A_——

202

CHapter 4

The Nuclear Atom

Element 11 TR
z 15 20 127 36 (42 153
Wavelength (nm) | 10.41| 4.05) 1.79 | 0.73 [ 0.51 | 0,33

4-52. TIn this problem you arc to obtain the Bohr results for the energy levels in hydrogen
without using the quantization condition of Equation 4-17. In order to relate Equation
4-14 to the Balmer-Ritz formula, assume that the radii of allowed orbits are given by r,

nrg, where nis an mteger and ry is a constant to be determined. (g) Show that the fm
LTImoitiee tn = w1 ie niven by £ = K7elhean? for large n

USAI) e

{b) Show that the fmquency of revolution is given by

2
= 4w'm gt

(¢} Use the correspondence principle to determine ry and compare with Equation 4-19.
4-53. Calculate the encrgies and speeds of electrons in circular Bohr orbits in a hydro-
genlike atom using the relativistic expressions for kinetic energy and momentum.

4-54. (g) Write a computer program for your personal computer or programmable calcu-
lator that will provide you with the spectral series of H-like atoms. Inputs to be included
are 1y, ny, Z, and the nuclear mass M. Qutputs are to be the wavelengths and frequencies
of the first six lines and the series limit for the specified n;, Z and M. Inciude the reduced
mass correction. (b) Use the program to compuie the wavelengths and frequencies of the
Balmer series, {c} Pick an n; > 100, name the serics the [your name] series, and use your
program to compute the wavelengths and frequencies of the first three lines and the limit.
4-55. Figure 4-25 shows an energy-loss spectrum for He measured in an apparatus such
as that shown in Figure 4-23a. Use the spectrum to consuuct and draw carefully to scale
an energy-level diagram for He.

2 2121
é l/ 2307
£ 2081 | /
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Fig. 4-25 Encrgy-loss spectrum of “
helium. Incident electron energy was 34 é 110 20

eV. The elastically scattered electrons

cause the peak at 0 eV, Energy loss, eV ——=

4-56. If electric charge did not exist and electrons were bound to protons by the gravita-
tional force to form hydrogen, derive the comesponding expressions for 4, and E, and
compute the energy and frequency of the H, line and the limit of the Balmer serics. Com-
pare these with the corresponding quantities for “redl” hydrogen.

4-57. A sample of hydrogen atoms are all in the n = 5 state. If all the atoms retumn 10 the
ground state, how many different photon encrgies will be emitted, assuming all possible
transitions occur? If there are 500 atoms in the sample and assuming that from any state
all possible downward transitions are equally probable, what is the total number of pho-
tons that will be emitted when all of the atoms have returned to the ground state?

of Particles

In 1924, a French graduate student, Louis de Broglie,’ proposed in his doctoral
dissertation that the dual —i.c., wave-particle—behavior that was by then known
to exist for radiation was also a characteristic of matter, in particular, electrons. This
suggestion was highly speculative, since there was yet no experimentsl evidence
whatsoever for any wave aspects of electrons or any other particles. What had led
him to this seemingly strange idea? It was a “bolt out of the blue,” like Einstein's
“happy thought,” that led to the principle of equivalence (see Chapter 2). De Broglie
described it with these words:

After the end of World War 1, I gave a great deal of thought to the theory of
quanta and to the wave-particle dvalism. . . . It was then that I had a sudden
inspiration. Einstein’s wave-particle dualism was an absojutely general phenom-
enon extending to all physical nature.?

Since the visible universe consists entirely of marter and radiation, de Broglie's
hypothesis is a fundamental staternent about the grand symmetry of nature. {There is
cumrently strong observational evidence that approximately 70 percent of the universe
consists of some sort of invisible “dark energy.” See Chapter 14.)

5-1 The de B;oglie Hypothesis

De Broglie stated his proposal mathematically with the following equations for the
frequency and wavelength of the electron waves, which are referred to as the de
Broglie relations:

5-1

[,
]

5-2

b4
]

E
B
k
p

where E is the total energy, p is the momentum, and A is called the de Broglle wave-
length of the particle. For photons, these same equations result directly from
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; Fig. 5-1 Standing waves
around the circumference of a
circle. In this case the circle
is X in circamference. If the
vibrator were, for example, a
steel ring that had been suit-
ably tapped with a hammer,
the shape of the ring would
oscillate between the extreme
positions represented by the
solid and broken lines,

The Wavelike Properties of Particles

Einstein's guantization of radiation E = hf and Equation 2-31 for a particle of zerg
rest energy E = pc as follows:
he
E = =W = —
pe =i ==
By a more indirect approach using relativistic mechanics, de Broglie was able to
demonstrate that Equations 5-1 and 5-2 also apply to particles with mass. He then
nointed not that these eanations lead to a physical interpretation of Bohr's quantiza-

tion of the angular momentum of the electron in hydrogenlike atoms, namely, that
the quantization is equivalent to a standing-wave condition (see Figure 5-1). We have

h
mvr=nh = it for n = integer
2m
2nr = nh = nh = nk = circumference of orbit 5-3
my p

The idea of explaining discrete energy states in matter by standing waves thus
seemed quite promising.

De Broglie's ideas were expanded and developed into a complete theory by
Erwin Schrisdinger late in 1925. In 1927, C. 1. Davisson and L. H. Germer verified
the de Broglie hypothesis directly by observing interference patterns, a characteristic
of waves, with electron beams. We will discuss both Schridinger’s theory and the
Davisson-Germer experiment in later sections, but first we have to ask ourselves why
wavelike behavior of matter had not been observed before de Broglie’s work. We can
see why if we first recall that the wave properties of light were not noticed, either,
until apertures or slits with dimensions of the order of the wavelength of light could
be obtained. This is because the wave nature of light is not evident in experiments
where the primary dimensions of the apparatus are large compared with the wave-
length of the light used. For example, if A represents the diameter of a lens or the
width of a «lit, then diffraction effects’ (a manifestation of wave properties) are
limited to angles # around the forward direction (8 = 0°) where sin 8 = A/A. In geo-
metric (ray) optics AA —0, so 8 = sin 8 — 0, too, However, if a characteristic
dimension of the apparatus becomes of the order of (or smaller than) A, the wave-
length of light passing through the systemn, then A/4 — 1. In that event & =~ NA is
readily observable, and the wavelike properties of light become apparent. Because
Planck's constant is so small, the wavelength given by Equation 5-2 is extremely
small for any macroscopic object. This point is among those illustrated in the follow-
ing section.

5-2 Measurements of Particle Wavelengths

Although we now have diffraction systems of nuclear dimensions, the smallest-scale
systems to which de Broglie's contemporaries had access were the spacings between
the planes of atoms in crystalline solids, about 0.1 nm. This means that even for an
extremely small macroscopic patticle, such as a grain of dust (m = 0.1 mg) moving
throngh air with the average kinetic energy of the atmospheric gas molecules, the
smallest diffraction systems available would have resulted in diffraction angles 8
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onty of the order of 10-'° radians, far below the limit of experimental detectability.
The small magnitude of Planck's constant ensures that A will be smaller than any
readily accessible aperture, placing diffraction beyond the limits of experimental
observation. For objects whose momenta are larger than that of the dust particle, the
possibility of observing particle or matter waves is even less, as the following exam-
ple illusirates.

EXAMPLE 5-1 De Broglie Wavelength of a Ping-Pong Ball What is the de Broglie
wavelength of a Ping-Pong ball of mass 2.0 g after it is slammed across the table
with a speed of 5 m/s?

Selution

L _ 663 X 10-#]-5
mv (2.0 X 107 kg)(5 mis}
=66 X 107%m = 6.6 X 10 ¥ nm

A=

This is 17 orders of magnitude smaller than typical nuclear dimensions, far below
the dimensions of any possible aperture.

The case is different for low-energy clectrons, as de Broglie himself realized.
At his soutenance de thése (defense of the thesis), de Broglic was asked by Perrin®
how his hypothesis could be verified, to which he replied that perhaps passing parti-
cles, such as electrons, through very small slits would reveal the waves. Consider
an electron that has been accelerated through V; volts. Its kinetic energy (nonrela-
tivistic) is then

2
E="§;=cVn

Solving for p and substituting into Equation 5-2,

Louis V. de Broglie, who first

suggested that electrons

might have wave properties.

[Courtesy of Cuiver

Pictures.] ;
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A= h _he _ he
TP pe (mcleVyl?

Using he = 1.24 X 10*eV-nmandmc? = 0,511 X 106 eV, we obtain

1.226
= Vi

nn for eV << mc? © 5.4

LG kg cammpie JZTEten an electmn de Reaslie wavelength, giving a mea-

sure of just how small the slit must be.

EXAMPLE 5-2 De Broglie Wavelength of a Slow Electron Compute the de
Broglie wavelength of an electron whose kinetic energy is 10.€V.

Solution
1. The de Broglie wavelength is given by Equation 5-1:

A=

= >

2. Method I: Since a 10-eV electron is nonrelativistic, we can use the classical
relation connecting the momentum and the kinetic energy:

CRRS

E, =

or
p = N2mE,
= JWO.1T X 10~ T kg)( 10 eV)(1.60 X 10-7 J/eV)
= 1.71 X 107 %kg-m/s

3. Substituting this result into Equation 5-1:

663X 107%}s
171 X 107% kg mfs
=388 % 107%m = 0.39 nm

4. Method 2: The efectron’s wavelength can also be computed from Equation
54 withVy =10V

N = 1.226 - 1.226
yiiz m
= 0.39 nm

Remarks: Though this wavelength is small, it is just the order of magnitude of the
size of an atom and of the spacing of atoms in a crystal.
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The Davisson-Germer Experiment

in a brief note in the August 14, 1925, issue of the journal Naturwissenschaften, Wal-
ter Elsasser, at the time a student of Franck’s (of the Franck-Hertz experiment), pro-
posed that the wave effects of low-velocity electrons might be detected by scattering
them from single crystals. The first such measurements of the wavelengths of elec-
trons were made in 1927 by Davisson® and Germer, who were studying electron
reflection from a nickel target at Bell Telephone Laboratories, unaware of either
Flsasser's suggestion or de Broglie's work. After heating their target to remove
«n nxide coating that had accumulated during an accidental break in their vacuum
system, they found that the scattered clectron intensity as a TURCTION O1 BIE suauct g
angle showed maxima and minima. Their target bad crystallized in the process of
cooling, and they were observing electron diffraction. Recognizing the importance
of their accidental discovery, they then prepared a target consisting of a single crystal
of nickel and extensively investigated the scattering of electrons from it. Figure 5-2
jllustrates their experimental arrangement. Their data for 54-¢V electrons, shown in
Figure 5-3, indicate a strong maximum of scattering at & = 50°, Consider the scat-
tering from 2 set of Bragg planes, as shown in Figure 5-4. The Bragg condition for
constructive interference is n\ = 2d'sin @ = 2d cos «. The spacing of the Bragg
planes d is related to the spacing of the atoms D by d = D sin a; thus

nh = 2Dsinecos @ = Dsin 2a

nh = D sind 5.5

where & = 2q is the scattering angle. _

The spacing I for Ni is known from x-ray diffraction to be 0.215 nm. The wave-
length calcutated from Equation 5-5 for the peak observed at ¢ = 50° by Davisson
and Germer is, forn = 1,

Xk = 0.215 sin 50° = 0.165 nm

(0 #=0°
©=507 -~

F
=]

3

20 40 80 a0
Detector angle ¢

Flg. 5-3 Scattered intensity vs. detector angle for $4-¢V electrons. (a) Polar plot of the data,
The intensity at each angle is indicated by the distance of the point from the origin. Scattering
l_nglc 4 is plotted clockwise starting at the vertical axes. (&) The same data plotted on a Carte-
#1an graph. The intensity scales are arbitrary, but the same on both graphs. In each plot there is
maximum intensity at & = 50°, as predicted for Bragg scattering of waves having wavelength
A = hip, |From Nobel Prize Lectures: Physics {Amsterdam and New York: Elsevier, @ Nobel
Foundarion, 1964).)

Electron gun

t j lonization
chambar/)
0

Ni crystal

Fig, 5-2 The Davisson-
Germer experiment. Low-
energy clectrons scattered at
angle ¢ from a nickel crystal
are detected in an ionization
chamber. The Kinetic energy
of the electrons could be
varied by changing the
accederating voltage on the
electron gun.
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Fig, 5-4 Scattering of elec-
trons by a crystal. Electron
waves are strongly scatiered
if the Bragg condition nk =
24 sin @ is meL. This is equiv-
alent to the condition nk =
Dsin .

kncigant
beam

intense
reflected
beam

The value calculated from the de Broglie relation for 54-¢V electrons is

1.226

= W = 0.167 nm

A

The agreement with the experimental observation is exceltent! With this spectacular
result Davisson and Germer then conducted a systematic study to test the de Broglie
relation using electrons up to about 400 eV and various experimental arrangements.
Figure 5-5 shows a plot of measured wavelengths versus Vg 2. The wavelengths
measured by diffraction are slightly lower than the theoretical predictions because
the refraction of the electron waves at the crystal surface has been neglected. We
have seen from the photoelectric effect that it takes work of the order of several £V to
remove an electron from a metal. Electrons entering a metal thus gain kinetic energy;
therefore, their de Broglie wavelength is slightly less inside the crystal.®

A subtle point must be made here. Notice that the wavelength in Equation 35
depends only on D, the interatomic spacing of the crystal, whereas our derivation of

Clinton ). Davisson (left)
and Lester H. Germer at
Bell Laboratories, where
electron diffraction was
first observed. [Bell Tele-
phone Laboratories, Inc.]
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Fig. 5-5 Test of the de Broglie formula ) = hip. The waveiength is computed from a plot of
the diffraction data plotied against V5 "2, where V, is the accelerating voltage. The straight line
is 1.226V; 2 nm as predicted from A = A{2mE)'?. These arc the data refemed to in the
quotation from Davisson's Nobel lecture. (% From obscrvations with diffraction apparatus;
@ same, particularly reliable; [] same, grazing beams. © From observations with reflection
apparatus.) [From Nobel Prize Lectures: Physics (Amsterdam and New York: Elsevier
© Nobel Foundation, 1964).]

that equation included the interplane spacing as well. The fact that the structure of
the crystal really is essential shows up when the energy is varied, as was done in col-
lecting the data for Figure 5-5. Equation 5-5 suggests that a change in A, resulting
from a change in the energy, would mean only that the diffraction maximum would
occur at some other value of & such that the equation remains satisfied. However, as
can be seen from examination of Figure 5-4, the value of & is determined by «, the
angle of the planes determined by the crystal structure. Thus, if there are no crystal
plancs making an angle o = ¢/2 with the surface, then setting the detector at b =
gin~Y{AD) will not result in constructive interference and strong reflection for that
value of A, even though Equation 5-5 is satisfied. This is neatiy illustrated by Figure
5.6, which shows a series of polar graphs (like Figure 5-3a) for electrons of energies
from 36 eV through 68 eV. The building to a strong reflection at ¢ = 50° is evident
for Vo = 54 V, as we have already seen. But Equation 5-5 by itself would also lead us
to expect, for example, a strong reflection at & = 64° when Vy = 40V, which obvi-

ously does not occur.
40V 4v

80y 84v -3

Fig. 5-6 A serics of polar
graphs of Davisson and
Germer’s data ai elegtron
accelerating potentials from
36V 10 68 V. Note the devel-
opment of the peak at ¢ =
50° to 2 maximum when
Vo= 54V.
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The diffraction pattern
formed by high-energy elec-
tron waves scattered from
nuciei provides a means by
which nuclear radii and the
internal distribution of the
nuclear chaige (the pro-
tons) are measured. See
Chapter 11.

Flg. 5-7 Varistion of the scat-
tered electron intensity with
wavelength for constant ¢.
The incident beam in this case
was 10° from the normal, the
resulting refraction causing
the measured peaks to be
slightly shifted from the posi-
tions computed from Equa-
tion 5-5, as explained in note
6. [After C. J. Davisson and
L. H. Germer, Procosdings of
the National Academy of
Sciences, I4, 619 (1928).]

In order to show the dependence of the diffraction on the inner atomic layers,
Davisson and Germer kepl the detector angle ¢ fixed and varied the accelerating volt-
age, rather than search for the correct angle for 2 given h. Writing Equation 5-5 as

Dsind _ Dsin (20)
n n

A= 5-6

and poting that A = V2, a graph of intensity versus Vi % for a given angle & should
vield {1) & series of equally spaced peaks corresponding to successive values of the
integer #, if @ = 4¥2 IS AN EXISUNE ANKIE 108 avuLe prne, o oy 7 HEmetion
peaks if ¢/2 is ot such an angle. Their measurements verified the dependence upon
the interplane spacing, the agreement with the prediction being about +1 percent,
Figure 5-7 illustrates the results for ¢ = 50°. Thus, Davisson and Germer showed
conclusively that particles with mass moving at speeds v << ¢ do indeed have wave.
like properties, as de Broglie had proposed.

Here is Davisson's account of the connection between de Broglie's predictions
and their experimental verification:

Pexhaps 1o idea in physics has received so rapid or so intensive development as
this one. De Broglie himself was in the van of this development, but the chicf
contributions were made by the older and more experienced Schridinger. It
would be pleasant to tell you that no sponer had Elsasser's suggestion appeared
than the experiments weve begun in New York which resuited in 2 demonstra-
tion of electron diffraction—pleasanter still to say that the work was begun the
day after copies of de Broglie’s thesis reached America. The true story contains
less of perspicacity and more of chance. . . . [t was discovered, purely by
accident, that the intensity of clastic scattering [of electrons) varies with the
orientations of the scattering crystals. Out of this grew, quite naturally, an
investigation of elastic scattering by a single crystal of predetermined orienta-
tion. . . . Thus the New York experiment was not, at its inception, a test of
wave theory. Only in the summer of 1926, after I had discussed the investiga-
tion in England with Richardson, Born, Franck and others,. did it take on this

character.”
0.7 ath
3d =
085 order 4 -850
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A demonstration of the wave nature of relativistic electrons was provided in the
same year by G. P. Thomson, who observed the transmission of electrons with ener-
gies in the range of 10 to 40 keV through thin metaliic foils {(G. P. Thomson, the son
of J. J. Thomson, shared the Nobel Prize in 1937 with Davisson). The experimental
amangement (Figure 5-8a) was similar to that used to obtain Laue patterns with
x rays (se¢ Figure 3-14). Because the metal foil consists of many tiny crystals ran-
domly oriented, the diffraction pattern consists of concentric rings. If a crystal is ori-
ented at an angle @ with the incident beam, where 8 satisfies the Bragg condition, this
crystal will sirongly scatter at an equal angle 8; thus there will be a scattered beam
making an angle 26 with the incident beam. Figures 5-8b and ¢ show the similarities
in patterns produced by x rays and electron waves.

Diffraction of Other Particles The wave propenies of neutral atoms and mol-
ecules were first demonstraied by Stern and Estermann in 1930 with beams of helium
stoms and hydrogen molecules diffracted from a lithium fluoride crystal. Since the
particles are neutral, there is no possibility of accelerating them with electrostatic
potentials. The energy of the molecules was that of their average thermal motion,
about 0.03 eV, which implies a de Broglie wavelength of about 0.10 nm for these
molecules, according to Equation 5-2. Because of their low energy, the scattering
occurs just from the array of atoms on the surface of the crystal, in contrast to Davis-
son and Germer's experiment. Figure 5-9 illustrates the geometry of the surface
Scattering, the experimental arrangement, and the results, Figure 5-9c indicates
clearly the diffraction of He atom waves.

Since then, diffraction of other atoms, of protons, and of neutrons has been
Md (Figures 5-10, 5-11, and 5-12). In all cases the measured wavelengths agree
with de Broglie’s prediction. There is thus no doubt that all matter has wavelike, as
well as particlelike, properties, in symmetry with eleciromagnetic radiation.

5-2 MEASUREMENTS OF PARTICLE WAVELENGTHS 211

Fig. 5-8 {a) Schematic
arrangement used for produc-
ing a diffracion pattern from
a polycrystalline aluminom
target. (b) Diffraction pattern
produced by x rays of
wavelength 0.071 nm and

an aluminum foil target.

(¢} Diffraction pattem pro-
duced by 600-¢V clectrons
(de Broglie wavelength of
LITINNE med end an b
minum foil targer. The pat-
tern has been enlarged by 1.6
times to facilitate comparison
with (b). [Courtesy of Film
Studio, Education
Development Center]

The diffraction patterns
formed by heltum atom
waves are used to study
impurities and defects on
the surfaces of crystals.
Being a noble gas, helium
does not react chemically
with molecules on the
surface or “stick” to the
surface.




212 Chapter 5 The Wavelike Properties of Particles 5-2 MEASUREMENTS OF PARTICLE WAVELENG THS 213

Fig. 5-9 (a) He atoms (@ Incldent 10"
impinge upon the surface of 7:,.. He beam T L
the LiF crystal at angle A {plane wave) | !
(8 = 18.5° in Estermann and 100k oo
Stern's experiment). The -
b reflected beam also makes the §
! same angle ¢ with the sur- g_ 10-*
face, but is also scatiered at -] 7]
azimuthal angles & relative to
an axis perpendicular § 1072} T
views the surface at angle 8 E
but can scan through the i 10— g
angle ¢. () At angle ¢ where © " I~
the path difference (4 sin ) g -
between adjacent “rays” is g - T
nh, constructive interference, 1 E
i.c., a diffraction peak, g 05— -- - A S
occurs. The n = | peaks - |
occur on either side of the g ,
r = { maximum. g ] 1oelL 1 ] | L1 [ 1 |
02 48 8101214181820 22 242828 i
Scaltering angle, degrees ‘
Fig. 512 Nuclei provide whose dimensians are of the order of 107 m. Here the i
—20"-10° 7 10° 20° diffraction of 1-GeV protons from oxygen nuclei results in a pattern similar to that of a

LiF crystal Detector setting ¢ single slit.

An Easy Way to Determine-de Broglie Wavelengths

It is frequently helpful to know the de Broglie wavelength for particles with a spe-
cific kinetic energy. For low energies where relativistic effects can be ignored, the
equation leading to Equation 5-4 can be rewritten in terms of the kinetic energy E, =
Emv? = p212m as follows:

h h

- P 2mE,

57

To find the equivalent expression that covers both relativistic and nonrelativistic
speeds, we begin with the relativistic equation relating the total energy to the
momentum:

E? = (pef + (mc™)? 231

Fig. 5.1 Diffraction pattern produced by 0.0568-¢V Writing E; for the rest energy mc? of the particle for convenience, this expression

neutrons {(de Broglie wavelength of 0.120 nm) and a tar- becomes
get of polycrystalline copper. Note the similarity in the Fig. 5-11 Neutron Lauve pattern of NaCl. Compare this
patterns produced by x rays, electrons, and nentrons, with the x-ray Laue pattern in Figure 3-14. [Courtesy of

[Courtesy of €. G. Shuil.] E. 0. Wollan and C. G. Shull.) E? = (pc + E} 58
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Since the total energy K = E, + E,, Equation 5-8 becomes
(Eo + E = (pcy + E§
which, when solved for p, yields

p= (2E,E, + EFY”
c

LIVID WOINIL CYUEUUN J-2 gived

he

. 59
(2E.E, + E}Y”

1Y

This can be written in a panticularly useful way applicable to any particle of any energy
by dividing the numerator and denominator by the rest encrgy £, = me? as follows:

heimc® hime

N GEE, + EIVAIE, | (AEJE) + (EJET

Recognizing A/mc 8s the Compton wavelength ), of the particle of mass m (see Sec-
tion 3-4 and Equation 3-31), we have that, for any particle,

1
- —— 1
M = EdED + (EJEFT™ 510

t0°
102 \\
= \ hg = Iime
[ Eg=me?
10 A
1 BN
& E
2 [
101 E AU SN N Y S ]
Fig. 513 The de Broglit wavelength A ol Ll
expressed in units of the Compton E
wavelength ), for a particle of mass m I
versus the kinetic energy of the particle 1070
E; expressed in units of its rest energy :
Ey = me”. For pratons and neutrons r l
Ey=0938 GeVand h, = 132 fm. 104
For electrons E, = 0.511 MeV and 10 10t 102 ¢ 17 10t

A, = 0.00234 nm. E /&y

5-3 Wave Packrss

A log-log graph of MA, versus E,/E, is shown in Figure 5-13, Tt has two sections
of nearly constant slope, one for £, <% mc? and the other for E; >> mc?, connecied
by 8 curved portion lying roughly between (.1 < E,/Ey <2 10. The following example
illustrates the use of Figure 5-13,

EXAMPLE 5-3 The de Broglie Wavelength of a Cosmic Ray Proton Detectors on
board a satellite measure the kinetic energy of a cosmic ray proton to be 150 GeV.
What is the proton’s de Broglie wavelength, as read from Figure 5-13?

Solution
The rest energy of the proton is mc? = 0.938 GeV and the proton’s mass is 1.67 X
1077 kg. Thus, the ratio E/E, is

E _ 150GevV _
E, 0.938GeV

This value on the curve corresponds fo about 2 X 107 on the A/A axis. The
Compton wavelength of the proton is

h 6.63 X 10°3].¢

me = -5
me  (L67 X 107-7kg)(3 X 10°ms) 1.32 X 107 m

A=

and we have then for the particle's de Broglie wavelength

A= (2% 107132 X 108 m) = 2.6 X 10-"" m = 2.6 X 1073 fm

Wismons

1. Since the electrons used by Davisson and Germer were low cnergy, they pen-
etrated only a few atomic layers into the crystal so it is rather surprising that
the effects of the inner iayers show su clearly. Whiat feature of the diffraction
is most affected by the relatively shallow penetration?

2. How might the frequency of de Broglie waves be measured?

3. Why is it not reasonable to do crystallographic studies with protons?

5-3 Wave Packets

[n any discussion of waves the question arises, What's waving? For some waves the
answer is clear: for waves on the ocean, it is the water that *“waves”; for sound waves
in air, it is the molecules that comprise the air; for light, it is the § and the B. So
what is waving for matter waves” As will be developed in this section and the next,
for matter it is the probability of finding the particle that waves.

Classical waves are solutions of the classical wave equation
Fy_12
1 VZ aIZ

L-%
i

511

-5
»
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A
Fig. 5-14 Wave pulse mov-
ing along a string. A pulse
has a beginning and an end;
i.e,, it is localized, unlike a
pure harmonic wave, which
goes on forever in space and
time.

Important among classical waves is the harmonic wave of amplitude y,, frequency ¢
and period T:

x 2
¥y = ypcos(kx — wt} = yyc08 211(— - —) = ypC08 = (x—v) 512
x T A
where the angular frequency w and the wave number® k are defined by
29
o= ?mnf=— 5130
]
and
k== 5-13%

and the wave or phase velocity v, is given by
v, =f\ 514

A familiar wave phenomenon which cannot be described by a single harmonic
wave is a pulse, such as the flip of one end of a long string (Figure 5-14), a sudden
noise, or the brief opening of a shutter in front of a light source. The main characteris-
tic of a pulse is localization in time and space. A single harmonic wave is not localized
in either time or space. The description of a pulse can be obtained by the superposi-
tion of a group of harmonic waves of different frequencies and wavelengths. Such a
group is called a wave packet. The mathematics of representing arbitrarily shaped
pulses by sums of sine or cosine functions involves Fourier series and Fourier inte-
grals. We shall iflustrate the phenomenon of wave packets by considering some simple
and somewhat artificial examples and discussing the general properties qualitatively.
Wave groups are particularly imporiant because a wave description of a particle must
include the important property of localization.

Consider a simple group consisting of only two waves of equal amplitude and
nearly equal frequencies and wavelengths. Such a group occurs in the phenomenon
of beats and is described in most introductory textbooks. Let the wave numbers be k,
and k;, the angular frequencies wy and w,, and the speeds v, and v,. The sum of the
WO waves is

Hx 1) = ygcos{lyx — wyr) + yo coslhyx — wyf)
which, with the use of a bit of trigonometry, becomes

Hx, 1) = 2y, cos(g.r - é—!r) cos(

k) + &, Wl"‘"’z)
2 2 X t

2 2

where Ak = &k, — k; and Aw = w; — w;. Sitice the two waves have nearly equal
values of k and w, we will write & = (k, + k2 and @ = (0, + w;)/2 for the mean
values. The sum is then

#x, 1) = Zyg cos(JAkr — JAwr) cos(ke — @) 5-15
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Fig. 5-15 Two waves of slightly different waveleagth and frequency produce beats. (2} Shows

$(x) at & given instant for each of the two waves. The waves are in phase at the origin but
because of the difference in wavelength, they become out of phage and then in phase again.

{b) The sum of these waves. The spatial extent of the group Ax is inversely proportional to the
difference in wave numbers Ak, where k is related 1o the wavelength by & = 2m/\. Identical
figures are obtained if y is plotted versus time ¢ at a fixed point x. In that case the extent in time
Al is inversely proponional to the frequency difference Aw.

Figute 5-15 shows a sketch of y(x, f) versus x at some time £, The dashed curve is
the envelope of the group of two waves, given by the first cosine term in Equation
5.15. The wave within the envelope moves with the speed G/k, the phase velocity v,
due to the second cosine term. If we write the first (amplitude modulating) term as
cos {éAk[x — {Aw/AK)t}}, we see that the envelope moves with speed Aw/Ak The
speed of the envelope is called the group velocity v,.

Classical Uncertainty Relations

The range of wavelengths or frequencies of the hanmonic waves needed to form a
wave packet depends on the extent in space and duration in time of the pulse. In gen-
eral, if the extent in space Ax is small. the range Ak of wave numbers must be large.
Similarly, if the duration in time 7 is small, the range of frequencies Aw must be
large. It can be shown that for a generat wave packet, Ax and Ak are related by

Ak Ax ~ 1 5.16
Similarly,
Aw At~ 5.17

We have written these as order-of-magnitude equations becauvse the exact value of
the products Ax Ak and Atz Aw depends on how these ranges are defined, as well as
on the particular shape of the packets. Equation 5-17 is sometimes known as the
response time—bandwidrh relation, expressing the result that a circuit component
such as an amplifier must have a large handwidth (Aw) if it is to be able to respond to
signals of short duration.

There is a slight variation of Equation 5-16 that is also helpful in interpreting the
felation between Ax and Ak Differentiating the wave number in Equation 5-13b
Yields

The classical uncertainty
relations define the range of
signal frequencies to which
all kinds of communications
equipment and computer
systems must respond,
from cell phones to super-
computers.
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—2wdA
di = I 5‘13

Replacing the differentials by small intervals and concerning ourselves only wig,
magnitudes, Equation 5-18 becomes

_ 2mwAN

Ak = =5

which when substituted inte Equation 5-16 gives

2

Ax A\ = » 5.19
In

Equation 5-19 says that the product of the spatial extent of a classical wave Ax and
the uncentainty (or “error”) in the determination of its wavelength Ak will always be
of the order of A¥2w. The following brief examples will illustrate the meaning of
Equations 5-16 and 5-17, often referred to as the classical uncertainty relations, and
Equation 5-19.

EXAMPLE 5-4 AX for Qcean Waves Standing in the middle of a 20-m-long pier,
you notice that at any given instant there are 15 wave crests between the two ends
of the pier. Estimate the minimum uncertainty in the wavelength that could be
computed from this information.

Solution
. The miniurn uncertainty AX in the wavelength is given by Equation 5-19:

2

A
Ax Ax = E

2. The wavelength A of the waves is:

_ 20m
15 waves

=13m
3. The spatial extent of the waves used for this calculation is:

Ar=20m

4. Solving Equation 5-19 for A\ and substituting these values gives:

H 2
AN =~ LS {1.3)
2nAx 2w X 20
= 0.013m

AN = 0.0lm = 1 cm

5-3 Wave Packers

surement of the number of wave crests would add further uncertainty to the deter-

Remarks: This is the minimum sncertainty. Any error that may exist in the mea-
I mination of h.

EXAMPLE 5-5 Frequency Control The frequency of the alternating voltage pro-
duced at electric generating stations is carefully maintained at 60.00 Hz. The fre-
ancy it monitored on a digital frequency meter in the control room. For how
i;mg must the frequency be measured and how often can the display be updated, if
the reading is to be accurate to within 0.01 Hz?

Solution
Since w = 2mf, then Aw = 2mAf = 2m(0.01) rad/s and

At ~ VAw = 12m(0.01)
Ar~ 1658

Thus, the frequency must be measured for about 16 s if the reading is to be accu-
rate to 0.0 Hz and the display cannot be updated more often than once every 16s.

General Wave Packet

We can construct a more general wave packet than Equation 5-15 if we allow the
amplitudes of the various harmonic waves 1o be different. Such a packet can be rep-
resented by an equation of the form

W 0 = X Acoslhx — o) 5-20
i

where A, is the amplitude of the wave with wave number &; and angular frequency ;.
The calculation of the amplitudes A; needed to construct a wave packet of some given
shape y(x, £,) at some particular time is a problem in Fourier series.

If we are restricted to a finite nomber of waves, it is not possible to obtain a
wave packet that is small everywhere outside a well-defined range. The larger the
number of waves, the larger the region in which destructive interference makes the
envelope smalt, but eventualiy all the waves will again be in phase, the envelope will
be large, and the pattern will repeat. To represent a pulse that is zero everywhere out-
side some range, such as that shown in Figure 5-14, we must construct a wave packet
from a continuous distribution of waves. We can do this by replacing A, in Equation
520 by A(k) dk and changing the sum to an integral. The quantity A(K) is called the
distribution function for the wave number & Either the shape of the wave packet at
some fixed time ¥(x) or the distribution of wave numbers A(k) can be found from the
other by methods of Fourier analysis.”

Figure 5-16 shows a Gaussian-shaped wave packet and the corresponding wave-
number distribution function for a narrow packet (Figure 5-162) and a wide packet
(Figure 5-165). For this special case, A(K) is also a Gaussian function. The standard
deviations of these Gaussian functions are related by

a0, = % 5-21

219
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Fig, 5-16 Gaussian-Shaped
wave packets y{x) and the

corresponding Gaussian dis-

tributions of wave numbers
A(k). (a) A narrow packet.

() A wide packet. The stan-

dard deviations in each case
are telated by o,m, = 1/2.

(a) y(% Al

W yua vy

It can be shown that the product of the standard deviations is greater than 1/2 for
a wave packet of any shape other than Gaussian.

For our simple group of only two waves, we found that the envelope moved with
the velocity v, = Aw/Ak. For a general wave packet, the group velocity is given by

_da

=& 522

Ve

where the derivative is evaluated at the central wave number. The group velocity of
a puise can be related to the phase velocities of the individual harmonic waves mak-
ing up the packet. The phase velocity of a harmonic wave is

@ }{ 2w @
Y= ‘(ﬂ)(?) “%
so that

o= kv,

Differentiating and substituting dw/dk from Equation 5-22, we obtain

_ kdvp .
V=1, + % 5-

If the phase velocity is the same for all frequencies and wavelengths, then dv,idk =
0, and the group velocity is the same as the phase velocity. A medium for which the
phase velocity is the same for all frequencies is said to be nondispersive. Examples
are waves on a perfectly flexible string, sound waves in air, and electromagnetic
waves in a vacuum. An important characteristic of a nondispersive medium is that,
since all the harmonic waves making up a packet move with the same speed, the
packet maintains its shape as it moves; thus it does not change its shape in time.
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e\ ft

Conversely, if the phase velocity is different for different frequencies, the shape of
the pulse will change as it travels. In that case, the group velocity and phase velocity
are not the same. Such a medium is called a dispersive medium; examples are water
waves, waves on a wire that is not perfectly fexible, light waves in a medium such
a3 glass or water, in which the index of refraction has a slight dependcpce on
frequency, and electron waves. Figure 5-17 shows a wave packet for which the
group velocity is half the phase velocity. The following example also illustrates such
acase.

EXAMPLE 5-6 Velacity of Deep Ocean Waves The phase velocity v of waves deep
in the ocean is given by v, = gT/2w, where g is the acceleration of gravity and T'is
the period of the wave. What would be the group velocity of a wave packet formed
by 2 group of such waves, expressed in terms of the phase velocity?

Fig. 5-17 Wave packet for
which the group velocity is
half the phase velocity, Water
waves whose wavelengths are
a few centimeters, but much
1ess than the water depth,
have this property. The amrow
travels at the phase velocity,
following a peint of constant
phase for the dominant wave-
length. The cross at the center
o tranale ot tha
group velocity. [Adapred from
F. §. Crawford, Jr., Berkeley
Physics Course (New York:
McGraw-Hill, 1965}, vol. 3,
p. 294. Courtesy of Education
Development Center, Inc.,
Newton, Mass.
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Solution

Note that v, = gT/21 = g/2mf = glo from the definitions of the period and the
angular velocity. Thus,

gk:mA

Since the group velocity v, = dw/dk (Equation 5-22), we differentiate the above
expression, obtaining

g dk = 2w dw
or
p=de_8 1,
rod&k e 27
QuesTions > s AL

4, Which is more important for communication, the group velocity or the phase
velocity?

5. What are Ax and Ak for a purely harmonic wave of a single frequency and
wavelength?

Particle Wave Packets

The quantity analogous to the displacement y(x, 1} for waves on a string, to the pres-
sure P(x, 1) for a sound wave, or to the electric field E(x, £} for ¢lectromagnetic
waves, is called the wave function for particles and is usually designated W{(x, ). Tt is
W(x, #) that we will relate to the probability of finding the particle and, as we alerted
you earlier, jt is the probability that waves. Consider, for example, an etectron wave
consisting of a single frequency and wavelength; we could represent such a wave by
any of the following, exactly as we did the classical wave: W(x, {} = A cos (kx — ),
Y(x, £} = A sin (kx — of), or P(x, 1) = Ae'tks— w0,
The phase velocity is given by

e gl

where we have used the de Broglie relations for the wavelength and frequency. Using
the nonrelativistic expression for the energy of a particle moving at speed v in free
space (i.e., no potential energy) with no forces acting vpon it,

1 P
E=-mpt="F_
2mv o

; . 273
. e T A b FUNETHON 22
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we see that the phase velocity is

piim _ p
p 2m

[ SRS

—_— E —
v, = ; =
i., the phase velocity of the wave is half the vcl?city v of.an;l]ectmn with mmnefn;
am p. The phase velocity does nof equal the partlcln.: velocity. Moreover, a wave of
:l:;li frequency and wavelength is not localized but is sM throughout space, which
makes it difficult to see bow the particle and wave propertics of the clectron could

.- e sls mnetiala nennerty of heino localized. the
pe BLANEU. 11IUD, IWVI UK Sivasasms s tmes= —or p—- 0 4 o

matter waves of the electron must- also be limited in spatial extent— i.e., realistically,
W(x, 1) must be & wave packet containing many more than one wave number k and
frequency o It is the wave packet W(x, 7) that we expect 10 move navcloclty‘e;]uailf
1o the particle velocity, whichwewi]lshuwbelo.w?smdeedll?ecase.'lheparhce,
observed.wcwiﬂexpectwﬁndmhemwtﬁlfnﬂwspat}ﬂexlmlofﬂmw:m
packet ¥(x, 1), precisely where within that space being the subject of the next section.

To illustrate the equality of the group velocity v, :md the !)arncle velocity vl1} is
convenient to cxpress de Broglie's relations in a slightly different form. Writing
Equation 5-1 as follows,

E=hf= :—% or E=#w 524
and Equation 5-2 as
r= % = ﬁ = gt; or p = hk 5.25
The group velocity is then given by
dw _dER _dE
&k
Again using the nonrelativistic expression £ = p*f2m, we have that
=v

and the wave packet W{x, £} moves with the velocity of the electron, This was, in fact,
one of d;Bmglie‘s reasons for choosing Equations 5-1 anq 5.2. (De Broglie used the
relativistic expression relating energy and momentum, which also leads to the equal-
ity of the group velocity and particle velocity.)

5-4 The Probabilistic Interpretation

of the Wave Function

Let us consider in more detail the relation between the wave function W(x, 1) and the
location of the electron. We can get a hint about this n:la-tmn from the case c_»f light.
The wave equation that governs light is Equation 5-11, with y = €, the electric field,

An application of phase and
particle speeds by nature:
praduce a wave on a still
pond (or in a bathtub) and
watch the wavelets that
make up the wave appear
ta "climb over” the wave
crest at twice the speed of
the wave.




5-5 Tir UNCERTAINTY PRINCIPLE 225

i 224 Chapter 5 The Wavelike Properties of Particles

i as the wave function, The energy per unit volume in a light wave is proportional t
! % but the energy in a light wave is quantized in units of Af for each photon. We
expect, therefore, that the number of photons in a unit volume is proportional to 2, 5
connection first pointed out by Einstein,
. Consider the famous double-shit interference experiment (Figure 5-18). The pattery
[ observed on the screen is determined by the interference of the waves from the slits, At a
! point on the screen where the wave from one slit is 180° out of phase with that from
: the other, the resultant electric field is zero; there is no light energy at this point, and the
point is dark. If we reduce the intensity to a very low value, we can still observe the
IMETTEMENCE PAUCTIL 1l WE ICPIAT UIG UIUINALY SLILUIL U) 6 ouiibainsts suvious Ve a s ma
dimensioral array of tiny photon detectors and wait a sufficient length of time.
The interaction of light with the detector or scintillater is a quantum phenome-
! nonh. If we illuminate the scintillators or detectors for only a very short time with a
! low-intensity source, we do not see mercly a weaker version of the high-intensity
: pattern; we see, instead, “dots” caused by the interactions of individual photons (see
\ Figure 5-19). At points where the waves from the slits interfere destructively there
are no dots, and at points where the waves interfere constructively there arc many ®» 2 @
[ dots. However, when the exposure is short and the source weak, random fluctuations Fig. 5-19 Growth of two-slit interference paticrn. The photo {d) is an actal two-slit electron interference pattern in which the film
[ from the average predictions of the wave theory are clearly evident, If the exposure is was enposed to millions of clectrons. The pattem is identical to that usually obtained with photons. If the film were to be observed
long enough that many photons reach the detector, the fluctuations average out and at various stages, such a3 after being struck by 28 electrons, then after about 1000 electrons, and again aficr about 10,000 electrons.
the quantum nature of light is not noticed. The interference pattern depends only on H the patterns of individuslly exposed grains would be similar t0 those shown in (a), (b). and (c), except that the exposed dols would

©

|

the total number of photons interacting with the detector and not on the rate, Even be stnaller than the dots drawn hem Note' that there are no dots in the region of lhe interference minima. %mm;;z o(t; anyb,
! when the intensity is so low that only one photon at a time reaches the detector, the point of the film being exposed |sducrmmedbywaveﬂu_)ry. whether the film lselltpm?dbyelecumswp ons. (Parts {a), (b),
| wave theory predicts the correct average pattern, For low intensities, we thercfore and(c) from E. R, Huggins, Physics 1, © by W A, Benjamin, Inc., Menlo Park, California. Phota (d) courtesy of C. Jonsson]
I interpret €2 as propertional to the probability ofrdelec!ing a photon in a unit volume '

‘ of space. At points on the detector where %2 is zero, photons are never observed, the function ¥* being the complex conjugate of ¥. In one dimension, 1 I dx is the

Fig. 5-18 Two-source inter-
ference pattem. 1f the sources
are coherent and in phase, the
waves from the sources inter-
fere constructively at points
for which the path difference
{d sin 8} is an integral num-
ber of wavelengths.

! whereas they are most likely to be observed at points where %2 is large.

It is not necessary to use light waves to produce an interference pattern. Such pat-
terns can be produced with electrons and other particles as well. In the wave theory of
electrons, the de Broglie wave of a single electron is described by a wave function ¥.
The amplitude of ¥ at any point is related to the probability of finding the particle at that
point. In analogy with the foregoing interpretation of €2, the quantity | '  is propor-
tivnal to the probability of detecting an clectron in a unit volume, where | W F = ¥+,

i

probability of an electron being in the interval Jx.'° (See Figure 5-20.) if we call this
probability P(x)dx, where P(x} is the probability distribution function, we have

P dr=1¥Pde 5-26

In the next chapter we will discuss more thoroughly the amplitudes of matter waves
associated with particles, in particular developing the mathematical syster for com-
puting the amplitudes and probabilities in various situations. The uneasiness that you
may feel at this point regarding the fact that we have not given a precise physical
interpretation 1o the amplitude of the de Broglie matter wave can be attributed in part
to the complex nature of the wave amplitude, i.e., it is in general a complex quantity
with a real part and an imaginary part, the latter propottional to i = (— 1) We can-
not directly measure or physically interpret complex numbers in our world of real
numbers. However, as we will see, defining the probability in terms of | ¥ B, which is
always real, presents no difficulty in its physical interpretation. Thus, even though the
amplitudes of the wave functions ¥ have no simple meaning, the waves themselves
behave just as do classical waves, exhibiting the wave characteristics of reflection, re-
fraction, interference, and diffraction and obeying the principles of superposition.

5-5 The Uncertainty Principle

Consider a wave packet W(x, 1) representing an electron. The most probable posi-
tion of the electron is the value of x for which | ¥(x, H is a maximum. Since
[¥(x, 1) I? is proportional to the probability that the electron is at x, and | ¥(x, H ¥
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qations 5-16 and 5-17 are inherent properties of waves. If we multiply these equa-

Wl Egnsbyﬂandusep=hkandE:f:m.weobmin

. @\% 527
A AxAp ~ A -
ORET

M (x, y, 2

and
1=0

AEA~ R 5-28
.\ g £ 07 nd & I menvide o ctatemant of the urcertainty nrincinle first enunci-
¥ ,t’" s x ated in 1927 by Wemer K. Heisenberg.!' Equation 5-27 expresses the df:lt:t lt’hm tl;e

R\ istributi i iti d momenturn cannot both be made arbitrari
W y, i2 ._:_.;/I'"\\_\.":_-‘.:_. dlsmbutu?n functions for position and mo : n o] y
- :{'-‘:-":/’".‘ \\\‘\-a’._‘ parrow simultaneously (see Figure 5-16)% thus measurements of position and
.:::::,;‘—:::?'Z’_l)“ 3¢ “\\\‘:““‘:" momentum will have similar uncertainties which are related by Equation 3-27. Of
RSSO course, because of inaccurate measurements, the product of Ax and Ap can be, and

usually is, much larger than A. The lower limit is not due to any technical problem in
the design of measuring equipment that might be solved at some later time; it is
instead due to the wave and particle nature of both matter and light.

If we define precisely what we mean by the uncertainty in the measurements of  Heisenberg's uncertainty
position and momentum, we Can give a precise statement of the uncertainty principle.  principle is the key to the
We saw in Section 5-3 that, if o, is the standard deviation for measurements of posi-  existence of virtual particles
tion and o is the standard deviation for measurements of the wave number &, the that hold the nuclei
product .0, has its minimum valve of 1/2 when the distribution functions are  together (see Chapter 11)
Gaussian. If we define Ax and A p to be the standard deviations, the minimum value  and is the root of quantum

of their product is { A. Thus fluctuations that may have
been the origin of the Big
AxAp=ih §-29  Bang (see Chapter 14).
| Fig. 5-20 A three-dimensional wave packet representing a particle moving along the x axis. The dot indicates the position Similarl
! of # clussical particle. Note that the packet spreads out in the x and y directions. This spresding is due to dispersion, tmiarly,
i resulting from the fact that the phase velocity of the individual waves making up the packet depends on the wavelength AEAI = % # 5.30

of the waves.

N e S S

WW‘?‘W R R AT AT YR g - T
is nonzero for a range of values of x, there is an uncertainty in the value of the po-
sitions of the electron. (See Figure 5-20.) This means that if we make a number of 6. Does the uncertainty principle say that the momentum of a particle can never

! position measurements on identical electrons — electtons with the same wave func- be precisely known?

\ tion—we shall not always obtain the same result In fact, the distribution function
for the results of such measurements will be given by | W(x, 1) I2. If the wave packet
is very narmow, the uncertainty in position will be small. However, a narrow wave

I packet must contain a wide range of wave numbers k Since the momentum is

' related to the wave number by p = Ak a wide range of k values means a wide
range of momentum values. We have seen that for all wave packets the ranges Ax
and Ak are related by

Exploring

Ax Ak ~ - .
' s The Gamma-Ray Microscope
Sitmilarly, a packet that is localized in time A7 must contain a range of frequencies Let us see how one might attempt 1o make a measurement 50 accurate as (o violate
! Aw, where the ranges are related by ¢ the uncertainty principle. A common way to measure the position of an object such

%8s an electron is to look at it with light, i.e., scatter light from it and observe the
Aw Ar—1 517 diffraction pattern. The momentum can be obtained by looking at it again, 2 short
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F time later, and computing what velocity it must have had the instant before the light
{ scattered from it. Because of diffraction effects, we cannot hope 1o make measure-
ments of length (position) that are smaller than the wavelength of the light used, so
[ we will use the shortest-wavelength light that can be obtained, gamma rays. (There
is, in principle, no limit to how shorl the wavelength of electromagnetic radiation
can be.) We also know that light carries momentum and energy. so that when it
scatters off the electron, the motion of the electron will be disturbed, affecting the
momentum. We must, therefore, use the minimum intensity possible, so as to dis-
turb the electron as little as possibie. Reducing the intensity decreases the number
E of photons, but we must scattzr at lcast one phown to observe the electron. The
LN PUSSILIC M1, Gion, 19 sise wUtsvop gy 10 ol prtt0 The srattar
ing of a photon by a free electron is, of course, a Compton scattering, which was
discussed in Section 3-4. The momentum of the photon is Affc = k/A. The smaller
the X that is used to measure the position, the more the photon will disturb the elec-
tron, but we can correct for that with a Compton-effect analysis, provided only that
we know the photon's momentum and the scattering angles of the event.
i Figure 5-21 illustrates the problem. (This illustration was first given as a
 gedankenexperiment, or thought experiment, by Heisenberg. Since a single photon
doesn’t form a diffraction pattern, think of the diffraction pattern as being built up
P by photons from many identical scattering experiments.) The position of the clec-
¥ tron is to be determined by viewing it through a microscope. We shall assume that
3 only one photon is used. We can take for the uncertainty in position the minimum
' geparation distance for which two objects can be resolved; this is'?

_ A
2sin @

" where B is the half angle subtended by the lens aperture, as shown in Figures 5-21a
and b, Let us assume that the x component of momentum of the incoming photon is

. known precisely from a previous measurement. To reach the screen and contribute

. to the diffraction pattern in Figure 5-2{c, the scattered photon need only go through
the lens aperture, Thus, the scattered photon can have any x component of momen-
tum from } to p, = p sin 8, where p is the total momentum of the scattered photon.
By conservation of momentum, the uncertainty in the mo n of the el

- after the scattering must be greater than or equal to that of the scattercd photon

- (it would be equal, of course, if the electron's initial momentwm were known pre-
cisely); thus we write

Lo achd

h
Ap, = psin b = isin 3}

'iand

] A hsind ]

‘ AxAp, =z —— 25t _ 2
ArAmEoa Ty 2

Thus, cven thongh the clectron prior to cur observation may have had a definite
position and momentum, our observation has unavoidably introduced an uncer-
tainty it the measured values of those quantities. This illustrates the essential point
of the uncertainty principle —that this product of uncertainties cannot be less than
about # in principle, that is, cven in an ideal situation. If electrons rather than pho-
tons were used to locate the ohbject, the analysis would not change. since the rela-
tion A = hip is the same for both.

T
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5-6 Some Consequences of
the Uncertainty Principle

In the next chapter we shali see that the Schrédinger wave equation provides a
straightforward method of solving problems in atomic physics. However, the solu-
tion of the Schradinger equation is often laborious and difficult. Much semiquanti-
tative information about the behavior of atomic systems can be obtained from the

.

iy 5-21 (@) “Seeing an elec-
tron” with a gamma-ray
microscope. (h) Because

of the size of the lens, the
momentum of the scattered
photon is uncertain by Ap, ~
p sin 8 = h sin 6. Thus the
recoil momentum of the elec-
tron is also uncertain by at
least this amount. (¢} The
position of the electron cannot
ha racnlved hetter than the
width of the central maximum
of the diffraction pattern Ax =
Asin 9. The product of the
uncertainties Ap Ax is there-
fore of the order of Planck’s
constant A
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uncertainty principle alone without a detailed solution of the prablem. The general
approach used in applying the uncertainty principle to such systems will first be
illustrated by considering a particle moving in a box with rigid wails. We then use
that analysis in several numerical examples and as a basis for discussing some
additional consequences.

Minimum Energy of a Particle in a Box

An imnortant consenuence of the uncertainty orincinle is that a particle confined
to a finite space cannot have zero kinetic energy. Let us consider the casc of
a one-dimensional “box” of length L. If we know that the particle is in the box,
Ax is not larger than L. This implies that Ap is at least /L. (Since we are inter-
ested in orders of magnitude, we shall ignore the 1/2 in the minimum uncertainty
product. In general, distributions are not Gaussian anyway, so Ap Ax will be
larger than %ﬁ.)
Let us take the standard deviation as a measure of Ap,

@ =(p — P =7 ~ 2P + Pl =P — F

If the box is symmetric, B will be zero since the particle moves to the left as often as
to the right. Then

@&pF =7 2(%)2

and the average Kinetic energy is

-] 2

Thus, we see that the uncertainty principte indicates that the minimum energy of a
particle (any particle} in a “box™ {any kind of “bex™) cannot be zero. This minimum
energy given by Equation 5-31 for a particle in a one-dimensional box is called the
Zer0-point energy.

EXAMPLE 5-7 A Macroscopic Particle in a Box Consider a small but macro-
scopic particle of mass m = 107 g confined to a one-dimensional box with
L = 107 m, e.g., a tiny bead on a very short wire. Compute the bead’s minimum
kinetic energy and the corresponding speed.

Solution
1. The minimum kinetic energy is given by Equation 5-31:

A2 (1055 X 107 -sp

E=

T 2mIr T (2)(10 °kg)(10 6 m)?
=557 x 107%]
=347 X 1078 eV

§-f SOME CONSEQUENCES OF THE LINCERTAINTY PriNciers

2. The speed corresponding te this Kinetic energy is:

B ,g _ ,2(5.57 X 10°% 1)
ViNm 107 %kg

=106 x 107" m/s

Remarks: We can see from this calculation that the minimum kinetic energy
implied by the uncertainty principle is certainly not observable for macroscopic
objects even as small as 107° g.

EXAMPLE 5-8 An Electron in an Atomic Box If the particle in a one-dimensional
box of length L = 0.1 nm (about the diameter of an atom) is an electron, what will
be its zero-point energy?

Solution
Aggin using Equation 5-31, we find that

2 = ‘
ey (197.3€V-nm) a1V

B~ omdl? - 20511 X 10° V)01 nm?

This is the correct erder of magnitude for the kinetic energy of an electron in an
atom.

Size of the Hydrogen Atom
The energy of an electron of momentum p a distance 7 from a proton is
h!
=P _¥

2m r

If we take for the order of magnitude of the position uncertainty Ax = 7, we have

ﬁz
app=p= =

The energy is then
R ke?

2mr?

There is a radius 7,, at which E is minimum. Setting dEidr = O yields r,, and E,,;

e
™ keI ag = 0.0529 nm
and
e'm
E.=-— creal -136eV
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The fact that r,, came out to be exactly the radius of the first Bohr orbit is due to the
judicious choice of Ax = r rather than 2r or r/2, which are just as reasonable, It
should be clear, however, that any reasonable choice for Ax gives the correct order of
magnitude of the size of an atom.

Widths of Spectral Lines

Fonation 5-3) imnlies that the snerov of a svctam cannot he meacired sxactlv nnlsec
an infinite amount of time is available for the measurement. If an atom is in an
excited state, it does not remain in that state indefinitely but makes transitions to
lower energy states unti it reaches the ground state. The decay of an excited state is
a statistical process.

‘We can take the mean time for decay T, called the lifetime, to be a measure of the
time available to determine the energy of the state. For atomic transitions, 7 is of the
order of 1072 5. The uncertainty in the energy corresponding to this time is

i 658 X 107 %V
AE2;=-—‘—8-—FPGS—G——S'”5 107 eV

This uncertainty in energy causes a spread A\ in the wavelength of the light emitied.
For transitions to the ground state, which has a perfectly certain energy E, because of
its infinite lifetime, the percentage spread in wavelength can be calculated from

E—&=¥

dE=—hc%

a8} = e
thus

ar__AE

N E-E

The energy width I'y = fi/7 is called the natural line width. Other effects that cause
broadening of spectral lines are the Doppler effect, the recoil effect, and atomic
collisions, For optical spectra in the eV energy range, the Doppler width D is about
10-% eV at room temperature, i.c., roughly 10 times the natural width, and the
recoil width is negligible. For nuclear transitions in the MeV range, both the
Doppler width and the recoil width are of the order of ¢V, much larger than the nat-
ural line width, We shall sce in Chapter 11 that in some special cases of atoms in
solids at low temperatures, the Doppler and recoi! widths are essentially zero and
the width of the spectral line is just the natural width. This effect, called the Mdss-
bauer effect after its discoverer, is extremely important, for it provides photons of
well-defined energy, which are useful in experiments demanding extreme preci-
sion. For example, the 14.4-keV photon from 3’Fe has a natural width of the order
of 107" of its encrgy.

5-7 WavE-ParTICLE DUaLIty

QUESTIONS

7. What happens to the zero-point energy of a particle in a one-dimensional box
as the tength of the box L — =?

8. Why is the uncentainty principle not apparent for macroscopic objects?

—
FXAMPLE 5-9 Emission of a Photon Most excited atomic states decay, i.c., emit
a photon, within about + = 107% s following excitation. What is the minimum
uncertainty in the (1) energy and (2} frequency of the emitted photon?

Solution
1. ‘The minimum energy unceriainty is the natural line width Ty = fi/r; therefore,

[ o 863X 10715 414 x 10°%eV-s
' 2mx 107%s X 107%s

= 6.6 X 107%eV

2. From de Broglie's relation E = fiw we have
AE = hAw = A(2wAf) = hAf
so that Equation 5-30 can be writien as

AE A1 = hAfAr=h

1
Afﬁiaa

and the minimum uncertainty in the frequency becomes

1 |
InAt 2w % 1078
Af= 1.6 X 107Hz

Af=

5-7 Wave-Particle Duality

We have seen that electrons, which were once thought of as simply particles, exhibit the
wave properties of diffraction and interference. In earfier chapters we saw that light,
which we previously had thought of as a wave, also has particle properties in its interac-
ton with matter, as in the photoelectric effect or the Compton effect. All phenomena—
clectrons, atoms, light, sound —have both particle and wave characteristics. It is some-
fimes said that an electron, for example, behaves as both a wave and a particle. This may
Scem confusing since, in classical physics, the concepts of waves and particles are mutu-
ally exclusive, A classical particle behaves like a BB shot. It can be localized and
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scattered, it exchanges energy suddenly in a lump, and it obeys the laws of conservation
of energy and momentum in collisions; but it does not exhibit interference and diffrac.
tion. A classical wave behaves like a water wave. It exhibits diffraction and interference
patterns and has its energy spread out continuously in space and time, not quantized in
lumps. Nothing, it was thought, could be both a classical particle and a classical wave,

We now see that the classical concepts do not adequately describe cither waves
or particles. Both matter and radiation have both particle and wave aspects. Whep
emission or absorption is being studied, it is the particle aspects that are dominany,
When matter or radiation propagates though space, wave aspects dominate. Notice
St cersirini Znd phonrmticn nea avante chararterized by exchange of enerey and dis.
crete locations. For example, light strikes the retina of your cye and a photon is
absorbed, transferring its energy to a particular rod or cone: an observation has
occurred. This illustrates the point that ebservations of matter and radiation are
described in terms of the particle aspects. On the other hand, predicting the intensity
distribution of the light on your retina involves consideration of the amplitudes of
waves that have propagated through space and been diffracted at the pupil. Thus, pre-
dictions, i.¢., a priori stalements about what may be cbserved, are described in terms
of the wave aspects. Let’s claborate on this just a bit.

Every phenomenon is describable by a wave function that is the solution of a wave
equation, The wave function for fight is the electric field €(x, f) {(in one dimension),
which is the solution of a wave equation like Equation 5-11. We have called the wave
function for an electron ¥(x, ). We shall study the wave equation of which ¥ is the
solution, called the Schrédinger equation, in the next chapter. The magnitude squared
of the wave function gives the probability {per unit volume) that the electron, if looked
for, will be found in & given region. The wave function exhibits the classical wave prop-
erties of interference and diffraction. In order to predict where an electron, ot other par-
ticle, is likely to be, we must find the wave function by methods similar to those of
classical wave theory. When the electron {or light} interacts and exchanges energy and
momentum, the wave function is changed by the interaction. The interaction can be
described by classical particle theory, as is dene in the Compton effect. There are times
when classical particle theory and classical wave theory give the same resalts. [f the
wavelength is much smaller than any object or_aperture, particle theory can be used as
well a5 wave theary to describe wave propagation, because diffraction and interference
effects are too small o be pbserved. Common examples are geometric optics, which is
really a particie theory, and the motion of baseballs and jet aircraft. If one is interested
only in time averages of energy and momentum exchange, the wave theory works
as well as the particle theory. For example, the wave theory of light correctly predicts
that the total electron current in the photoelectric effect is proportional to the intensity
of the tight.

More

mmmel}meﬂn'bitwmﬁkcothﬁQaswellnspm‘ﬁcmike
behavior can be a difficult concept to understand. A wondesfully clear
discussion of wave-particle duality was given by R. P. Feynman and we
have used it as the basis of our explanation on the home page of the
Two-Slit Interference Patiern for electrons: www.whfreeman.com/
modphysicsde  Sce also Figures 5-22 and 5-23 and Equation 5-32
here.
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The wave packet moves with the particle speed, i.¢., the particle speed is
the group speed v,

The magnitude square of the wave funciion is proportional to the probability
of observing a particle in the region dx atx and .

Pixydx = "¥dy .26
AxAp= ik 529
AE A1 = 1 ' 530
where each of the uncertainties is defined to be the standard
deviation.
—_ R

_— 1
E22m[.’ 5.3
The minimum energy of any particle in any “box™ canivot
be zeto.

The Heisenberg, principle predicts E,y, = —13.6 eV in agreement with
the Bohr model,
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GENERAL REFERENCES

The following general references are written at a level appro-
priate for the readers of this book.

De Broglie, L., Marter and Light: The New Physics, Dover,
New York, 1939. In this collection of studies is de
Broglie's lecture on the occasion of receiving the Nobel
Prize, in which he describes his reasoning teading to the
prediction of the wave nature of matter.

Bawnman B “Prohahility and 1T it
Mechanical View of Nature,” filmed lecture, available
from Educational Services, Inc., Film Library, Newton,
Mass.

Feynman, R. P, R. B, Leighton, and M. Sands, Lectures on
Physics. Addison-Wesley, Reading, Mass., 1965,

Tha M

NOTES

I. Louis V. P R. de Broglie {1892-1987), French physi-
cist. Originally trained in history, he became interested in
science after serving as a radio engineer in the French army
(assigned to the Eiffel Towet) and through the work of his
physicist brother Maurice. The subject of his doctoral disser-
tation received unusual attention becawse his professor, Paul
Langevin (who discovered the principle on which sonar is
based), brought it to the attention of Einstein, who described
de Broglie’s hypothesis to Lorentz as “. . . the first feeble
ray of Jight to illuminate . . . the worst of our physical rid-
dles.” He received the Nobel Prize in physics in 1929, the
first petson so honored for work done for a doctoral thesis,

L. L. de Broglie. New Perspectives in Physics (New York:
Basic Books, 1962).

Y. See, e.g., P Tipler, Physics for Scientists and Engineers,
4th ed. (New York: W. H. Freeman, 1999), Section 35-5,

4. Jean-Baptiste Perrin (1870 -1942), French physicist. He
was the first to show that cathode rays were actually charged
particles, setting the stage for J. J. Thomson's measurement
of their g/m ratio. He was also the first (o measure the
approximate size of atoms and melecules and determined
Avogadro’s number. He received the Nobel Prize in physics
for that work in 1926.

5. Clinton ). Davisson (1881-1958), American physicist.
He shared the 1937 Nobel Prize in physics with G. P. Thomson
for demonstrating the diffraction of particles. Davisson's was

the first ever awarded for work done somewhere other than at

an academic institution. Germer was one of Davisson’s assis-
tunts at Bell Telephone Laboratory.

6. Matter (electron) waves, like other waves, change their
direction in passing from one medium (e.g.. Ni crystal) into
another (¢.g., vacuum) in the manner described by Snell’s
law and the indices of refraction of the two media. For nor-
mal incidence Equation 5-5 is not affected, bt for other inci-
dent angles it is altercd a bit and that change has not been
taken inte account in either Figure 5-6 or 5-7.

Fowles. G. R.. Introduction 10 Modern Oprics, Holt, Rinehayy
& Winston, New York, 1968,

Hecht, E., Oprics, 2d ed., Addison-Wesley, Reading, Mass
1987,

Jenkins, . A., and H. E. White, Fundamentals of Optics, 4thed,,
McGraw-Hill, New York, 1976.

Mehra, J., and H. Rechenberg, The Hisiorical Development of
Quantum Theory, Vol. 1, Springer-Verlag, New Yok,
rag?

Resnick, R., and D. Halliday, Basic Concepts in Relativity and
Early Quantum Theory, 2d ed., Wiley, New York, 1992,

Tipler, P., Physics for Scientists and Engineers, 4th ed., W. H.
Freeman, New York, 1999, Chapters 15 and 16 include a
complete discussion of classical waves.

7. Nobel Prize Lectures: Physics (Amsterdam and New
York: Elsevier, 1964).

8. In spectroscopy, the quantity k = A~ is called the wave
number: In the theory of waves, the term wave number is
used for k = 2m/\.

9. If you are familiar with Fourier analysis, you will recog-
nize that y(x) and A{k) are essentially Fourier transforms of
each other.

10. This interpretation of | W I* was first developed by the
German physicist Max Born (1882—1970). One of his posi-
tions early in his career was at the University of Berlin,
where he was to relieve Planck of his teaching duties. Bom
received the Nobel Prize in physics in 1954, in part for his
interpretation of | ¥ 12, :

11. Werner K. Heisenberg {190t —1976), German physicist.
After obtaining his Ph,D. under Sommerfeld, he served as an
assistant to Bom and to Bohr. He was the director of research
for Germany’s atomic bomb project during World War I1. His
work on quantum theory eamned him the physics Nobel Prize
in 1932

12. The resolving power of a microscope is discussed in
some detail in F. A, Jenkins and H. E. White, Fundamentals
of Optics, 4th ed. (New York: McGraw-Hill, 1976), pp.
332-334, The expression for Ax used here is determined by
Rayleigh's criterion that two points are just resotved if the
central maximum of the diffraction pattern from one falls at
the first minimum of the diffraction pattern of the other.

13. Richard P. Feynman (1918 1988), American physicist.
This discussion is based on one in his classic text, Lectures
on Physics (Reading, Mass.: Addison-Wesley, 1965). He
shared the 1965 Nobel Prize in physics for his development
of quantum electrodynamics (QED). It was Feynman who,
while a member of the commission on the Challenger dis-
aster, pointed out that the booster-stage O-rings were at
fauit. A genvine legend in American physics, he was also an
accomplished bongo drummer and safecracker.

PROBLEMS

Level |
gection 5-1 The de Broglie Hypaothesis

&-1. (a) What is the de Broglie wavelength of a 1-g mass moving at a speed of 1 m per
2 () What should be the speed of such a mass if its de Broglie wavelength is to be | cm?

2. M the kinetic energy of a particle is much greater than its rest energy, the relativistic

approximation E = pe holds. Use this approximation to firtd the de Broglie wavelength of

an electron of energy 100 MeV.

£.3, Electrons i an electron MICTOSCOPE Arc accelerated IToMm rest (Mrougn a potentiat

difference ¥, so that their de Broglie wavelength is 0.04 nm, What is V?

54. Compute the de Broglie wavelengths of (a) an electron, (b) a proten, and (¢} an

alpha particle of 4.5 keV kinetic encrgy. .

55 According to statistical mechanics, the average kinetic energy of a particle at tem-
ture T is 3k772, where & is the Boltzmann constant. What is the average de Broglie

wavelength of nitrogen molecttles at room temperature?

56, Find the de Broglie wavelength of a neutron of kinetic energy 0.02 ¢V (this is of

the otder of magnitude of kT at room temperature).

5.7. A free proton moves back and forth between rigid walls separated by a distance

L = 0.01 nm. (a} If the proton is rep 3 by a one-di ional standing de Broglie

wave with a node at each wall, show that the allowed values of the de Broglic wavelength

arc given by A = 2L/n where # is a positive integet. (b} Derive a general expression for

the allowed Kinetic energy of the proton and compute the values for » = 1 and 2.

5.8, What must be the kietic energy of an electron if the tatio of its de Broglie wave-

length 1o its Compton wavelength is (a} 10% (3) 0.2, and (c) 1037

5.9. Compute the wavelength of a cosmic ray proton whose kinetic encrgy is (@) 2 GeV

and (¥) 200 GeV.

Section 5-2 Measurements of Particle Wavelengths

5-10. What is the Bragg scattering angle ¢ for electrons scattered from a nickel crystal if
their energy is {a) 75 eV, (b) 100 eV?

5.11. Compute the kinetic energy of a proton whose de Broglie wavelength is 0.25 nm. If
# beam of such protons is reflected from a caloite crystal with erystal plane spacing of
0.304 nm, at what angle will the first-order Bragg maximum occur?

5-12. (a) The scattering angle for 50-¢V electrons from MgO is 55.6°. What is the crystal
spacing D? (b) What would be the scattering angle for 100-eV electrons?

513 A cenain crystal has a set of planes spaced 0.30 nm apart. A beam of neutrons
strikes the crystal at normal incidence and the first maximum of the diffraction pattern
occurs at & = 42°. What are the de Broglie wavelength and kinetic energy of the neutrons?
5-14. Show that in Davisson and Germer's experiment with 54-eV electrons using the
D = 0.215 nm planes, diffraction peaks with n = 2 and higher are not possible.

5-15. A beam of electrons with kinetic energy 350 eV is incident normal to the surface of
2 KCl crystal which has been cut so that the spacing D between adjacent atoms in the
planes parallel to the surface is 0.315 nm. Calculate the angle ¢ at which diffraction
peaks will occur for all orders possible.

Section 5-3 Wave Packets

516, Information is transmitted along a cable in the form of short electric pulses at
100,000 pulses’s, (@) What is the longest duration of the pulses such that they do not
overlap? (b)What is the range of frequencies to which the receiving equipment must
tespond for this doration?
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%.17. Two harmonic waves travel simultaneously along a long wire. Their wave functions
are y; = 0.002 cos (8.0x — 400r and y, = (.002 cos (7.6x — 380¢), where y and x afe jy
meters and I in seconds. (a} Write the wave function for the resultant wave in the fong
of Equation 5-15. (b) What is the phase velocity of the resultant wave? (¢) What is the
group velocity? (4) Calculate the range Ax between successive zeros of the group and
relate it to Ak.

5-18. (a) Starting from Equation 5-23, show that the group velocity can also be expressed
as v, = v, — A(dv,/d\). (b) The phase velocity of each wavelength of white light moving
through ordinary glass is a function of the wavelength, i.e., glass is a dispersive medium,
What is the general dependance of v, on A in glass? Is dv,/d) positive or negative?

S-19. A radar transmitter used to measure the speed Of pitched baseballs EMILS pulses of
2.0-cm wavelength that are 0.25 s in duration. () What is the length of the wave packet
produced? (b) To what frequency should the receiver be tuned? (c) What must be the min-
imum bandwidth of the receiver?

5-2). A certain standard tuning fork vibrates at 880 Hz. If the tuning fork is tapped, caus-
ing it to vibrate, then stopped a quarter of a second later, what is the approximate range of
frequencics contained in the sound pulse that reached your ear?

5-21. If a phone line is capable of transmitting a range of frequencies Af = 5000 Hz, what
is the approximate duration of the shortest pulse that can be transmitted over the line?
5-22. (a) You are given the task of constructing a double-slit experiment for 5-eV clec-
trons. If you wish the first minimum of the diffraction pattern to occur at 5°, what must be
the separation of the slits? (5) How far from the slits must the detector plane be located if
the first minima on each side of the central maximum are to be separated by 1 cm?

Section 5-4 The Probabilistic Interpretation of the Wave Function

5-23. A 100-g rigid sphere of tadius 1 cm has a kinetic energy of 2 J and is confined
to move in a force-free region between two rigid walls separated by 50 cm. (4) What is
the probability of finding the center of the sphere exactly midway between the two walls?
(b) What is the probability of finding the center of the sphere between the 24.9- and
25.1-cm marks?

5-24. A particle moving in one dimension between rigid walls separated by a distance
L has the wave function W{x) = A sin{#x/L). Since the particle must remain between the
walls, what must be the value of A?

5-25. The wave function descnibing a state of an eiectron confined to move aiong ihe
X axis is given at time zero by

P(x, ) = Ae "

Find the probability of finding the electron in 2 region dy centered at (@) x =0, (D) x = o,
and (¢} x = 20. (d) Where is the electron most likely 1o be found?

Secticn 5-5 The Uncertainty Principle

§-26, A tuning fork of frequency f, vibrates for a time At and sends out a waveform that
looks like that in Figure 5-24. This wave function is similar to a harmonic wave except
that it is confined to a time Af and space Ax = v At, where v is the phase velocity. Let
N be the approximate number of cycles of vibration. We can measure the frequency by
counting the cycles and dividing by Ar. (@) The number of cycles is uncertain by approxi-
mately =1 cycle. Explain why (se¢ the figure). What uncertainty does this introduce in
the determination of the frequency £7? (b) Write an expression for the wave number & in
tertns of Ax and N, Show that the uncertainty in N of *1 leads to an uncertainty in & of
Ak = 275X

A NNDANANANN A~
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271 Tf an excited state of an atom is known to have a lifetime of 1077 s, what is the
uncertainty in the energy of photons emitted by such atoms in the sponteneous decay to
the ground state?

5.28. A mass of 1 g has a speed of 1 cm/s. If its speed is uncertain by 1 percent, what is
the order of magnitude of the minimum uncertainty in its position?

5.29. ™Rn decays by the emission of an « particle with a lifetime of 3.823 days. The
kinetic energy of the o particle is measured to be 5.490 McV. What is the uncertainty in
this energy? Describe in oné sentence how the finite lifetime of the excited state of the
radon nucleus translates into an energy incettainty for the emitted o particle.

5.30. If the uncertainty in the position of a wave packet representing the state of a
quantum-system particle is equal to its de Broglic wavelength, how does the uncer-
winty in momentum compare with the value of the momentum of the particle?

5.31, In one of G. Gamow's Mr. Tompkins tales, the hero visits a “quantum jungle”
where A is very large. Suppose that you are in such a place where & = 50 J-5. A cheetsh
runs past you a few meters awny. The cheetah is 2 m long from nose to tail tip and its
mass js 30 kg. Tt is moving at 30 m/s. What is the uncertainty in the location of the “mid-
point” of the cheetah? Describe in one sentence how the cheetah would look different to
you than when % has its actual value.

5-32. In order to locale a particle, e.g., an electron, to within 5 > 1072 m using electro-
magnetic waves (“light™), the wavelength must be at least this small. Calculate the
momentum and energy of a photon with A = 5 X 1672 m. If the particic is an electron
with Ax = 5 X 107'2 m, what is the corresponding uncertainty in its momentum?

5-33. The decay of excited states in atoms and nuclei oftets leaves the system in another,
albeit lower-energy, excited state. (@) One example is the decay between two excited states
of the nucleus of *Ti. The upper state has a lifetime of 1.4 ps, the lower state 3.0 ps.
What js the fractional uncertainty AF/E in the energy of 1.3117-MeV gamma rays con-
necting the two states? {(b) Another example is the H, line of the hydrogen Balmer series.
In this case the lifetime of both states is about the same, 107% 5. What is the uncertainty in
the enérgy of the H, photon?

Seclion 5-6 Some Consequences of the Uncertainty Principle

5-34. A neutron has a kinetic energy of 10 MeV. What size object is necessary to observe
neutron diffraction effects? Is there anything in nature of this size that could serve as a
target 1o demonstrate the wave nature of 10-MeV ncutrons?

5-35. The energy of a certain nuclesr state can be measured with an uncertainty of 1 eV,
What is the minimum lifetime of this state?

5-36. Show that the relation Ap, As > # can be written AL Ads > & for a particle moving
in a circle about the z axis, where p, is the linear momentum tangential to the circle, 5 is
the arc length, and L is the angular momentumn. How well can the angulax position of the
electron be specified in the Bohr atom?

5-37. An excited state of a certain nucleus has a half-life of 0.85 ns. Taking this to be
the uncertainty At for emission of a photon, calculate the uncertainty in the frequency Af,
Using Equation 5-28. If A = 0.01 nm, find Afif.

Proprims

Fig. 5-24 Problem 5-26.
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Section & 7 Wave-Particle Duality
There are no problems for this section.
Level Il

5.38. A neutron in an atomic nuclens is bound to other nevtrons and protons in the nucleus
by the strong nuclear force when it comes within about 1 fm of another particle. What is the
approximate kinetic energy of 2 neutron that is localized to within such a region? Whar
would be the corresponding energy of an electron localized to within such a region?

5-39. Using the relativistic expression E? = p?c® + m*c*, (a) show that the phase velocity
O BN SIECTTON WAVE IS EIEAIET 1AM £, 47} SUUW UL LIS KLU vEIRLIY i on Cincuvin wave
equals the particle velocity of the electron.

5.40. Show that if y, and y, are solutions of Equation 5-11, the fanction 3 = Cyyy + Ca v,
is also a solution fot any values of the constants C, and C,.

5-41. Show that if Ax Ap = A, the minimum energy of a simple harmonic escillator
is %ﬁw = 1if What is the minimum cacrgy in joules for a mass of 1072 kg oscillating
on a spring of force constant X = 1 N/m?

5-42. A particle of mass m moves in a one-dimensional box of length L. (Take the poten-
tial energy of the particle in the box to be zero so that its total energy is its kinctic energy
F2m.) s energy is quastized by the standing-wave condition r( M2) = L, where A is the
de Broglie wavelength of the particle and r is an integer. (a} Show that the allowed ener-
gies are given by E, = n’E, where E, = H2/8mL2. (b) Evaluate E, for an electron in a box
of size L = 0.1 nm and make an encrgy-level diagram for the state fromn = 1 ton = 5,
Use Bohr's second postulate £ = AE/h to calculate the wavelength of electromagnetic
radiation emitted when the electron makes a transition from () n = 2ton =1, dyn=3
ton=2and(e)n=35ton=1

§-43. (a) Use the resulis of Problem 5-42 to find the energy of the ground state (7 = 1)
and the first two excited states of a protou in 2 one-dimensional box of length L =
10-15 m = 1 fm. (These arc of the order of magnitude of nuctear energies.} Calculate the
wavelength of electromagnetic Tadiation emitted when the proton makes a transition from
Bn=2wn= L@n=3ton=2and(d)n=3ton= t.

5.44. () Supposc that a particle of mass mr is constrained to move in a one-dimensional
space between two infinitely high bartiers Jocated A apart. Using the uncertainty princi-
ple, find an expression for the zero-point (minimum) energy of the particle. (¢) Using
your Tesuii from {a}, compuie the minimunn cpergy of an clecion msuchaspece A=
10~ m and if A = 1 cm. (c) Calculate the minimum energy for a 100-mg bead moving
on a thin wire between two stops located 2 cm apart.

545, A proton and a bullet each move with a speed of 500 m/s, measured with an uncer-
wsinty of 0.01 percent. If measurements of their respective positions are made simultaneous
with the speed measurements, what is the minimum uncertainty possible in the position

measurements?

Level NI

5.46. Show that Equation 5-11 is satisfied by ¥ = f(4), where & = x — w, for any
function f. |

5-47, An electron and a positron are moving toward each other with equal specds of
3 X 108 m/s. The two particles annihilate each other and produce two photons of
equal energy. (@) What werc the de Broglie wavelengths of the electron and positron?
Find the (b) energy, (¢} momentum, and (d) wavelength of each photon.

5.48. It is possible for some fundamental particles to “violate™ conservation of energy
by creating and quickly reabsorbing another particle. For example, a proton can emil
an* according to p — n + w* where the n represents a neutron. The 2+ has a mass of
140 MeV/c?. The reabsorption must occur within a time A consistent with the

yneertainty principle. (a} Considering that example by how much AE is energy conser-
vation violated? (Ignore Kinetic energy.) (5) For how long Ar can the 1° exist? (c} As-
suming that the ™" is moving at nearly the speed of light, how far from the nuclcus
could it get in the time Ar7 (As we will discuss in Chapter 11, this is the approximate
range of the strong nuclear force.)

5.49. De Broglie developed Equation 5-2 initially for photons, assuming that they had a
¢mall but finite mass. His assumption was that RF waves with A = 30m traveled at a
speed of at least 99 percent of that of visible light with A = 500 nm. Beginning with the
relativistic expression kf = yme?, verify de Broglie's calculation that the upper limit of
the rest mass of a photon is 10-** g. (Hint: Find an expression for v/c in terms of hf and
me?, and then let me? << hf) (y = 141 — vie!)™)

5.50, Suppose that you drop BBs onto a bull’s-eye marked on the floor, According to the
uncertainty principle, the BBs do not necessarily fall straight down from the release point
1o the center of the bull’s-eye, but are affected by the initial conditions. (a) If the location
of the release point is uncertain by an amount Ax perpendicular to the vertical direction
and the horizontal component of the speed is uncertain by Av,, derive an expression for
the minimum spread AX of impacts at the buli's-eye, if its is located a distance yo below
the release point. (b) Modify your result in (4) to include the effect on AX of uncertainties
Ay and Av, at the release point. ‘

5.51. Using the first-order Doppler-shift formula F =1 + vic), calculate the energy
shift of a 1-eV photon emitted from an iron atom moving toward you with energy 3/2 AT at
T = 300 K. Compare this Doppler line broadening with the natural line width calculated
in Example 5-9. Repeat the calcutation for a 1-MeV photon from a nuclear transition.

5.52. Calculate the order of magnitude of the shift in energy of a (@) 1-eV photon and
{B) 1-MeV photon resulting from the recoil of an iron nuclevs. Do this by first calculating
the momentum of the photon, and then by calculating p*/2m for the nuclens using that
value of momentum. Compare with the natural line width calculated in Example 5-9.
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