Einstein, and Rutherford and was remark-
ably successful in predicting the observed spectrum of hydrogen. The Rutherford

Niels Bohr explains & point in

front of the blackboard }
(1956). [American Institure of ,
FPhysics, Niels Bohr Library,
Margrethe Bohr Collection.)
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Fig. 4-15 {(a) In the classical
orbital model, the electron
orbits about the nucleus and
spirals into the center

: because of the energy radi-

| ated. (b) In the Bohr model,

: the electron orbits without
radiating until it jumps to
another allowed radius of
lower energy, at which time
radiation is emirted.

model assigned charge and mass to the nucleus but was silent regarding the distriby-
tion of the charge and mass of the electrons. Bohr, who had been working in Ruther-

o o v .
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that the electron in the hydrogen atom moved in an orbit about the positive nucleus,
bound by the electrostatic attraction of the nucleus. Classical mechanics allows circu-
lar or elliptical orbits in this system, just as in the case of the planets orbiting the sun,
For simplicity, Bohr chose to consider circular orbits.

Such a model is mechanically stable, because the Coulomb potential V =
—kZg¥r provides the centripetal force

kzel 2
=== 412

F=
r e
necessary for the electron to move in a circle of radius r at speed v; but it is electri-
cally unstable because the electron is always accelerating toward the center of the
circle. The laws of electrodynamics predict that such an accelerating charge will radi-
ate light of frequency f equal to that of the periodic motion, which in this case is the
frequency of revolution. Thus, classicatly,

LV _(kZe’)'” 1 _(kZe’)'”_l 1 13
T 2w m/) 2ur \an'm/ 2 R

The total energy of the electron is the sum of the kinetic and the potential energies:

[T JVAY

mvz+(-—-—)

r

1
E=
2
From Equation 4-12, we see that 3 m? = kZe?2r (a result that holds for circular
motion in any inverse-square force field), so the total energy can be written as

E=— - =22 — 414

Thus, classical physics predicts that, as energy is lost to radiation, the electron’s orbit
will become smaller and smaller while the frequency of the emitied radiation wil
become higher and higher, further increasing the rate at which energy is lost and end-
ing when the electron reaches the nucleus. {See Figure 4-15a.) The time required for
the electron to spiral into the nucleus can be calculated from classical mechanics and

G )
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electrodynamics; it turns out to be less than a microsecond. Thus, at first sight, this
maodel predicts that the atom will radiate a continuous spectrum (since the frequency
OF TCYUILUIUI LIMULECS CLHILBUGLSTY 4% € SIECTION SpIrals 1n} ang will collapse atter a
very short time, a result that fortunately does not occur. Unless excited by some
external means, atoms do not radiate at all; and when excited atoms do radiate, a line
spectrum is emitted, not a continuous one.

Bohr “solved” these formidable difficulties with two decidedly nonclassical pos-
twlates. His first postulate was that electrons could move in certain otbits without
radiating. He called these orbits starionary states. His second postulate was to assume
that the atom radiates when the electron makes a transition from one stationary state
to another (Figure 4-156) and that the frequency f of the emitted radiation is not t
frequency of motion in either stable orbit but is related to the energies of the orbits by
Planck's theory

hf = E; — E 415

where k is Planck’s constant and £, and E; are the energies of the initial and final
states. The second assumption, which is equivalent to that of energy conservation
with the emission of a photon, is crucial because it deviated from classical theory,
which requires the frequency of radiation to be that of the motion of the charged par-
ticle. Equation 4-15 is referred to as the Bohr frequency condition.

In order to determine- the energies of the -allowed, nonradiating orbits, Bohr
made a third assumption, now known as the correspondence principle, which had
profound implications;

In the limit of large orbits and large energies, quantum calculations must
agree with classical calculations.

Thus the correspondence principle says that, whatever modifications of classical
Physics are made to describe matter at the submicroscopic level, when the results
are extended to the macroscopic world they must agree with those from the classi-
cal laws of physics that have been so abundantly verified in the everyday world,
While Bohr's detailed mode) of the hydrogen atom has been supplanted by modern
Quantumn theory, which we shall discuss in later chapters, his frequency condition
(Equation 4-15) and the correspandence principle remain as essential features of
the new theory.

In his first paper,!! in 1913, Bohr pointed out that his results implied that the
“ﬂgl_llar momentum of the electron in the hydrogen atom can take on only values that
ire integral multiples of Planck’s constant divided by 2, in agreement with a dis-
‘overy made a year earlier by J. W, Nicholson. That is, angular momentum is guan-
L'Iﬂi.‘ v it can assume only the values nh/2m, where n is an integer, Rather than follow
the intricacies of Bohr's derivation, we shail us¢ the fundamental conclusion of angu-
AT momenturn quantization o find his expression for the observed spectra. The
de""Blﬁpmx:nt that follows appiies not only to hydrogen, but to any atom of nuclear
cha{gﬁ +Ze¢ with a single orbital electron—e.g., singly ionized helium He*, or dou-
bly ionized lithium Li**.

i If the nuclear charge is +Ze and the electron charge —e, we have noted (Equa-

.l;m 4‘_12) that the centripetal force necessary to move the electron in a circular orbit

Drll:i“‘maed by the Coulomb force kZe2/r. Solving Equation 4-12 far the speed of the
ling electron yields
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Bohr's quantization of the angular momentum L is

L nh
= mvr = —
" 2

= nh n=123 - - 4-17

where the integer n is called a quantum number and & = k/21. (The constant A, read
“h-bar." is often more convenient to use than A itself, Just as the angular Irequency
w = 2nf is often more convenient than the frequency £) Combining Equations 4-16
and 417 allows us to write for the circular otbits:
_nh nh ( m )"2
T my  m \kZe

Squaring this relation gives

,2_if‘2(."’.l)
T om? \kZe

and canceling common quantities yields

= :Z; - n’?ao 418
where
ﬁz
=== 0.5294 = 0.0529 nm . 419
i¢ catled the Bohr radins. Thus, we find that the stationary orbits of Bohr's first pos-

tulate have quantized radii, denoted in Equation 4-18 by the subscript on 7,. Notice
that the Bohr radius g, for hydrogen (Z = 1) corresponds to the orbit radius with
n = 1, the smallest Bohr orbit possible for the electron in a hydrogen atom. Since
r, ~ Z!, the Bohr orbits for single-electron atoms with Z > 1 are closer to the
nucleus than the corresponding ones for hydrogen.

The total energy of the electron (Equation 4-14) then becomes, upon substitution
of r,, from Equation 4-18,

g = K _Q(E_Z’f)
" o, 2\ ntA?
L A z?
,=—W=—DF n=123 - .- 4.20

where Eg = mi2e*/2h2, Thus, the energy of the electron is also quantized, i.e., the
stationary states correspond to specific values of the total energy. This means that
energies E; and E; that appear in the frequency condition of Bohr’s second postulate
must be from the allowed set E, and Equation 4-15 becomes

4-3 Tre Bour Mopel oF THE HYDROGEN ATOM

. . Z? Lz
W= E, - E,= —fﬂ;—(—an—,)

ny

_6Z(1 1)
=g 421

i

which can be written in the form of the Rydberg-Ritz equation (Equation 4-2) by

SUDSLIULIG | ™ Lrat QLG Gie g o] v b arssss

or
1. Z'R (lz - Lz) 4-22
1y nf n;
where
Ey  miet
R=—=ocr— 4.23
he  4mch?

is Boht's prediction for the value of the Rydberg constant.

Using the values of m, e, ¢, and # known in 1913, Bohr calculated R and found
his result 1o agree (within the limits of uncertainties of the constants) with the value
obtained from spectroscopy, 1.097 X 107 m™~', Bohr noted in his original paper that
this equation might be valuable in determining the best values for the constants ¢, m,
and £ because of the extreme precision possible in measuring R. This has indeed
turned out to be the case, ’

The possible values of the energy of the hydrogen atom predicted by Bohr's
modei are given by Equation 4-20 with £ — 1:

mkle Ey
2

E,=-—p33=" 424

mke _
W = 2j18 X 107"8) = 13.6eV

Ey =
is the magnitude of E, with n = §. E, (= —E,) is called the ground state. It is conve-
nient to plot these allowed energies of the stationary states as in Figure 4-16. Such
a plot is called an energy-level diagram. Various series of transitions between the
stationary states are indicated in this diagram by vertical arrows drawn between
the levels. The frequency of light emitted in one of these transitions is the energy
difference divided by h according to Bohr's frequency condition, Equation 4-15,
Thc energy required to remove the electron from the atom, 13.6 eV, is called the ion-
Yalion erergy, or binding energy. of the electron.
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Fig. 4-16 (a) Encrgy-level diagram for hydrogen showing the seven lowest stationary states and the four lowest energy transi-
tiona each for the Lyman, Balmer, and Paschen series. There are an infinite number of levels. Their energies are given by E, =
—13.6/n? 2V, where » is a1 integer. The dashed lint shown for cach serics is the series fimis, corresponding io ilie cnergy that
would be radiated by an electron at rest far from the nucteus (n — <) in & transition to the state with n = r, for that series. The
horizontal spacing between the transitions shown for each series is proportional to the wavelength spacing between the bines of
the spectrum. (&) The spectral lines corresponding to the transitions shown for the three series. Notice the regularities within
each series, particularly the short-wavelength limit and the successively smaller separation belween adjacent lines as the limit is
approached, The wavelength scale in the diagram is not linear,

A bit different sort of At the time Bohr's paper was published there were two spectral series known
application, the Bohr- for hydrogen: the Balmer series, corresponding to i, =2, n,= 3, 4,5, . . . and
Rutherford model of the a series named after its didcoverer, Paschen (1908), corresponding to n = 3 m=

nuclear atom and electron 4,5, 6, . Equation 4-22 indicated that other series should exist for different

orbits is the picture that, for ~ valoes of "f. In 1916 Lyman found the series corresponding to n, = 1, and in 1922
millions of people, provides  and 1924 Brackett and Pfund, respectively, found series corresponding to n; = 4 and
ny= 5. As can be easily determined by computing the wavelengths for these series,
only the Balmer series lies primarily in the visible portion of the electromagnetic
spectrum. The Lyman series is in the ultraviolet, the others in the infrared.

their link to the world of
the atom and subatomic
phenomena.
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EXAMPLE 4-6 Wavetength of the 1, Line Compute the wavelength of the Hy
spectral line, i.e., the second fine of the Baimer series predicted by Bohr's model.
The H line is emilted in the transition fromn, = 4o, = 2.

Solution
1. Method I: The wavelength is given by Equation 4-22 with Z = 1:

1 1 1)
:’R(E*E

A

2. Substituting R = 1.097 X 107 m~' and the values of n, and a;:

== (1097 x 10’)(— - %)

or
A =4.86x 1077 = 486 nm
3. Method 2: The wavelength may also be computed from Equation 4-15:
hf=hc/h = E; — B
or

11
—=—(E, — E
N B TE

4, The values of E; and E, are given by Equation 4-24:

136V _ 136eV

= ———— = ——— — = —085eV
iy -+
136 eV 136 eV
= — -34eV
f "} 2?2

5. Substildtling these into Equation 4-15 yields:

1 _[-0B5eV — (34 eV)](1.60 x 10-17 J/eV)

A (663 X 107%]1.5)(3.00 X 10°m /s)
=2050 X 10 m~'

or
A =487 X 107" m = 487 nm

Remarks: The difference in the two results is due to rounding of the Rydberg con-
stant {o three decimal places.

1#1
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Reduced Mass Correction

The assumption by Bohr that the nucleus is fixed is equivalent to the assumption that
it has infinite mass. In fact, the Rydberg constant in Equation 4-23 is normally writ-
ten as R, as we will do henceforth, If the nucleus has mass M its kinetic energy will
be JMvi = pY2M, where p = Mv is the momentum. §f we assume that the total
momentum of the atom is zero, conservation of momentum requires that the
momenta of the nucleus and electron be equal in magnitude. The total kinetic energy

is then
2 +
E**,.P_.;.E._M mp1=_Pi
M Im ImM 2u
where
mM m

4.25

B T M 1+ mM

This is slightly different from the kinetic energy of the electron because ., called
the reduced mass, is slightly different from the electron mass. The results derived
above for a nucleus of infinite mass can be applied directly for the case of a nucleus
of mass M if we replace the electron mass in the equations by reduced mass p,
defined by Equation 4-25. (The validity of this procedure is proven in most interme-
diate and advanced mechanics books.) The Rydberg constant (Equation 4-23) is
then written

philet mk’e‘{l) (1)
anch!  Anch\l + miM R 1+ miM 426

R=

This correction amounts to only 1 part in 2000 for the case of hydrogen and to
even less for other nuclei; however, the predicted variation in the Rydberg constant
from atom to stom is precisely that which is ohserved. For example, the spectrum
of a singly ionized helium atom, which has one remaining electron, is just that
predicted by Equations 4-22 and 4-26 with Z = 2 and the proper helivm mass. The
current value for the Rydberg constant R, from precision spectroscopic measure-
ments'? is

R.= 10973731 X 107 m™! 4-27

Urey'® used the reduced mass correction to the spectral lines of the Baimer series
to discover (in 1931) a second form of hydrogen whose atoms had twice the mass of
ordinary hydrogen. The heavy form was called deuterium. The two forms, atoms
with the same Z but different masses, are called isotopes.

EXAMPLE 4-7 Rydberg Constants for H and He* Compute the Rydberg
constants for H and He* applying the reduced mass correction (e = 9.1094 X
1073 kg, m,

= 1.6726 X 10"% kg, m, = 6.6447 X 10777 kg).

4-3 THe Bour Mok oF ThE HYDROGEN AToM

Solution
For hydrogen:

el s
1 + miM, b+ 9.1094 % 1073%1.6726 X 1077
= 1.09677 X 107m"!

For helium: Since M in the reduced mass correction is the mass of the nucleus, for
this calculation we use M equal to the o particle mass.

1
Rpe = v
fe ™ (1+91094x10 16,6447 X 10- “) 109752 % 10°m

Thus the two Rydberg constants differ by about 0.07 percent.

Correspondence Principle

According to the correspondence principle, which applies also to modem quantum
mechanics, when the energy levels are closely spaced, quantization should have little
effect; classical and quantum calculations should give thé same results. From the
encrgy-level diagram of Figure 4-16, we see that the energy levels are close together
when the quantum number n is large. This leads us to a slightly different statement of

Boh’s comespondence principle: in the region of very large quantim numbers (# in

this case) classical calculation and quantum caiculation must yicld the same results,
To see that the Bohr model of the hydrogen atom does indeed obey the correspon-
dence principle, let us compare the frequency of a transition between level n, = n and
level n, = n — 1 for large n with the classical frequency, which is the frequency of
revolution of the electron. From Equation 4-22 we have

jac Bme 1 1] _Zmfe o1
A n—17 n? 4k’ rin - 1Y
ted from »# and 2# 1o obtain
_Zmie' 2 _ Zmkdet

4k} nd 2hiwd

f 4-28

The classical fmquencf of revolution of the electron is (see Equation 4-13)

v

o

Using v = nft/mr from Equation 4-17 and r = n?h%mkZe® from Equation 4-18, we
obtain

(nfilmr) _ nh nh
nr 2wme 21rm(n2fi21'mk2.'ez)2
et miiZ%

Je = amn*E* 2nkin’ -

frev

which is the same as Equation 4-28.
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Fine-Structure Constant

The demonstration of the correspondence principle for large n in the preceding para-
graph was for An = n, — n, = 1, however, we have seen (see Figure 4-16) that transj.
tions occur in the hydrogen atom for An = | when n is small, and such transitions
should occur for large #, too. If we allow An = 2,3, . _ . for large values of n, then
the frequencies of the emitted radiation would be, according to Bohr’s model, integer
multiples of the frequency given in Equation 4-28. In that event, Equations 4-28 and
4-29 would not agree. This disagreement can be avoided by allowing elliptical
orbits.* A result of Newtonian mechanics, familiar from planetary motion, is that in
an inverse-square force field, the energy of an orbiting particle depends only on the
major axis of the ellipse and not on its eccentricity. There is consequently no change
in the energy at all unless the force differs from inverse square or unless Newtonian
mechanics is modified. A, Sommerfeld considered the effect of special relativity on
the mass of the electron in the Bohr model in an effort to explain the observed fine
structure of the hydrogen spectral lines.'* Since the relativistic corrections should be
of the order of v¥/c? (see Chapter 2), it is likely that a highly eccentric orbit would
have a larger correction, because v becomes greater as the electron moves nearer the
nucleus. The Sommerfeld calculations are quite complicated, but we can estimate the
order of magnitude of the effect of special relativity by calculating v/c for the first
Bohr orbit in hydrogen. For n = 1, we have from Equation 4-17 that mvr, = A. Then,
using r, = ay = hi%mke’, we have

h h ke?

YT mibimkeh .k

and

v ke |.44eV-nm i
_— o —

—=— = = 4-30
¢ hc 1973eV.om 137
where we have used another convenient combination
1.24 X P eV-
fio= L X ITEVIM 4736V onm 4n

2%

The dimensionless quantity ke*/fic = « is called the fine-structure constant because
of its first appearance in Sommerfeld's theory, but, as we shall see, it has much more
fundamental importance.

Though v¥c? is very small, an effect of this magnitude is observable. In
Sommerfeld’s theory, the fine structure of the hydrogen spectrum is explained in the
following way. For each allowed circular orbit of radius #, and energy E,, a set of
n elliptical orbits is .possible of equal major axes but different eccentricities. Since
the velocity of a particle in an elliptical orbit depends on the eccentricity, so then will
the mass and momentum, and therefore the different ellipses for a given a will have
slightly different energies. Thus, the energy radiated when the electron changes orbit
depends slightly on the eccentricities of the initial and final orbits as well as on their
major axes. The splitting of the energy levels for a given n is called fine-structure
splitting, and its value turms out to be of the order of V¥c? = o?, just as Sommerfeld
predicted. However, the agreement of Sommerfeld's prediction with the observed
fine-structure splitting was quite accidental and led to considerable confusion in the

4-3 TnEe Bonr Moo or v HynroGen Aron

early days of quantum theory. Although he had vsed the relativistic mass and
momentum, he computed the energy using classical mechanics, leading to a correc-
tion much larger than that actually due only to relativistic effects. As we shall see in
Chapter 7. fine structure is associated with a completely nonclassical property of the
slectron called spin.

A lasting contribution of Sommerfeld's effort was the introduction of the fine-
structure constant o = ke*/hc=1/137. With it we can write the Bohr radius 4, and the
quantized energies of the Bohr mode! in a particularly elegant form. Equations 4-24
and 4-19 for hydrogen become

mket 2 md |
En TR AT T2 %R 432
2
ay = ®oe_Al 433

Since o is a dimensionless nomber formed of universal constants, aff observers will
measure the same value for it and find that energies and dimensions of atomic sys-
tems are proportional to o and 1/a, respectively. We will return to the implications
of this intriguing fact later in the book.

Exploring

Giant Atoms

Giant atoms called Rydberg atoms, long understood to be a theoretical possibility
F and first detected in interstellar space in 1965, are now being produced and stud-
 ied in the laboratory. Notice in Equation 4-18 that the radius of the electron orbit
s r, o 12 and # can be any positive integer, so the diameter of a hydregen atom {or
" any other atom, for that matter) could be very large, a millimeter or even a meter!
¢ What keeps such giant atoms from being common is that the energy difference
between adjacent allowed energy states s cxtremely small when » is large and
. the allowed states are very near the £, = 0 level where ionization occurs, because
E, « 1/n%. For example, if n = 1000 the diameter of a hydrogen atom would be
Fioos = 0.1 mm, but both E| g and the difference in energy AE = Ejgq — Ejpx are
about 10-* eV! Thit energy is far below the average energy of thermal motion at
ordinary temperatures {about 0.025 V), so random collisions would quickly ion-
ize an atom whose electron happened to get excited to a level with n equal to 20 or
50 with r still only about 10~%m.

The advent of precisely tunable dye lasers in the 1970s made it possible to
nudge electrons carefully into orbits with larger and larger n values. The largest
" Rydberg atoms made so far, typically using sodium or potassium, are 10,000 times
" the diameter of ordinary atoms, about 20 wm across or the size of a fine grain of
sand, and exist for several milliseconds inside vacuum chambers. For hydrogen,
this corresponds to quantum number » = 600. An electron moving so far from the
nucleus is bound by a minuscule force. This provides several intriguing possibili-
ties. For example, very small electric fields might be siudied, enabling the tracking
of chemical reactions that procead too quickly to be followed otherwise. More dra-
matic is the possibility of directly testing Bohr’s correspondence principle by
directty observing the slow (since v « I/n} movement of the electron around the

IRA



186 Chapter 4 The Nuclear Atom

Henry G.-J. Moseley.
[Courtesy of University of
Manchester|

. large 2 orbits—the transition from quantum mechanics 10 classical mechanics.
Computer simulations of the classical motion of a Rydberg electron "wave” (see
Chapter 5) in orhit around a nucleus are aiding in the design of experiments to
. observe the correspondence principle,

QUESTIONS
6, If the electron moves in an orbit of greater radius, does its total energy

- P . .
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7. What is the energy of the shortest-wavelength photon that can be emitted by
the hydrogen atom?

8. How would you characterize the motion and location of an electron with
E = 0 and r — < in Figure 4-167

4-4 X-Ray Spectra

The extension of the Bohr theory to atoms mote complicated than hydrogen proved
difficult. Quantitative calculations of the energy levels of atoms of more than one
electron could not be made from the model, even for helium, the next element in the
periodic table. However, experiments by H. Moseley in 1913 and J. Franck and
G. Hertz in 1914 strongly supported the generat Bohr-Ruthetford picture of the atom
as a positively charged core surrounded by electrons that moved in quantized energy
states relatively far from the core. Moseley’s analysis of x-ray spectra will be dis-
cussed in this section, and the Franck-Hertz measurement of the transmission of elec-
trons through gases will be discussed in the next section.

Using the methods of crystal spectrometry that had just been developed by
W. H. Bragg and W. L. Bragg, Moseley'® measured the wavelengths of the character-
istic x-ray line spectra for about 40 different target clements. (Typical X-ray spectra
were shown in Figure 3-18.) He noted that the x-ray line spectra varied in a regular
way from element to element, unlike the irregular variations of optical spectra.
He surmised that this regular variation occurred because characteristic x-ray spec-
tra were due to transitions involving the inmermost electrons of the atoms. (see Fig-
ure 4-17.) Because the inner electrons are shielded from the outermost electrons by
those in intermediate orbits, their energies do not depend on the complex interactions
of the outer electrons, which are responsible for the complicated optical spectra.
Furthermore, the inner electrons are well shiclded from the interatomic forces which
are responsible for the binding of atoms in solids.

According to the Bohr theory (published earlier the same year, 1913), the ehergy
of an electron in the.first Bohr orbit is proportional to the square of the nuclear
charge (see Equation 4-20). Moseley reasoned that the energy, and therefore the fre-
quency, of a characteristic x-ray photon should vary as the square of the atomic num-
ber of the target clement. He therefore plotted the square root of the frequency of a
particular characteristic line in the x-ray spectrum of various target elements versus
the atomic number Z of the element, Such a plot, now called a Moseley plot, is shown
in Figure 4-18 (page 188). These curves can be fitted by the empirical equation

F? = AfZ - b) 4-34
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where A, and & are constants for each characteristic x-ray line. One family of lines,
talled the K series, has b = 1 and slightly different values of A, for each line in the
graph. The other family shown in Figure 4-18, called the L series,? could be fitted by
Equation 4-34 with b = 7.4.

If the bombarding eléctron in the x-ray tube knocks an electron from the inner
orbit (n = 1) in a target atom completely out of the atom, photons will be emitted
comtesponding to transitions of clectrons in other orbits (=2, 3, . . ) to fill
the vacancy in the n = 1 orbit, (See Figure 4-17.) (Since these lines are called the
K series, the n = 1 orbit came to be called the X sheil) The lowest-frequency line
corresponds 1o the iowest energy iransiiion {7 = 2 1 & = 1}. This line is called the
K, line. The transition # = 3 to n = 1 is called the Kj, line. It is of higher energy, and
hence higher frequency, than the K, line, A vecancy created in the n = 2 orbit by
emission of & K, x ray may then be filled by an electron of higher energy, ¢.g., one
in the n = 3 orbit, resulting in the emission of a line in the L series, and so on.
The multiple L lines in the Moseley plot (Figure 4-18) are due in part to the fact that
there turn out to be small differences in the energies of electrons with e given n that
ate not predicated by the Bohr model. Moseley's work gave the first indication of
these differences, but the explanation will have to await our discussion of more
advanced quantum theory it Chapter 7.

Using the Bohr relation for a one-tlectron atom (Equation 4-21) with n, = 1, and
using (2 - 1) it place of Z, we obtain for the frequencies of the K series

_ mide! z(_l__l)_ _ ( AL)
f= @ -G~ ) = RlZ - DAL - 435

where R, is the Rydberg constant. Comparing this with Equation 4-34, we see that
A, is given by

Fip. 4-17 A stylized picture
of the Bohr circular arbits for
r =122 and 4. The radii
r, == r’. In a high-Z clement
(elements with Z = |2 emnit
x rays), electrons are distrib-
uted aver all the orbits
shown. Should an electron in
the n = 1 orbit be knocked
from the atom, ¢.g., by being
hit by a fast electron acceler-
ated by (Me VONAge aCTOSS an
x-Tay tube, the vacancy thus
produced is filled by an
¢lectron of higher energy
(i.e., n = 2 or higher), The
difference in energy between
the two orbits is emitted as a
photon, according to the
frequency condition, whose
waveletigth will be in the
x-1ay region of the spectrum,
if Zis large enough.
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1 IRV
A= CRQ,(I - ;) 4-36 ! [(1.097 X 107m '}(41)2(1 - E)] =723 % 107" m = 0.0723 nm
w
The wavelengths of the lines in the K series are then given by This value is within 0.3 percent of Moseley’s measurement and agrees well with
that in Figure 3-185.
A=S= c _ 1
TfoAz-1w 1 437
roAd ) RAZ — l)’(l - —2) The fact that f is propottional to (Z — 1) rather than to Z? is explained by the
” pamal shleldmg of the nuclcar charge by the other e]ecr.mn l'emammg in the X shell
LLIN SRR pas -~ rry ll'ﬁIr' ] Ly

[ i

- - - e PG

cluded that smce b= 7 4 for the L seties, these Emes mvolved elac(rons farther from
the nuclens, which “saw"” the nuclear charge shielded by more inner electrons.
Assuming that the L sen'es was due to transitions to the n = 2 shell, the frequencies
for this series are given by

EXAMPLE 4.8 K, for Molybdenum Calculate the wavelength of the X, line of
molybdenum (Z = 42), and compare the result with the value A = 0.072] nm
measured by Moseley and with the spectrum in Figure 3-185.

Solution
Usingn = 2, R, = 1.097 X 10’ m™", and Z = 42 we obtain f= CRm(% - lz)(z ~ 747 4-38
n
Wavelength, A
Z B654 3 2 15 10908 07 06 where n = 3,4, 5,
roar | I L P R E Before Moseley 5 work the atomic number was merely (he place nuraber of the
;:2: —Tmr F /’ Y element in Mendeleev’s periodic table of the element arranged by weight. The exper-
24w 7 imertts of Geiger and Marsden showed that the nuclear charge was approximately
oLy —o%a_p- / Af2, while x-ray scattering experiments by Barkla showed that the number of elec-
70Tmill ;;'l\f:nl = - A trons in an atom was approximately A/2. These two experiments are consistent, since
BOEr ~&0s £ / ‘ the atom as a whole must be electrically neutral. However, several discrepancies
66Ho T85Tb L series were found in the periodic table as arranged by weight. For example, the 18th ele-
:;g:. 63Eu |- . ment in order of weight is potassium (39.102), and the 19th is argon (39.948).
eoNg —o__ 1o ] Arrangement by weight, however, puts potassium in the column with the inert gases
, sage %E and argon with the active metals, the reverse of their known chemical properties.
1 £6Ba -
¢ 54Xe __55Cs =
52T _5a
505N i;ﬁb - . Fig. 4-F9 Characreristic x-ray
480d —r spectra, (2} Part of the spectra
4BPd %—E A of neodymium (Z = 60} and
Fig. 4-18 Moseley's plots of 44Ru B F / samarium (Z = 62). The two
the square root of frequency 42Me 4o E _ pairs of bright lines are the X,
versus Z for characteristic 40Zr 3y - - / s and Ky lines. (b) Part of the
x rays. When an atom is 288r “aRb spectrum of the artificially
bombarded by high-encrgy 38K —op T / produced element prome-
electrons, an inner atomic g;g: WE thium (Z = 61). This element
electton is sometimes 30Zn 3168 |- / o was first positively identified
knocked out, leaving a 20N 28Cu |~ Vﬁ in 1945 at the Clinton Lzbora-
vacancy in the inner shell. ogFe —27C0 C tory (now Ouk Ridge). lts K,
The K-series X rays are pro- 24Cr ._2_235%"2_: / K sories and Kj lines fall between
duced by atomic transitions gom —=X__©& those of neodymium and
to vacancies in the # = 1 (K) 20Ca _%E Aokl e . samarium, just as Moseley
: shell, whereas the L series is 18A 76 F predicted. (c) Part of the spec-
produced by transitions to 185 —ymE 1 tra of all three of the elements
"‘. the vacancies in the n = 2 148 W% neodymium, promethium, and
: (L) shell. [From H. Moseley, samarium. [Courtesy of

=@
-]

' Philosophical Magazine (6), o 12 14 16 18 20 22 24
27, 713 (1944)) Square roat of frequency, 108 Hz1?

1. A. Swartour, Oak Ridge
National Laboratory.}
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! H Moseley showed that for these elements to fall on the line f'7 versus Z. argon had to electron, €.g., one in the # = 3 shell. Since the magnitude of F, < AE, the n = 3
: i have Z = 18 and potassium Z = 19. Arranging the clements by the Z number electron would leave the atom with a characteristic kinetic energy AE — 1 E |,
! i obtained from the Moseley plot, rather than by weight, gave a periodic chart in com- which is determined by the stationary-state enesgies of the particular atom.'® Thus,
by plete agreement with the chemical properties. Moseley also pointed out that there each element has a characteristic Auger electron spectrum. (See Figure 4-20a.)
' ;; were gaps in the periodic table at Z = 43, 61, and 75, indicating the presence of Measurement of the Aunger electrons provides a simple and highly sensitive tool
B undiscovered elements. All have subsequently been found. Figure 4-19 illustrates the for identifying impurities on clcan surfaces in electron microscope systems and
discovery of promethium (Z = 61). investigating electron energy shifts associated with molecular bonding. (See
Figure 4-20b.)
A Pt
< nu‘év- S L Vg “ ‘-_ .
The process of producing x rays necessarily results in the ionization of the atom, ) n
' since an inner electron is ejected. The vacancy created is filled by an outer electron, 9. Why did Moscley plot.f'* versus Z rather than f versus Z7
! producing the x rays studied by Moseley. In 1923 Pierre Auger discovered that, as
! an alternative to x-ray emission, the atom may eject a third electron from a higher-
’ energy outer shell via a radiationless process called the Auger effect. In the Auger
(pronounced “oh-zhay™) process, the energy difference AE = E;, —E; that counid .
have resulted in the emission of a K, x ray is removed from the atom by the third 4-5 The Franck-Hertz Experlment
While investigating the inelastic scattering of electrons, J. Franck and G. Hentz™ per-
(@ @ [T T T T T formed an important expetiment that confirmed by direct measurement Bohr's :
cu hypothesis of energy quantization in atoms. First done in 1914, it is now a standard 1
Aloic umbsr 29 Elemental Al . undergraduate laboratory experiment. Figure 4-21a is a schematic diagram of the :
apperatus. A small heater heats the cathode. Electrons are ¢jected from the heated cath-
| ] ode and accelerated toward a grid, which is at & positive potential V;, relative to the cath-
% ode. Some electrons pass through the grid and reach the plate P which is at a slightly
iy lower potential ¥, = V, — AV, The tube is filled with a low-pressure gas of the element
¢ Pt
I
(a)
Ar 678 1086
734 968
110
;*; 78 o4z [T A TN N B S
) i $2R0 1300 1320 1340 1380 1380 1400 142¢
% a2 Kinetic energy (eV)
\ 1T
922 Fig. 4-21 (a) Schematic diagram of the Franck-Hertz experiment. Electrons ejected from the heated cathode C at zero poten-
2tl)0 “Im 81:‘)0 aéo ; 0100 tial are drawn to the positive grid G. Those passing through the holes in the grid can reach the plate P and thercby contribute
Kineti - to the current I, if they have sufficient kinetic energy to overcome the small hack potential AV, The tube contains a low-
inetlc energy (sV) pressure gas of the element being studied. (5} Results for hydrogen, If the incoming electren does not have sufficient energy to
' Fig. 4-20 (2) The Auger spectrum of Cu bombarded with 10-keV electrons. The energy of the Auger electrons is more precisely transfer AE = E; — E| to the hydrogen electron in the n = 1 orbit (ground state), then the scattering will be elastic, If the
: b determined by plotting the weighted derivative E dMEVAE of the electron intensity rather than the ittensity N(E}. (&) A portion incoming electron does have at least AF kinetic energy, then an inelastic collision can occur in which AE is transferred to the
! of the Auger spectrum of Al from elemental Al and Al oxide. Note the energy shift in the largest peaks resulting from adjustments r = 1 electron, moving it to the n = 2 orbit. The excited electron will typically retum to the ground state very quickly,

! in the Al electron shell energies in the Al;0, molecule, emitting a photon of energy AE.
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being investigated (mercury vapot, in Franck and Hertz's experiment). The experimeny
involves measuring the plate current as a function of Vj,. As Vy, is increased from 0, the
current increases until a critical value (about 4.9 V for Hg) is reached, at which point the
current suddenly decreases. As V) is increased further, the current rises again.

The explanation of this result is a bit easier to visualize if we think for the moment
of a tube filled with hydrogen atoms instead of mercury. (See Figure 4-215,) Electrong
accelerated by V; that collide with hydrogen electrons cannot transfer energy to the latter
unless they have acquired kinetic energy eV, = E, — E, = 10.2 eV, since the hydrogen
electron according to Boht's modet cannot accupy states with energies intermediate
hetween F.oand F. Snch a collision will fiars he alastic: ie the incident electon’s
kinetic energy will be unchanged by the collision, and thus it can overcome the smal]
retarding potential AV and contribute to the current 1. However, if eV, = 10,2 ¢V, then,
the incoming electron can transfer 10.2 eV to the hydrogen electron in the ground state
{rn = 1 orbit), putting it into the n = 2 erbit {the first excited state). The incoming elec-
tron's energy is thus reduced by 10.2 eV; it has been inelastically scattered. With insuf-
ficient energy to overcome the small retarding potential AV the incoming electrons can
no longer contribute to the plate current J, and I drops sharply.

The situation with Hg in the tube is more complicated, since Hg has 80 elec-
trons. Although Bohr's theory is not capable of predicting their individual energies,
we still expect the energy to be quantized with a ground state, first excited state, and
s0 on, for the atom. Thus, the explanation of the observed 4.9-V critical potential for
Hg is that the first excited state is about 4.9 ¢V above the lowast level {ground state).
Electrons with energy less than this cannot lose energy to the Hg atoms, but electrons
with energy greater than 4.9 eV can make inclastic collisions and lose 4.9 eV, If this
happens near the grid, these electrons cannot gain enough energy to overcome the
small back voltage AV and reach the plate; the current therefore decreases. If this ex-
planation is comrect, the Hg atoms that are excited to an energy level of 4.9 &V above
the ground state should return to the ground state by emitting light of wavelength

¢ he ke
A== — = — = 3
P w W, 253 nm

There is indeed a line of this wavelength in the mercury spectrum, When the tube is
viewed with 4 spectroscope, this line is seen when V) is greater than 4.9 eV, while no
lines are seen when V) is less then this amonnt. For further increases in Vo additional
sharp decreases in the cutrent are observed, corresponding either to excitation of
other levels in Hg (e.g., the second excited state of Hg is at 6.7 eV above the ground
state} or to multiple excitation of the first excited state, i.e., due to an electron lesing
4.9 eV more than once. In the usual setup, multiple excitations of the first leve! are
observed and decreases in the current are seen at integer multiples of 4.9 ¢V.2' The
probability of observing such multiple first-level excitations, or excitations of other
levels, depends on the detailed variation of the potential of the tube. For example, a
second decrease in the.current at V, = 2 X 4.9 = 9.8 V results when electrons have
inelastic collisions with Hg atoms about halfway between the cathode and grid (sec
Figure 4-21a). They are reaccelerated, reaching 4.9 eV again in the vicinity of the
grid. A plot of the data of Franck and Hertz is shown in Figure 4-22,

The Franck-Hertz experiment was an important confirmation of the idea that dis-
crete optical spectra were due to the existence in atoms of discrete energy levels
which could be excited by nonoptical methods. It is particularly gratifying to be able
to detect the existence of discrete energy levels directly by measurements using only
voltmeters and ammeters,

4-5 T Franck-Hewrz Exprniment 193

Electron Energy Loss Spectroscopy

The Franck-Henz experiment was the precursor of a highly sensitive technique for
measuring the quantized energy states of atoms in both gases and solids. 'l.'he tc'ch-
nique, called electron energy loss spectroscopy (EELS), is particularly useful. in su‘hds,
where it makes possible measurement of the energy of certain types of lamcg V.Ibra-
tions and other processes. It works like this. Suppose that the electrons in an incident
beam all have energy E;,.. They collide with the atoms of a material, causing. them to
undergo some process (e.g., vibration, lattice rearrangement, electron exciu.auon) 1h23t
requires energy £,. Then, if a beam electron initiates a single such process, it will ex!t
the MALENAL WIIN ENETEY Lijpe — Eq=—1Gi 1 1A Uhehl IS saieg srses v ""'- —t
energy can be measured very accurately with, e.g., a magnetic spectrometer similar to
that described in Section 3-1, but designed for electrons.?? Figure 4-23a illustrates a
typical experimental arrangement for measuring an energy-loss spectrum.

As an example of its application, if ap incident beam of ¢lectrons with E;,, = 2 keV
is reflected from a thin Al film, the scattered electron energies measured in the magnetic
spectrometer result in the energy-loss spectrum shown in Figure 4-23b, whi.ch dlirecﬂy
represents the quantized energy levels of the target material. The loss peaks in this par-
ticular spectrum are due to the excitation of harmonic vibrations in the film, as well as
some surface vibrations. The technigue is also used to measure the vibrational energies
of impurity atoms that may be absorbed on the surface and, with higher incidf:nl elecnl‘on
encrgies, to measure energy losses at the atomic inner levels, thus yielding information
about bonding and other characteristics of absorbed atoms. Inelastic scattering tech-
niques, inctuding those using particles in addition to electrons, provide very powerful
means for probing the energy structure of atomic, molecular, and nuclear systems, We
will have occasion to refer to them many times throughout the rest of the book.

(a) Detector
Incldent Sample plane
electron

beam I I /
Slits / /
/7
. Entrance skt Spectrometer

L)

Relative intansity

1] 20 40 80 80 W00 120
Electran energy loss, eV

350
300
2560
200

i
160

Vo V

Fig. 4-21 Current versus
accelerating voltage in the
Franck-Hertz experiment. The
current decreases because
many electrons lose energy
due to inelastic collisions with
mercury atoms in the tube and
therefore cannot overcome the
smalt back potential indicated
in Figure 4-21a. The regular
spacing of the peaks in this
curve indicates that only a cer-
tain quantity of energy, 4.9 eV,
can be lost to the mercury
atoms. This interpretation is
confirmed by the observation
of radialion of photon energy
4.9 eV emitted by the mercory
atoms, when V), is greater than
49V, [From J. Franck and

G. Hertz, Verband Deutscher
Physiklischer Gesellschaften,
16, 457 ¢1914}.]

Fip. 4-23 Energy-loss spec-
trum measurement. (a} A
well-defined electron beam
impinges upan the sample.
Electrons inelastically scat-
tered at a convenient angle
enter the slit of the magnetic
spectrometer, whose B field
is directed out of the paper,
and turn through radii R
determined by their energy
(Eine — E) via Equation 3-2
written in the form R =
[2m{Eie — EN]'feB. (b) An
energy-loss spectrum for a
thin Al film. [From C. J.
Powell and J. B. Swan, Physi-
cal Review, 175, 869 (1954).]
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Summary

4-6 Critique of Bohr Theory and
of the “Old” Quantum Mechanics

We have seen in this and the preceding chapters that many phenomena — blackbody
radiation, the photoelectric effect, Compton scattering, optical spectra of hydrogen,
and the x-ray spectra of many elements-—could be “explained” by various ad hoc
quantum assumptions. These “theories,” a strange mixture of classical physics and
quanturmn assumptions, are now usually referred to as “old” quantum mechanics,
Applymg this quantutn mechamcs in the ecarly years of thc twentieth century was us
ANIRARI L EL LS CR3 DV 0% it Iy B BMU UL mlun mu.wu_; WML UL 1WA Wl BN BULLLDIITY
of the Bohr theory, however, were substantial and spectacular. The existence of
unknown spectral lines was predicted and later observed. Not only was the Rydberg
constant given in terms of known constants, but its slight variation from atom to atom
was accurately predicted by the slight variation in the reduced mass. The radius of
the first Bohr orbit in hydrogen, 0.053 nm, comresponded well with the known diame-
ter of the hydrogen molecule, about §.22 nm. The wavelengths of the characteristic
x-ray spectra could be calculated from the Bohr theory.

The failures of the Bohr theory and the old quantum mechanics were mainly mat-
ters of omission. While the correct H atom transitions were predicied, the theory was
silent on the rate at which they occurred; i.e., there was no way of predicting the rela-
tive intensities of spectral lines. There was little success in applying the theory to the
optical spectra of more complex atoms, Finally, there was the considerable philosophi-
cal problem that its assumptions lacked foundation. There were no a priori reasons to
expect that Coulomb's law would work but that the laws of radiation would not, or that
Newton’s laws could be used even though only certain values of angular momentum
were allowed. In the 1920s scientists struggled with these difficulties, and a systema-
tic theory, now known as guantum mechanics or wave mechanics, was formulated
by de Broglie, Schrisdinger, Heisenberg, Pauli, Dirac, and others. We shall study some
aspects of this theory in the next two chapters and apply it to the study of atoms, nuclei,
and solids in the remaining chapters of this book. We shall see that, though this theory
is much more satisfying from a philosophical point of view, it is somewhat abstract and
difficult to apply in detail to problems. Tn spite of its shortcomings, the Bohr theory
provides a model that is easy to visualize, gives the correct energy levels in hydrogen,
and is often useful in describing a quantum-mechanical calculation.

1. Atomic spectra

' 2. Rutherford scattering
Impact parameter

AL=R($-$) Axm 42

This empirical equation computes the correct wavelengths of obssrved
gpectral lines. The Rydberg constant R varies in a regular way from element
to element.

-kq‘Q -
b= m,v’cm‘l
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Scattered fraction f

Number of scattered alphas observed

3. Bohr model
Boht's postulates

Correspondence principle

Bohr radius

Allowed energies )

Reduced mass

Fine-structure constant

4, X-ray spectra B
Moseley equation

5. Franck-Hertz experiment

CENERAL REFERENCES

The: following general references are written at a level appro-

priate for the readers of this book.

Boorse, H., and L. Motz {eds.), The World of the Atom, Basic

f=wbnt 45
for a scattering foil with 7 nucleifunit volume and thickness ¢
_(RAg u_é)? 1 .6
AN = ( A )( 2E,/ sin*(0/2)
_ kg, Q- A
© img

1. Electrons occupy only cenain nonradiating, stable, circular orbits
selected by guantization of the angular momentum L.

L =myr= L] = nk fot Integer n 417
, n

2. Radiation of frequency foccurs when the electron jumps from an
allowed orbit of energy E, to one of lower energy E,. f is given by the
frequency condition:

W=E-E 415

In the region of very large quantum numbers classical and quantum
calculations must yield the same results.

L #

= = = 4-19
ay e mea 0.0529 nm
2
E,.=—-z—f—° for n=1213 ... 4-20
n

where E, = mkie*/2h% = 13.6 eV

o= mM 425
m+ M .
2

a=ki~l!l37 430
fic

= ALZ - B 4+34

Supported Bohr's theory by verifying the quantization of atomic energies
in absorption.

edited. Much of the work refetted to in this chapter and
throughout this book can be found in these volumes,

Cline, B., The Questioners: Physicists and the Quantum The-
ory, Thomas Y. Crowell, New York, 1965.

Books, New York, 1966, This two-volume, 1873-page  Gamow, G.. Thirty Years That Shook Physics: The Story of the

work is a collection of original papers, translated and 2,

Theory, Doubleday, Garden City, N.Y., 1965.
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Herzberg, Q.. Atomic Spectra and Atomic Structure, Dover,
New York, 1944. This is without doubt one of the ali-
time classics of atomic physics.

Melissinos, A., Experiments in Modem Physics, Academic
Press, New York, 1966. Many of the classic experiments
that are now undergraduate laboratory experiments are
described in desail in this text.

Moht, P. J., and B. N, Taylor, “The Fundamental Physical
Constants,” Physics Today (August 2002).

NoOTES

1. Joseph von Fraunhofer (1787 - 1826), German physicist.
Although he was not the first to see the dark lines in the
solar spectrum that bear his name (Wollaston had seen seven,
12 years earlier), he systematicaily measured their wave-
lengths, named the prominent ones, and showed that they
atways occurted at the same wavelength, even if the sunlight
were reflected from the moon or a planet,

2. To date more than 10,000 Fraunhofer lines have been
found in the solar spectrum,

3, Although experimentalists preferved to express their mea-
surements in terms of wavelengths, it had been shown that the
many empirical formulas being constructed to explain the
observed regularities in the line spectra could be expressed in
simpler form if the reciprocal wavelength, called the wave
number and equal 1o the number of waves per unit length,
were used instead. Since ¢ = fh, this was equivalent to
expressing the formulas in terms of the frequency,

4, Emest Rutherford (1871-1937), English physicist, an
exveptional experi tist and a student of J. J. Thomson.
He was an early researcher in the field of radioactivity and
received the Nobel Prize in 1908 for his work in the transmu-
tation of elements. He bemoaned the fact that his prize was
awarded in chemistry, not in physics, as wotk with the ele-
menis was considenad cheiiisiry in those days. He was Thom
son’s successor as director of the Cavendish Laboratory.

3. Alpha particles, like all charged particles, lose energy by
exciting and ionizing the molecules of the materials through
which they are moving. The energy lost per unit path length
(~dE/dx} is a function of the ionization potential of the mol-
ecules, the atomic number of the atoms, and the energy of the
a particles. It can be computed (with some effort) and is rela-
tively simple to measure experimentally.

6. Notice that 2 sinf d0 = d(1, the differential solid angle
subtended at the scattering nucleus by the surface in Figure ,

4-11. Since the cross section o = mb?, then do = 2mb dband

Equation 4-9 can be rewritten as

E_(E) !
a8 \mp?/ sin(072)

da/di} is called the differential cross section.
7. H. Geiger and E. Marsden, Philosophical Magazine (6),
25, 605 (1913).

Shames, M. H. (ed.). Great Experiments in Physics, Holt,
Rinehart & Winston, New York, 1962.

Virtual Laboratory (PEARL), Physics Academic Software,
Neorth Carplina State University, Raleigh, 1996. Includes
an interactive modet of the Bohr atom.

Visual Quantum Mechanics, Kansas State University, Manhat-
fan, 1996. The atomic spectra component of this software
provides an interactive constriction of the energy levels
for several elements. including hydrogen and helivm.

8. The value of Z could not be measured directly in this
experiment; however, relative vatlues for different foil mate-
rials could be found and all materials heavier than alu-
minum had Z approximately ecqual to half the atomic
weight.

9. This also introduces a deviation from the predicted AN
associated with Rutherford’s assumption that the nuclear
mass was much larger than the o particle mass. For lighter-
atomic-weight elements that assumption is not valid. Correc-
tion for the muclear mass effect can be made, however, and
the data in Figure 4-12b reflect the correction,

1. Niels H. D. Bohr (I1885-1962), Danish physicist and
first-rate soccer player. He went to the Cavendish Laboratory
te work with J. J. Thomson after receiving his Ph.D.; how-
ever, Thomson is repotted to have been impatient with Bohr’s
soft, accented English. Happily, the occasion of Thomson’s
annual birthday banquet brought Bohr in contact with
Rutherford, whom he promptly followed to the latter’s labo-
ratory at Manchester, where he learned of the nuclear atom.
A giant of twentieth-century physics, Bohr was awarded the
Nobel Prize in 1922 for his explanation of the hydrogen
spectram. On a visit to the United Staies in 1939, he brought
the news that the fission of uranium atoms had been
ohserved. The story of his life makes absolutely fascinating
reading.

1. N. Bohr, Philosophical Magazine {(6). 26, 1 (1913),

12. P. J. Mohr and B. N. Taylor, “The Fundamental Physical
Constants,” Physics Today (August 2002). Only 8 of the 14
current significant figures are piven in Egoation 4-27. The
relative uncertainty in the vatue is abowt | part in 10'2!

13, Harold C. Urey (1833-1981). American chemist. His
work opened the way for the use of isotopic tracers in biologi-
cal systems. He was recognized with the Nobel Prize in 1934,
14, The basic reason that elliptical orbits solve this problem
is that the frequency of the radiation emitted classically
depends on the leration of the charge. The acceleration is
constant for a circalar orbit, but varies for elliptical orbits.
being dependent on the instantaneous distance from the
focus, The energy of a particle in a circular orbit of radius
r is the same as that of a particle in an elliptical orbit with
a semimajor axis of 1, so one would expect the only atlowed
elliptical orbits to be those whose semimajor anis was equal
to an allowed Bohr circular orbit radius.

15. viewed with spectrographs of high resolution, the spec-
yral lines of hydrogen in Figure 4-2a—and, indeed, most
specll'ﬂl lines of all elements-—are found to consist qf ve‘ry
closely spaced sets of lines, i.c., fine stoucture. We waill dis-
cuss this topic in detai] in Chapter 7. ‘
16, Henry G.-J. Moseley (1887-1915), English physicist,
considered by some the most brilliant of Ruthesford's s_tu-
dents. He would surely have been awarded the Nobel Prize
had he not been killed in action in World War 1. His father
was & naturalist on the expedition of HMS Challenger, the
firat vessel ever devoted to the exploration of the oceans.

17. The identifers L anu A woic assgins wy e g
physicist C. G. Barkla, the discoverer of the characteristic
x-ray lines, for which he received the Nobel Prize in 1917,
He discovered two sets of x-ray lines for each of several ele-
ments, the fonger wavelength of which be called the L series,
the other the K series. The identifiers stuck and were subse-
quently used to label the atomic electron shells.

18, That the remaining K electron should result in b = 1,
.. shielding of exactly le, is perhaps a surprise. Actually it
was & happy accident. It is the combined effect of the remain-
ing K electron and the penetration of the ¢lectron waves of
the outer L electrons that resulted in making b = 1, a5 we
will see in Chapter 7.

PROBLEMS

Level |
Section 4-1 Atomic Spectra
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19. Since in multielectron atoms the energies of the station-
ary states depend in part on the number of electrons in the
atom {see Chapter 7). the emergies £, for a piven alom
change slightly when it is singly ionized. as in the production
of characteristic x-ray lines. or doubly ionized. as in the
Auger effect.

20. James Franck (1882-1964). German-American physi-
cist; Gustav L. Hertz (1887-1979), German physicist.
Franck won an lron Cross as a soldier in World War T and
later worked on the Manhattan Project. Hertz was a nephew
of Heinrich Henz, discoverer of the photoelectric effect. For
el ceemeke o tha inalactic ceafteting of electrons, Franck and
Hertz shared the 1925 Nobel Prize in physics.

21. We should note at this point that there is an energy state
in the Hg atom at about 4.6 &V, slightly lower than the one
found by Fanck and Hertz. However, transitions from the
ground state 10 the 4.6-V level are not observed., and their
absence is in accord with the prediction of more advanced
quantum mechanics, as we shall see in Chapter 7.

22. Since gfm for electrons is much larger than for ionized
atoms, the radius for an electron magnetic spectrometer need
not be as-large as for a mass spectrometer, even for electron
energies of several keV. (See Equation 3-2.)

4-1. Compute the wavelength and frequency of the series limit for the Lyman, Balmer,

and Paschen spectral series of hydrogen.

41 The wavelength of a particular line in the Balmer series is measured to be 379.1 nm.

What transition does it correspond to?

4-3. An sstionomer fnds o new sbsorption line with kA =

164.1 nm in the ultraviolet

region of the sun's continuous spectrum. He attributes the line to hydrogen's Lyman

series, Is he right? Justify your answer.

4-4. The series of hydrogen spectral lines with m = 4 is called Brackelt's series. Com-
pute the wavelengths of the first four lines of Brackett's series.

4-5. Tn a sample that contains hydrogen, among other things, four spectral lines are
found in the infrared with wavelengths 7460 nm, 4654 nm, 4503 pm, and 3741 nm.

Which one does not belong to a hydrogen spectral series?

Section 4-2 Rutherford's Nuclear Model

4.6, A gold foil of thickness 2.0 um is used in a Rutherford experiment to scatter o par-
ticles with energy 7.0 MeV, (a) What fraction of the particles will be scatiered at angles
greater than 90°7 (b) What fraction will be scattered at angles between 45° and 75°7 (For

gold, p = 19.3 gicm® and M = 197 g/mol.)

4-7. () What is the ratio of the number of particles per unit arca an the screen scatieted
at 10° to those at 197 () What is the ratio of those scattered at 30° to those at 1°?
48. For o particles of 7.7 MeV (those used by Geiger and Marsden), what impact param-

eter will result in a deflection of 2° for a thin gold foil?
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4-9. What will be the distance of closest approach r, to a gold nucleus for an o particle
of 5.0 MeV? 7.7 MeV? 12 MeV?

4-10. What energy « particle would be needed to just reach the surface of an Al nucleys
if its radius is 4 fm?

4-11. If a particle is deflected by 0.0t° in each collision, about how many collisions
would be necessary 1o produce an rms deflection of 10°7 (Use the result from the one.
dimensional random walk problem in statistics stating that the rms deflection equals the
magnitude of the individual deflections times the square root of the number of deflec-
tions.) Compare this result with the number of atomic layers in a gold foil of thickness
10~ m, assuming that the thickness of each atom is 0.1 nm = 1079 m.

4-12. Consider the foil and « particle energy in Problem 4-6. Suppose that 1000 of those
particles suffer a deflection of more than 25°. {(a) How many of these are deflected by
more than 45°7 (b)) How many are deflected between 25° and 45°? () How many are
deflected between 75° and 907

Section 4-3 The Bohr Model of the Hydrogen Atom

4-13. The radius of the n = 1 orbit in the hydrogen atom is ay = 0.053 nm, (a) Compute
the radius of the n = 6 orbit. (#) Compute the radins of the # = 6 otbit in singly ionized
helium (He?*), which is hydrogentike.

4-14, Show that Equation 4-19 for the radius of the first Bobr orbit and Equation 4-20 for
the magnitude of the lowest energy for the hydrogen atom can be written as

he A
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where . = himc is the Compton wavelength of the electron and o = ke¥ffic is the fine-
structure conslant. Use these expressions to check the numerical values of the constants
aq and E,,

4-15. Calculate the three longest wavelengths in the Lyman geries {n, = 1) in nr, and
indicate their position on a horizontal linear scale. Indicate the series limit {shortest wave-
{ength) on this scale. Are any of these lines in the visible spectrum?

4-16, If the angular momenturn of Earth in its motion aroutud the sun were quantized like
a hydrogen elecron according to Equation 4-17, what would Earth’s quantum number
be? How much energy would be released in a transition to the next lowest level? Would
that energy release (presumably as a gravity wave) be detectable? What would be the
tadius of that orbit? (The radius of Earth’s orbit is 1,50 X 10'* m.)

4.17. Light of wavelength 410.7 nm is observed in emission from a hydrogen source.
(@) What transition between hydrogen Bohr orbits is responsible for this radiation?
(b} To what series does this transition belong?

4-18. An atom in an excited state will on the average undergo a transition to a state of
lower energy in about 10-*s. If the electron in a doubly ionized lithium atom (Li**,
which is hydrogenlike) is placed in the n = 4 state, about how many revolutions around
the nucleus does it make béfore undergoing a transition to 8 lower energy state?

4-19. It is possible for a muon to be captured by a proton to form a muonic atom. A
muon is identical to an electron except for its mass, which is 105.7 MeV/c?, (a) Calculate
the radius of the first Bohr orbit of a muonic atom, (b) Calculate the magnitude of the
lowest energy. () What is the shortest wavelength in the Lyman serjes for this atom?
4-20. In the lithium atom (Z = 3) two electrons are in the # = | orbit and the third is in
the n = 2 orbit. (Only two are allowed in the # = 1 orbit because of the exclusion princi-
ple, which will be discussed in Chapter 7.) The interaction of the inner electrons with the
outer one can be approximated by writing the energy of the outer electron as

£
E= —z‘ZF

where Ey = 13.6eV, n = 2, and Z' is the effective nuclear charge, which is less than
1 because of the screening effect of the two inner electrons. Using the measured oniza-
tion energy of 5.39 eV, calculate Z°.

4.21. Draw to careful scale an energy-level diagram for hydrogen for levels withn = 1, ~

2.3, 4, . Show the following on the diagram: {a) the limit of the Lyman series, (b} the
Hj line, (€} the transition between the state whose binding energy (= energy needed to
carmive the electron from the atam) ie 1 51 aV and the ctate whnee aecitatinn anerov e
10.2 eV, and (d) the longest wavelength line of the Paschen series.

4-22. A hydrogen atom at rest in the laboratory emits the Lyman o radiation. (a) Com-
pute the recoil kinetic energy of the atom. (b) What fraction of the excitation energy of
the 2 = 2 state is carried by the recoiling atom? (Hint: Use conservation of momentum. )
4-23, What is the radius of the n = 1 orbit in C**? What is the energy of the electron in that
orbit? What is the wavelength of the radiation emitted by C5* in the Lyman o transition®?
4.24. The electron-positron pair that was discussed in Chapter 2 can form a hydrogenlike
system called positronium. Calculate (a) the energies of the three lowest states and (b) the
wavelength of the Lyman o and B lines. (Detection of those lines is a “signature” of
positronium formation. )

4-25. With the aid of tunable lasers, Rydberg atoms of sodium have been produced with
n == 100. The resulting atomic diameter would comespond in hydrogen to n = 600.
(o) What would be the diameter of a hydrogen atom whose electron is in the n = 600
orbit? () What would be the speed of the electron in that orbit? (¢) How does the resalt
in {b) compare with the speed in the # = | orbit?

Section 4-4 X-Ray Spectra .

4-26. (@) Calculate the next two longest wavelengths in the K series (after the K, line) of
molybdenum. (&) What is the wavelength of the shottest wavelength in this series?

4.27. The wavelength of the X, x-ray line for an eletent is measured to be 0.0794 nm.
What is the element?

4-28. The L_ line for a certain element has a wavelength of 0.3617 nm. What is the element?
4-29. What is the approximate radius of the n = 1 orbit of gold (Z = 79)? Compare this
with the radine of the sold nucleus, about 7.1 .

4-30. What is the minimum potential that rmust be applied acress an x-ray tube in order to
observe the (a) K, line of tungsten, {b) the K, line of copper, and {c) the L, line of cop-
per? What is the A, of the continuous spectrum in ¢ach case?

4-M, In a particular x—iﬁy tube, an electron approaches the target moving at 2.25 X
10* mfs. It sfows down on being deflected by a nucleus of the target, emitting a photon of
encrgy 32.5 keV. Ignoring the nuclear recoil, but not relativity, compute the final speed of
the electron.

4-32. {a) Compute the energy of an electron in the n = | (K shell) of tungsten, using Z — 1
for the effective nuclear charge. (b) The experimental result for this energy is 69.5 keV. As-
sume that the effective nuclear charge is (Z — o). where o s called the screening constant,
and calculate o from the experitental result.

4-33. Construct a Moseley plot similar to Figure 4-18 for the X x rays of the elements
tisted (the x-ray energies are given in keV):

[ Ge 10.98 | Kr 14.10 [ 2r 17.66 | Ba 3635

Determine the slope of your plot, and compare it with the K line in Figure 4-18.
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Section 4-5 The Franck-Hertz Experiment

4-34. Suppose that, in a Franck-Hertz experiment, electrons of energy up to 13.0eV cap
be produced in the tube. If the tube contained atomic hydrogen, (a) what is the shortest.
wavelength spectral line that could be emitted from the tube? (b) List all of the hydrogen
lines that can be emitted by this tube.

4-35. Using the data in Figure 4-23b and a good ruler, draw a carefully scaled energy-
level diagram covering the range from 0 eV to 60 eV for the vibrational states of this
solid. What approximate energy is typical of the transitions between adjacent levels cotre.
sponding to the larger of each pair of peaks?

4 R Vo A LT
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the emission of a photon with A = 770 nm. If potassium vapor is used in a Franck-He
experiment, at what voltage would you expect to see the first decrease in current?

4-37. if we could somehow fill a Franck-Hertz tube with positronium, what cathode-grid
voltage would be needed to reach the second current decrease in the positronium equiva-
lent of Figure 4-227 (See Problem 4-24.)

4-38. Electrons in the Franck-Hertz tube can also have elastic collisions with the Hg
atoms. If such a collision is head on, what fraction of its initia] kinetic energy will an
electron lose, assuming the Hg atom to be at rest? IF the collision is not head on, will the
fractional loss be greater or less than this?

Section 4-6 Critique of Bohr Theory and of the "Old” Quantum Mechanics
There are no problems for this section.
Level It

4-39. Derive Equation 4-8 along the lines indicated in the paragraph that precedes it.
4-40. Geiger and Marsden used o particles with 7.7-MeV kinetic energy and found that
when they were scattered from thin gold foil, the number observed to be scatiered at all
angles agreed with Rutherford’s formula. Use this fact to compute an upper limit on the
radius of the gold nucleus. :

4-41. (a) The current i due to a charge g moving in a circle with frequency £, is ¢f.,. Find
the current due to the electron in the first Bohr orbit. ¢5) The fagnetic moment of a current
loop is i, where A is the area of the loop. Find the magnetic moment of the electron in the
first Bohr orbit in units A - m?. This magnetic moment is called a Bokr magneton.

4-42. Use a spreadsheet to calculate the wavelengths (in nm) of the first five spectral lines
of the Lyman, Balmer, Paschen, and Brackett series of hydrogen. Show the positions of
these lines on a linear scale and indicate which ones lie in the visible.

4-43. Show that a small change in the reduced mass of the electron produces a small
change in the wavelength of a spectral line given by AMA = —Ap/p. Use this to calculate
the difference AX in the Balmer red line A = 656.3 nm between hydrogen and deuterium,
which has a nucleus with twice the mass of hydrogen.

4-44. A beam of 10-MeV protons is incident on a thin aluminum foil of thickness
10¢ m. Find the fraction of the particles that are scattered through angles greater than
(a) 10° and (b) 90°.

4-45, The Li2* ion is essentially identical to the H atom in Bohr's theory, aside from the cf-
fect of the different nuclear charges and masses. (@) What transitions in Li** will yield emis-
sion lines whose wavelengths are very nearly equal to the first two lines of the Lyman series
in hydrogen? (¥} Calculate the difference between the wavelength of the Lyman o line of
hydrogen and the emission line from Li?* that has very nearly the same wavelength.

4-46, In an o scattering experiment, the area of the a particle detector is 0.50 cm?, The
detector is located 10 cm from a 1.0-pum-thick silver foil. The incident beam carries a cur-
rent of 1.0 nA, and the energy of each o particie is 6.0 MeV. How many o particles will
be counted per second by the detector at {@) B = 60°? (b) & = 120°7

447. The K, L, and M, x rays areemitted inthe n =2 —=n =1L n=3—n =2 and
p = 4-—*n = 3 transitions, respectively. For calcium (Z = 20) the energics of these transi-
tions are 3.69 keV, 0.341 keV., and 0.024 keV, respectively. Suppose that cnergetic photons
impinging on a calcium surface cause ejection of an electron from the X shell of the surface
atoms. Compute the energies of the Auger electrons that may be emitted from the I, M, and
N shells (a = 2, 3, and 4} of the sample atoms. in addition to the characteristic x rays.

4-48. Figure 3-18b shows the K, and K, characteristic x rays emitted by 2 molybdenum
(Mo) target in an x-ray tube whose accelerating potential is 35 kV. The wavelengths are
K, = 0.07t nm and Kz = 0.063 nm. (a) Compute the corresponding energies of these
whntone (R Sunnnse we wish 1a prenane & heam consistine mamanly of K x rave by
i;assing the molybdenum x rays through a material that absorbs K x rays more strongly
than K, x rays by photoelectric effect on K-shell electrons of the material. Which of the
materials listed in the accompanying table with their X-shell binding energies would you

choose? Explain your answer,
z 40 41 42 43 44
Ey {keV)| 18.00 | 1899 20,00 | 21.04 { 22.12

Level 1t

4-49, A small shot of negligible radius hits a stationary smooth, hard sphere of radivs R,
making an angle B with the normal to the sphere, as shown in Figure 4-24, It is reflected
at an equal angle to the normal. The scattesing angle is 8 = 180° — 2B, as shown.
(@) Show by the geometry of the figure that the impact parameter b is related to & by
b= R cos % €. (b) If the incoming intensity of the shot is £, particles/s - area, how many
are scattered through angles greater than 87 {c) Show that the cross section for scaitering
through angles greater than 0° is wR%. (d) Discuss the implication of the fact that the
Rutherford cross section for scattering through angles greater than 0° is infinite.

Fig, 4-24 Smal! particle scattered by a
hard sphere of radius R.

4-50. Singly ionized helium He' is hydrogenlike. () Construct a carefully scaled
energy-level diagram for Het similar to that in Figure 4-16, showing the levels forn = 1,
2, 3.4, 5, and . (b) What is the ionization energy of He*? (¢) Compute the difference in
wavelength between each of the first two lines of the Lyman series of hydrogen and the
first two lines of the He* Balmer series. Be sure to include the reduced mass comection
for both atoms, (d) Show that for every spectral line of hydrogen, He* has a spectral line
of very nearly the same wavelength. (Mass of He* = 665 X 10- kg.)

4-51. Listed in the table are the 1, x-ray wavelengths for several elements. Construct a
Moseley plot from these data. Compare the slope with the appropriate one in Figure 4-18.
Determine and interpret the intercept on your graph, using a svitably modified version of
Equation 4-35.
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arhdnt 18 T Mo 1T
Zz 15 20 |27 |36 |42 (53
Wavelength (nm) | 10.41 | 405 1197 0.73| 0.51 | 0.33

4-52. In this problem you are to obtain the Bohr tesulis for the energy levels in hydrogen
without using the quantization condition of Equation 4-17. In order to relate Equation
4-14 to the Balmer-Ritz formula, assume that the radii of ellowed orbits are given by r, =
n’ry, where n is an integer and ry is a constant to be determined. () Show that the fre-
auency of radiation for a transition to #, = n — 1 is given by f = kZe*/hryn’ for large n.
(b) Show that the frequency of revolution is given by

bz
™ 7 i

(¢) Use the correspondence principle to determine #, and compare with Equation 4-19.
4-53. Calculate the energies and speeds of electrons in circular Bohr orbits in a hydro-
genlike atom using the relativistic expressions for kinetic energy and momentum,

4-54. (a) Write a computer program for your personal computer or programmable calcu-
lator that will provide you with the spectral series of H-like atoms. Inputs to be included
are n;, Ay, Z, and the nuclear mass M. Qutputs are to be the wavelengths and frequencies
of the first six lines and the series limit for the specified iy, Z, and M. Include the reduced
mass correction. {(b) Use the program to compute the wavelengths and frequencies of the
Balmer series, (c) Pick an n, > 100, name the series the [your name] series, and use your
program to compute the wavelengths and frequencies of the first three lines and the limit,
4-55. Figure 4-25 shows an energy-loss spectrum for He measured in an apparatus such
as that shown in Figure 4-234. Use the spectrum to construct and draw carefully to scale
an encrgy-level diagram for He.

21.2t
23.07

wet| /
JL 18.682 \\
]

Relative intensity

Flg. 4-25 Energy-loss spectrum of

helium. Incident electron energy was 34 J— L L
eV. The elastically scattered electrons 0 10 20
cause the peak at D eV, Energy toss, eV —=-

4-56. If eleciric charge did not exist and clectrons were bound to protons by the gravita-
tional force to form hydrogen, derive the comresponding expressions for dy and E, and
compute the encrgy and frequency of the H, line and the limit of the Balmer series. Com-
pare these with the correspending quantities for “redl” hydrogen.

4-57. A sample of hydrogen atoms are all in the n = 5 state. If all the atoms retumn to the
ground state, how many different photon energies will be emitted, assuming all possible
transitions occur? IF there are 500 atoms in the sample and assuming that from any state
all possible downward transitions are equally probable, what is the total number of pho-
tons that will be emitted when all of the atoms have retuned to the ground state?

Chapter

of Particles

In 1924, a French graduate student, Lovis de Broglie,' proposed in his doctoral
dissertation that the dual —i.e., wave-particle—behavior that was by then known
to exist for radiation was also a characteristic of matter, in particular, electrons. This
suggestion was highly speculative, since there was yet no experimental evidence
whatsoever for any wave aspects of electrons or any other particles. What had led
hirn to this seemingly strange idea? It was a “bolt out of the blue,” like Einstein's
“happy thought,” that led to the principle of equivalence (see Chapter 2). De Broglie
described it with these words:

After the end of World War I, I gave a great deal of thought to the theory of
quanta and to the wave-particle dualism. . . . Tt was then that [ had a sudden
inspiration. Einstain's wave-particle dualism was an absolutely general phenom-
enon extending to all physical nature.?

Since the visible universe consists entirely of mater and radiation, de Broglie’s
hypothesis is a fundamental statement about the grand symmetry of nature. (There is
currently strong observational evidence that approximately 70 percent of the universe
consists of some sort of invisible “dark energy.” See Chapter 14.)

5-1 The de Broglie Hypothesis

De Broglie stated his proposal mathematically with the following equations for the
frequency and wavelength of the electron waves, which are referred to as the de
Broglie relations:

5-1

[
]

5-2
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where E is the total energy, p is the momentum, and X is called the de Broglie wave-
length of the particle. For photons, these same equations result directly from
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