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The Schrodinger
Equation

The success of the de Broglie relations in predicting the diffraction of elev |
trons and other particles, and the realization that classical standing waves §
lead to a discrete set of frequencies, prompted a search for a wave theory of elev §
trons analogous to the wave theory of light. In this electron wave theory, classica) j
mechanics should appear as the short-wavelength limit, just as geometric optics i §
the short-wavelength limit of the wave theory of light. The genesis of the correvt}
theory went something like this, according to Felix Bloch,! who was present at Uy ,

time:

. in one of the next colloquia, Schridinger gave a beautifully clear account
of how de Broglie associated a wave with a particle and how he [1.e., de Broglie|
could obtain the quantization rules . . . by demanding that an integer number
of waves should be fitted along a stationary orbit. When he had finished Debye’
casually remarked that he thought this way of talking was rather childish . . .
[that to] deal properly with waves, one had to have a wave equation.

In 1926, Erwin Schridinger® published his now-famous wave equation whid
governs the propagation of matter waves, including those of electrons. A fej
months earlier, Werner Heisenberg had published a seemingly different theory §
explain atomic phenomena. In the Heisenberg theory, only measurable quantitf
appear. Dynamical quantities such as energy, position, and momentum are re
sented by matrices, the diagonal elements of which are the possible results of 1
surement. Though the Schrdinger and Heisenberg theories appear to be difterent
was eventually shown by Schrodinger himself that they were equivalent, in thal ¢ i
couid be derived from the other. The resulting theory, now called wave mechuni: ';
guantum mechanics, has been amazingly successful. Though its principles i
seem strange to us whose experiences are limited to the macroscopic world,
though the mathematics required to solve even the simplest problem ix g
involved, there secems to be no alternative to describe correctly the experimafy
results in atomic and nuclear physics. In this book we shall confine our study 4§
Schrodinger theory because it is easier to learn and is a little less abstract thsm
Heisenberg theory. We shall begin by restricting our discussion to problems i# i

space dimension.
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6-1 The Schrodinger Equation
in One Dimension

The wave equation governing the motion of electrons and other particles with mass,
which is analogous to the classical wave equation {Equation 5-11), was found by
Schrodinger late in 1925 and is now known as the Schrédinger equation. Like the
classical wave equation, the Schridinger equation relates the time and space deriva-
livey of the wave function. The reasoning followed by Schridinger is somewhat diffi-
cult and not important for our purposes. In any case, it must be emphasized that we
can’t derive the Schridinger equation just as we can’t derive Newton’s laws of
g motion. Its validity, like that of any fundamental equation, lies in its agreement with
§ cxperiment. Just as Newton’s second law is not relativistically correct, neither is
& Schrodinger’s equation, which must ultimately yield to a relativistic wave equation.
5 But, as you know, Newton’s laws of motion are perfectly satisfactory for solving a
@ vast array of nonrelativistic problems. So, too, will be Schriidinger’s equation when
E upplied to the equally extensive range of nonrelativistic problems in atomic, molecu-
lur, and solid-state physics. Schridinger tried without success to develop a relativistic
E wave equation, a task accomplished in 1928 by Dirac.
Although it would be logical merely to postulate the Schridinger equation, we
van get some idea of what to expect by first considering the wave equation for pho-
mwwgvhich is Equation 5-11 with speed v = ¢ and with y(x, ¢) replaced by the elec-
b ric fielNE(x, 1).

. P8 _ 1%
) a2 o’
] discusséfl in Chapter 5, a particularly important solution of this equation is the
onic wave function %é(x, 1) = ¥ cos(kx — wf). Differentiating this function
lce, we obtain

3%¢€

Py — 0?08 (kx ~ wi) = —w?E(x, 1)

3*€
5; = —k2€(x, 1)
titution into Equation 6-1 then gives
2
W
=2
C2
©=kc 6-2

w = Effi and p = hk for electromagnetic radiation, we have

E=pc 6-3

as we saw earlier, is the relation between the energy and momentum of a
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Erwin Schridinger. [Courtesy of the
Niels Bohr Library, American Insti-
tute of Physics.}

T R N D

Now let us use the de Broglie relations for a particle such as an electron to find th
relation between « and k which is analogous to Equation 6-2 for photons. We can th
use this relation to work backward and see how the wave equation for electrons
differ from Equation 6-1. The total epergy (nonrelativistic) of a particle of mass m is i

2

p 5
E=-—+V
Zm ‘ 1
where V is the potential energy. Using the de Broglie relations, we obtain
: 4
hwo = E +V
2m

This differs from Equation 6-2 for a photon because it contains the potential energ
and because the angular frequency o does not vary linearly with & Note that we
factor of » when we differentiate a harmonic wave function with respect to time
factor of k when we differentiate with respect to position, We expect, therefore
the wave equation that applies to electrons will relate the first time derivative
second space derivative, and will also involve the potential energy of the electron.

Finally, we require that the wave equation for electrons will be a diffe
equation that is linear in the wave function W(x, ¢). This ensures that, if ¥,(x, ¢
W¥,(x, £} are both solutions of the wave equation for the same potential energy,
any arbitrary linear combination of these solutions is also a solution—1i.e., ¥(x;
a ¥ (x, 1) + ay¥y(x, # is a solution, with g, and a, being arbitrary constants. §
combination is called linear because both W,(x, £} and ¥,(x, ) appear only to
power. Linearity guarantees that the wave functions will add together to prg
constructive and destructive interference, which we have seen to be a charact$



matter waves, as well as all other wave phenomena. Note, in particular, that (1) the
R lincarity requirement means that every term in the wave equation must be linear in
e ¥(x, ) and (2) that any derivative of W(x, £) is linear in ¥(x, ns

g The Schridinger Equation
,, e are now ready to postulate the Schridinger equation for a particle of mass m. In
ne dimension, it has the form

f2 W (x, 1) P )
P + Vix, OW(x, ) = tﬁ“—at 6-6

e will now show that this equation is satisfied by a harmonic wave function in the
ial case of a free particle, one on which no net force acts, so that the potential
rgy is constant, V(x, 1) = V. First note that a function of the form cos (kx — wf)
s not satisfy this equation because differentiation with respect to time changes the
ine to a sine, but the second derivative with respect to x gives back a cosine. Simi-
reasoning rules out the form sin (kx — wt). However, the exponential form of the
onic wave function does satisfy the equation. Let

Wix, 1) = Aelkr—e9) 67
= A[cos (kx — wf) + isin (kx — wi)]

re A is a constant, Then

aw ,
\- ; = —jpdAet o = —juTr
v . - 5
a—"'z = (ikHA" ) = — 2y

stituting these derivatives into the Schridinger equation with V{x, 1) = V} gives

—52
%(—kz\lf) + Vo = ifi(—iw)¥

2
%%“I’“Vo:ﬁm

is Equation 6-5.

n important difference between the Schridinger equation and the classical
equation is the explicit appearance’ of the imaginary number i = (—1)2. The
functions that satisfy the Schridinger equation are not necessarily real, as we
om the case of the free-particle wave function of Equation 6-7. Evidently
ave function W(x, r) which solves the Schridinger equation is not a directly

o
1
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measurable function like the classical wave function y(x, f), since measurements 33
always yield real numbers. However, as we discussed in Section 5-4, the probability
of finding the electron in dx is certainly measurable, just as is the probability that a 4
flipped coin will turn up beads. The probability P(x) dx that the electron wiil be
found in the volume dx was defined by Equation 5-26 to be equal to ¥? dx. This §
probabilistic interpretation of ¥ was developed by Max Born and was recognized, §
over the early and formidable objections of both Schrédinger and Einstein, as the §
appropriate way of relating solutions of the Schrédinger equation to the results of §
physical measurements. The probability that an electron is in the region dx, a real g
number, can be measured by counting the fraction of time it is found there in a very §
large number of identical trials. In recognition of the complex nature of ¥(x, £}, we.
must modify slightly the interpretation of the wave function discussed in Chapter 5 103
accommodate Born’s interpretation so that the probability of finding the electron inj

dx is real. We take for the probability

P(x, 1) dx = W*(x, ) W(x, 1) dx = W(x, DI dx 6-8

where ¥*, the complex conjugate of ¥, is obtained from ¥ by replacing i with ~4§
wherever it appears.® The complex nature of ¥ serves to emphasize the fact that
should not ask or try to answer the question, “What is waving in a matter wave?”
inguire as to what medium supports the motion of a matter wave. The wave functi
is a computational device with utility in Schrodinger’s theory of wave mechanics
Physical significance is associated not with ¥ itself, but with the product ¥*Jr =
VP2, which is the probability distribution P(x, f) or, as it is often called, the probabil
ity density. In keeping with the analogy with classical waves and wave functior
Y(x, 1) is also sometimes referred to as the probability density amplitude, or just
probability amplitude. 4

The probability of finding the electron in dx at x, or in dx at x; is the sum of sepay
rate probabilities, P(x,) dx + P(x,) dx. Since the electron must certainly be somed
where in space, the sum of the probabilities over all possible values of x must equal

That is,’

+o
j Wy = |

Equation 6-9 is called the normalization condition. This condition plays an importaf§
role in quantum mechanics, for it places a restriction on the possible solutions of ti
Schrodinger equation. In particular, the wave function ¥(x, ) must approach
sufficiently fast as x — *oo so that the integral in Equation 6-9 remains finite.
does not, then the probability becomes unbounded. As we will see in Section 6-3,3
is this restriction together with boundary conditions imposed at finite values of x i
leads to energy quantization for bound particles. _
In the chapters that follow we are going to be concerned with solutions to §
Schridinger equation for a wide range of real physical systems, but in what fol
in this chapter our intent is to illustrate a few of the techniques of solving the e
tion and to discover the various, often surprising properties of the solutions. To tig
end we will focus our attention on one-dimensional problems, as noted earlier, &8
use some potential energy functions with unrealistic physical characteristics, o
infinitely rigid walls, which will enable us to illustrate varions properties of the sl
tions without obscuring the discussion with overly complex mathematics.



eparation of the Time and Space Dependencies of W(x, t)

chridinger’s first application of his wave eguation was to problems such as the
drogen atorn (Bohr’s work) and the simple harmonic oscillator (Planck’s work), in
hich he showed that the energy quantization in those systems can be explained natu-
fally in terms of standing waves. We referred to these in Chapter 4 as stationary states,
fncaning they did not change with time. Such states are also called eigenstates. For such
problems that also have potential energy functions that are independent of time, the
ace and time dependence of the wave function can be separated, leading to a greatly
plified form of the Schrodinger equation ® The separation is accomplished by first as-
ing that W(x, £} can be written as a product of two functions, one of x and one of 1, as

Wix, 1) = dlx) d() 6-10

Equation 6-10 turns out to be incorrect, we will find that out soon enough, but if
fhe potential function is not an explicit function of time, i.e, if the potential is given
V(x), our assumption turns out to be valid. That this s true can be seen as follows:
Substituting W(x, f) from Equation 6-10 into the general, time-dependent
Odinger equation (Equation 6-6) yields

=2 V() d() 5 OUx )¢(:)
VRO ¢ veoweeo = 611
¢(:) "Q"’( D 4 V() = i el ¢’() 6-12

re the derivatives are now ordinary rather than partial ones. Dividing Equation
2 by W in the assumed product form ¢ gives

~52 1 dA) L dbny

m W e ) = ﬁcb(t) dt 613

ice that each side of Equation 6-13 is a function of only one of the independent
fiables x and ¢. This means that, for example, changes in 1 cannot affect the value of
¢ left side of Equation 6-13, and changes in x cannot affect the right side. Thus, both
s of the equation must be equal to the same constant C, called the separation con-
t, and we see that the assumption of Equation 6-10 is valid—the variables have
separated. We have thus replaced a partial differential equation containing two
pendent variables, Equation 6-6, with two ordinary differential equations, each a
tion of only one of the independent variables:

-# 1 dW)

o ae YW =C 6-14
L ab) _
P00 a 613

k-us solve Equation 6-15 first. The reason for doing so is twofold: (1) Equation
does not contain the potential V{(x), consequently, the time-dependent part ¢:(¢)

6-1 Tur ScHrODINGER EQuarion 1N ONE DismeNSION
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of ali solutions W{x, 1) to the Schrodinger equation will have the same form when the 3
potential is not an explicit function of time, so we only have to do this once. (2) The3
separation constant C has particular significance that we want to discover before we' .;f'
tackle Equation 6-14. Writing Equation 6-15 as i

oy € _ i€ e
o0 ™ dt 7 dt 6-16 ;:

The general solution of Equation 6-16 is
d(t) = o iCth 6-17a ]

which can also be written as

) Ct Ct Ct Ct
= o—iCHh — — ol - | = — | — g _ -
&) = ¢ cos ( 7 ) zsm( ﬁ) cos (217 h ) i sin (211' A ) 6-17b

Thus we see that ¢(r), which describes the time variation of W(x, 1), is an oscillat
function with frequency f = C/h. However, according to the de Broglie relati
(Equation 5-1), the frequency of the wave represented by V(x, 1) is f = E/h; the
fore, we conclude that the separation constant C = E, the total energy of the partic
and we have

(t:(t) - e*iEﬂﬁ

for all solutions to Equation 6-6 involving time-independent potentials. Equati
6-14 then becomes, on multiplication by i(x),

—h dW(x)

a2 V(x) = Ed(x)

Equation 6-18 is referred to as the time-independent Schridinger equation.

The time-independent Schridinger equation in one dimension is an ordinary
ferential equation in one variable x and is therefore much easier to handle tha
general form of Equation 6-6. The normalization condition of Equation 6-9 ca
expressed in terms of ¥(x), since the time dependence of the absolute square o
wave function cancels. We have

\I’*(x, !‘)‘P(x, t) = lb*(x)eHEﬂﬁ‘p(x)e—iEﬁﬁ = l‘J*(x)lll(x)

and Equation 6-9 then becomes

| wewman = 1

Conditions for Acceptable Wave Functions

The form of the wave function {(x} that satisfies Equation 6-18 depends on the'
of the potential energy function V(x). In the next few sections we shall stud



simple but important problems in which V(x) is specified. Our example potentials will
E be approximations to real physical potentials, simplified to make calculations easier.
some cases, the slope of the potential energy may be discontinuous, e.g., V(x) may
ghave one form in one region of space and another form in an adjacent region. (This is
¥a uscful mathematical approximation to real situations in which V(x) varies rapidly
fover a small region of space, such as at the surface boundary of a metal.) The proce-
Edure in such cases is to solve the Schrédinger equation separately in each region of
fspace, and then require that the solutions join smoothly at the point of discontinuity.

. Since the probability of finding a particle cannot vary discontinuously from
fpoint to point, the wave function Ys(x) must be continuous.® Since the Schrédinger
fequation involves the second derivative d2y/d’x = {"(x), the first derivative ¢’
'which is the slope) must also be continuous. That is, the graph of s(x) versus x must
fhe smooth. (In a special case in which the potential energy becomes infinite, this
festriction is relaxed. Since no particle can have infinite potential energy, (x) must
e zero in regions where V(x) is infinite. Then, at the boundary of such a region,
f' may be discontinuous.)

- If either Y(x) or di/dx were not finite or not single-valued, the same would be
'Z e of V(x, ) and d'¥/dx. As we will shortly see, the predictions of wave mechanics
Bparding the results of measurements involve both of those quantities and would
Bius not necessarily predict finite or definite values for real physical quantities. Such
_sults would not be acceptable, since measurable quantities, such as angular
iomentum and position, are never infinite or multiple-valued. A final restriction on
fic form of the wave function Yi(x) is that in order to obey the normalization condi-
; , Yr(x} must approach zero sufficiently fast as x — *% so that normalization is
Beserved. For future reference, we may summarize the conditions that the wave
Enction W(r) must meet in order to be acceptable as follows:

W (x) must exist and satisfy the Schrédinger equation.
Y(x} and di/dx must be continuous.

B. () and dp/dx must be finite.

J(x) and dy/dx must be single-valued.

k- (x) — O fast enough as x — = 50 that the normalization integral, Equation
6-20, remains bounded.

- Like the classical wave equation, the Schridinger equation is linear. Why is
<this important?

“There is no factor i = (— 1) in Equation 6-18. Does this mean that {i(x)
- must be real?

Why must the electric field €(x, #) be real? Is it possible to find a nonreal
ave function that satisfies the classical wave equation?

escribe how the de Broglie hypothesis enters into the Schridinger wave

What would be the effect on the Schriddinger equation of adding a constant
grest energy for a particle with mass to the total energy E in the de Broglie
Erelation f = E/R?

Describe in words what is meant by normalization of the wave function.

6-1 THE SCHRODINGER EQuUaTION N ONE DIMENSION
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¢ and the given y(x) is a solution of Equation 6-18.

6-2 The Infinite Square Well

A problem that provides several illustrations of the properties of wave functions ;

EXAMPLE 6-1 A Solution to the Schridinger Equation Show that for a free par3
ticle of mass m moving in one dimension the function Yi(x) = A sin kx + B cos kxj
is a solution to the time-independent Schrédinger equation for any values of th
constants A and B.

Solution
A free particle has no net force acting upon it, e.g., V(x) = 0, in which case theg
kinetic energy equals the total energy. Thus, p = Ak = (2mE)'"2, Differentiatin

Yi(x) gives

dy .
— = kA cos kx — kB sin kx
I cOs sin

and differentiating again,
dry

ax?

= —kYAsinkx + Bcos kx) = —kA(x)

= —k2A sin kx — k2B cos kx

Substituting into Equation 6-18,

2
Sm [(—E*)A sin kx + B cos kx)] = E[A sin kx + B cos kx]
m

272

ﬁ
S W®) = Elx)

and, since A%k’ = 2mkE, we have

E¥(x) = Ed(x)

also one of the easiest problems to solve using the time-independent, one-dimen;
Schridinger equation is that of the infinite square well, sometimes called the p
in a box. A macroscopic example is a bead moving on a frictionless wire betwes
massive stops clamped to the wire. We could also build such a “box” for an el¢
using electrodes and grids in an evacuated tube as illustrated in Figure 6-1a. Thed8
of the box are provided by the increasing potential between the grids G and the F
trode C as shown in Figures 6-1b and c. The walls can be made arbitrarily hig
steep by increasing the potential V and reducing the separation between eachy
electrode pair. In the limit such a potential energy function looks like that shof




6-2 THE INFINITE SQUARE WELL
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e 6-2, which is a graph of the potential energy of an infinite square well. For this
blem the potential energy is of the form

0<x<L
x<0 and x>L

Vix) =0
V(x) =

6-21

ough such a potential is clearly artificial, the problem is worth careful study for
peral reasons: (1) exact solutions to the Schrodinger equation can be obtained
thout the difficult mathematics which usually accompanies its solutton for more
istic potential functions; (2) the problem is closely related to the vibrating-string
yblem familiar in classical physics; (3) it illustrates many of the important fea-
es of all quantum-mechanical problems; and finally {(4) this potential is a rela-
ely good approximation to some real situations; e.g., the motion of a free electron
de a metal.

Since the potential energy is infinite outside the well, the wave function is
uired to be zero there; that is, the particle must be inside the well. (As we proceed
gh this and other problems, keep in mind Born’s interpretation: the probability
jisity of the particle’s position is proportional to hp?.) We then need only to solve
Raation 6-18 for the region inside the well 0 < x <C L, subject to the condition that
the wave function must be continuous, Y(x) must be zero at x = 0 and x = L.
a condition on the wave function at a boundary (here, the discontinuity of the
tial energy function) is called a boundary condition. We shall see that, mathe-
cally, it is the boundary conditions together with the requirement that yi{x) —= 0
¥ — +cc that lead to the quantization of energy. A classic example is the case of a
ting siring fixed at both ends. In that case the wave function y(x, 1) is the dis-
ment of the string. If the string s fixed at x = 0 and x = L, we have the same
dary condition on the vibrating-string wave function: namely, that y(x, ¢) be zero
¢ and x = L. These boundary conditions lead to discrete allowed frequencies

251

Fig. 6-1 (@) The electron
placed between the two sets
of electrodes € and grids G
experiences no force in the
region between the grids,
which are at ground potential.
However, in the regions
between each Cand Gisa
repelling electric field whose
strength depends upon the
magnitude of V. (b) If Vis
small, then the electron’s
potential energy vs. x has low,
sloping “walls.” (c) If Vis
large, the “walls” become
very high and steep, becom-
ing infinitely high for V— .

Wx)

Fig. 6-2 Infinite square well
potential energy. For 0 < x <
L the potential energy V(x} is
zero. Outside this region,
V(x) is infinite. The particle is
confined to the region in the
well0 < x < L.
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of vibration of the string. It was this quantization of frequencies (which always
occurs for standing waves in classical physics), along with de Broglie’s hypothesis, 3
which motivated Schrédinger to look for a wave equation for electrons.

The standing-wave condition for waves on a string of length L fixed at both ends 3
is that an integral number of half wavelengths fit into the length L. E

ny=L n=123 ... 622 3

We shall show below that the same condition follows from the solution of the;
Schrodinger equation for a particle in an infinite square well. Since the wavelength is 3
related to the momentum of the particle by the de Broglie relation p = h/A and the
total energy of the particle in the well is just the kinetic energy p*/2m (see Figure:
6-1), this quantum condition on the wavelength implies that the energy is quantized
and the allowed values are given by

22“ hz hz ) hZ

E = = = =
2m  2mN! 2mQLIn? | 8mlL?

Since the energy depends on the integer #, it is customary to label it £,. In terms of§
£ = hf2w the energy is given by

= n’E, n=1273 ...

where E| is the lowest allowed energy'® and is given by

w!ﬁl

Ev= o

We now derive this result from the time-independent Schrédinger equation (Equati
6-18), which for V(x) = 0 1s

R d*(x)
- a de - E‘!’(x)

2mE
or V@ = = ) = k)

where we have substituted the square of the wave number £, since

_(pY _2mE
kz_(ﬁ) Y

and have written "(x) for the second derivative ds(x)/dx>. Equation 6-26 has s
tions of the form

Y(x) = A sin kx

and Y(x) = Bcos kx
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ere A and B are constants. The boundary condition Ys(x) = 0 at x = 0 rules out the
gosine solution (Equation 6-28b) because cos 0 = 1, so B must equal zero. The
ndary condition y(x) = 0 at x = L gives

Y(L)=AsinklL =10 6-29
s condition is satisfied if kL is any integer times , i.e., if & is restricted to the val-
k, given by

6-30

we write the wave number & in terms of the wavelength A = 2n/k, we see that
uation 6-30 is the same as Equation 6-22 for standing waves on a string. The
tized energy values, or energy cigenvalues, are found from Equation 6-27,
lacing k by &, as given by Equation 6-30. We thus have

#22
o~

" 2m
ich is the same as Equation 6-24. Figure 6-3 shows the energy-level diagram and

potential energy function for the infinite square well potential.
.-'The constant A in the wave function of Equation 6-28a is determined by the nor-

6-31

6-2 THE INFINITE SQUARE WELL
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Fig. 6-3 Graph of energy vs. x
for a particle in an infinitely
deep well. The potential
energy V(x) is shown with the
colored lines. The set of
allowed values for the parti-
cle’s total energy E, as given
by Equation 6-24 form the
energy-level diagram for the
infinite square well potential.
Classically, a particle can have
any value of energy. Quantum
mechanically, only the values
given by E, = n¥(A*wi2miL?)
yield well-behaved solutions
of the Schrodinger equation.
As we become more familiar
with energy-level diagrams,
the x axis will be omitted.
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Fig. 6-4 Wave functions
Yip(x) and probability densi-
ties P,{x) = ¥X(x) forn = 1,
2, and 3 for the infinite
square well potential.
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Since the wave function is zero in regions of space where the potential energy is infini
the contributions to the integral from —oe to 0 and from L to += will both be zero. Th
only the integral from 0 to L needs to be evaluated. Integrating, we obtain A, = (2/L)}
independent of n, a result first encountered in the solution to Problem 5-24. The normals
ized wave function solutions for this problem, also called eigenfunctions, are then

2
U, (x) = \fzsinfz—x n=1,23, ... 6-3

These wave functions are exactly the same as the standing-wave functions y,(x) fof
the vibrating-string problem. The wave functions and the probability distributi
functions P,(x) are sketched in Figure 6-4 for the lowest energy state n = 1, call
the ground state, and for the first two excited states, n = 2 and n = 3. (Since the
wave functions are real, P,(x) = {5, = §i2.) Notice in Figure 6-4 that the maxim
amplitudes of each of the r,(x) are the same, (2/L)'?2, as are those of P,(x), 2/I.. No
too, that both {r,(x) and P,(x) extend to *c. They just happen to be zero for x <
and x > L in this case. :

The number n in the equations above is called a gquantum number. It specifi
both the energy and the wave function. Given any value of n we can immedi
write down the wave function and the energy of the system. The quantum numb
occurs because of the boundary conditions §(x) = 0 at x = 0 and x = L. We shal
in Section 7-1 that for problems in three dimensions, three quantum numbers
one associated with boundary conditions on each coordinate.

Comparison with Classical Results

Let us compare our quantum-mechanical solution of this problem with the clas
solution. In classical mechanics, if we know the potential energy function V(x)
can find the force from F, = —dV/dx, and thereby obtain the acceleration a
d%x/dt? from Newton’s second law, We can then find the position x as a functiol
time ¢ if we know the initial position and velocity. In this problem there is no fi



when the particle is between the walls of the well because V = 0 there. The particle
therefore moves with constant speed in the well. Near the edge of the well the poten-
tial energy rises discontinuously to infinity—we may describe this as a very large
orce that acts over a very shorl distance and turns the particle around at the wall so
that it moves away with its initial speed. Any speed, and therefore any energy, is per-
mitted classically. The classical description breaks down because, according to the
ncertainty principle, we can never precisely specify both the position and momen-
tum (and therefore velocity) at the same time. We can therefore never specify the ini-
ial conditions precisely, and cannot assign a definite position and momentum to the
particle. Of course, for a macroscopic particle moving in a macroscopic box, the
energy is much larger than E, of Equation 6-25, and the minimum uncertainty of
nomentum, which is of the order of #/L, is much less than the momentum and less
han experimental uncertainties. Then the difference in energy between adjacent
tates will be a small fraction of the total energy, quantization will be unnoticed, and
he classical description will be adequate.!!

. Let us also compare the classical prediction for the distribution of measurements of
hosition with those from our quantum-mechanical solution. Classically, the probability
if finding the particle in some region dx is proportional to the time spent in dx, which is
v, where v is the speed. Since the speed is constant, the classical distribution function
ust a constant inside the well. The normalized classical distribution function is

Polx) = —

In Figure 6-4 we see that for the lowest energy states the quantumn distribution
ction is very different from this. According to Bohr’s correspondence principle, the
tum distributions should approach the classical distribution when » is large, that is,
ge energies. For any state n, the quantum distribution has n peaks. The distribution
n = 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if
€ are many peaks in a smali distance Ax only the average value will be observed.
t the average value of sin® k,x over one or more cycles is 1/2. Thus

2 2 |
2 = [ = ¢ip2 = —— = -
[lbn(x)]av [L $in kn-x:Lv L2 L

h is the same as the classical distribution.

W f*J

*5 Probability distribution for n = 10 for the infinite square well potential. The dashed line
classical probability density P = 1/L, which is equal to the guantum-mechanical distribu-
veraged over a region Ax containing several oscillations. A physical measurement with

tion Ax will yield the classical result if » is so large that $i%(x} has many oscillations in Ax.

Quanturn-mechanical
distribution

Classical distribution

1
P= -~ O<x<lL
L <

6-2 THE INFINITE SQUARE WELL
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The Complete Wave Function

The complete wave function, including its time dependence, is found by multiplying
the space part by

it = gmiE A

according to Equation 6-17. As mentioned previously, a wave function correspond-
ing to a single energy oscillates with angular frequency, w, = E, /£, but the proba-
bility distribution 1¥,{x, £}1* is independent of time. This is the wave-mechanical
justification for calling such a state a stationary state or eigenstate, as we ha
done earlier. It is instructive to look at the complete wave function for a particul

state n:
2 . .
T.ix, = Zsm ko, x e it

(eik,‘x _ e—ik,x)
2i

If we use the identity
sink,x =

we can write this wave function as

1 (2 ) )
Y(x )= 5 Z [ez(hx‘mnf) — e—r(k,x'*w,.f)]

Just as in the case of the standing-wave function for the vibrating string, we ¢f
consider this stationary-state wave function to be the superimposition of a wg
traveling to the right and a wave of the same frequency and amplitude travelin
the left.

|

e

T

= EXAMPLE 6-2 An Electron in a Wire An electron moving in a thin metal wi
& a reasonable approximation of a particle in a one-dimensional infinite well.
£ potential inside the wire is constant on the average, but rises sharply at each

Suppose the electron is in a wire 1.0 cm long. (@) Compute the ground-
energy for the electron. (B) If the electron’s energy is equal to the average kin
nergy of the molecules in a gas at T = 300 K, about 0.03 eV, what is the ¢jg

% tron’s quantum number n?

1. For question (a), the ground-state energy is given by Equation 6-25:

w2
' 2mL?
w1055 X 10°#J-s)
(2)(9.11 X 10~ kg)(102 m)?
=6.03 X 107 =3.80 X 10" ¥eV
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2. For question (), the electron’s quantum number is given by Equation 6-24:
E, = n’E,

3. Solving Equation 6-24 for n and substituting E, = 0.03 eV and E; from

above yield:
E,
2_2n
n E,
or
Y A
E;
3 ,\/ 0.03 eV
3.80 X 1075V
=281 X 106

Remarks: The value of E; computed above is not only far below the limit of
measurability, but also smaller than the uncertainty in the energy of an electron
confined into I cm.

-EXAMPLE 6-3 Calculating Probabilities Suppose that the electron in Example
F 6-2 could be measured while in its ground state. (a) What would be the probability
of finding it somewhere in the region 0 < x < L/47 (b) What would be the proba-
‘bility of finding it in a very narrow region Ax = 0.01L wide centered at x = SL/8?

'ZSOIution
b (a) The wave function for the n = 1 [evel, the ground state, is given by Equation

:‘6-32 as
2 . mx
Pi(x) = % sin

EThe probability that the electron would be found in the region specified is
L4 AW X
Pix)dx = — sin® (—) dx
L 1(x) L sin 3

tting u = wx/L, hence dx = L du/w, and noting the appropriate change in the
its on the integral, we have that
/4

J’“/" 2 ., g(u sin 2u)
—sin‘udy == —
o T w\2 4 0 w\8 4

us, if one looked for the particle in a large number of identical searches, the
ctron would be found in the region 0 < x < 0.25 cm about 9 percent of
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Fig. 6-6 The probability den-
sity 4*(x) vs. x for a particle
in the ground state of an
infinite square well potential.
The probability of finding the
particle in the region 0 << x <
L14 is represented by the
larger shaded area. The nar-
row shaded band illustrates
the probability of finding the
particle within Ax = 0.01L
around the point where x =
SLI8.

& the time. This probability is illustrated by the shaded area on the left side in:

@ integrate, but can calculate the approximate probability as follows:

& This means that the probability of finding the electron within 0.01L around x
§ SL/8 is about 1.7 percent. This is illustrated in Figure 6-6, where the area of (i
& shaded narrow band at x = 5L/8 is 1.7 percent of the total area under the curve. 3§

><lL

o 1 1
0 L4 L 3L/a L

Figure 6-6.
(b) Since the region Ax = (.01L is very small compared with L, we do not need t;

2
P=P@Ax=7 sin2¥ Ax

Substituting Ax = 0.01L and x = 5L/8, we obtain

_ 2, m(5LI8)
P = sin’ =—— (001 1)
2
= (0854)(0.01L) = 0.017

EXAMPLE 6-4 An Electron in an Atomic-Size Box (g) Find the energy in

(This box is roughly the size of an atom.) () Make an energy-level diagram and
3 the wavelengths of the photons emitted for ail transitions beginning at state n = 3}
@ less and ending at a lower energy state.

¥ Solution
® (a) The energy in the ground state is given by Equation 6-25. Multiplying ¢
§ numerator and denominator by c*/4m2, we obtain an expression in terms of hc #f
B mc?, the energy equivalent of the electron mass (see Chapter 2): s

Substituting hc = 1240 eV - nm and mc® = (0.511 MeV, we obtain

ground state of an electron confined to a one-dimensional box of length L = 0.1 n/§

_ (hcp?

L 8mcy2



3 (1240 eV - nm)?
" 8(5.11 X 10°eV)(0.1 nm)?

E =376eV

This is of the same order of magnitude as the kinetic energy of the electron in the
ground state of the hydrogen atom, which is 13.6 eV. In that case, the wavelength
of the electron equals the circumference of a circle of radius 0.0529 nm, or about
0.33 nm, whereas for the electron in a one-dimensional box of length 0.1 nm, the
wavelength in the ground state is 2L = 0.2 nm.

(b) The energies of this system are given by
E, = n’E, = n*(37.6 eV)

Figure 6-7 shows these energies in an energy-level diagram. The energy of the first
excited state is E, = 4(37.6 eV) = 150.4 eV, and that of the second excited state is
E; = 9(37.6 eV) = 338.4 eV. The possible transitions from level 3 to level 2, from
level 3 to level 1, and from level 2 to level 1 are indicated by the vertical arrows on
the diagram. The energies of these transitions are

AE, ., = 33846V — 1504 eV = 188 eV
AE, , = 338.4eV — 37.6eV = 300.8eV
AE,., = 1504V — 37.6eV = 112.8eV

The photon wavelengths for these transitions are

ke 1240eV-nm
Aoy, = - - 6.
=27 AR, . 188eV 60 nm
hc 1240 eV -nm
Npay = - - 4.12
=T RE.. . 3008eV am
he 1240 eV - nm
Myt = = =110
=T AE, L 1i128eV am
n E
5 Eg = 25E, = 940 oV
4 E,=18E, =601.6 eV
3 ‘ Ey=9E,=33846V
2 ) Ep=4E,=150.4 6V
1 E,=376eV
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Fig. 6-7 Energy-level dia-
gram for Example 6-4. Tran-
sitions from the state n = 3
tothestatesn=2andn =1,
and from the state 1 = 2 to

n = 1, are indicated by the
vertical arrows,
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6-3 The Finite Square Well

The quantization of energy that we found for a particle in an infinite square well is 3
a general result that follows from the solution of the Schridinger equation for any 4
particle confined in some region of space. We shall illustrate this by considering the
qualitative behavior of the wave function for a slightly more general potential
" energy function, the finite square well shown in Figure 6-8. The solutions of the 3
Schridinger equation for this type of potential energy are quite different, depending 3
on whether the total energy E is greater or less than V,. We shall defer discussion of
the case E > V, to Section 6-5 except to remark that in that case the particle is not
confined and any value of the energy is allowed, i.e., there is no energy quantiz
tion. Here we shall assume that £ < V.
Inside the well, V(x) = 0 and the time-independent Schridinger equation (Equ
tion 6-18) becomes Equation 6-26, the same as for the infinite well: £

2ZmE
YO = —kAG) k= 7y

The solutions are sines and cosines (Equation 6-28) except that now we do ngf
require d(x) to be zero at the well boundaries, but rather we require that y(x)
{s'(x) be continuous at these points.- Outside the well, ie, for 0 > x > L, Equati
6-18 becomes ' E

2m
V') = 23 (Vo = EX(a) = ()
where
azz%(VO—E) >0

The straightforward method of finding the wave functions and allowed ene
for this problem is to solve Equation 6-33 for P(x) outside the well and then requlj
that J(x) and ' (x) be continuous at the boundaries. The solution of Equation 6-33
not difficult (it is of the form U(x) = Ce°* for positive x), but applying the boundfi
conditions involves a method that may be new to you; we describe it in the More &§
tion on the Graphical Solution of the Finite Square Well.

First, we will explain in words unencumbered by the mathematics how the
tions of continuity of s and 4’ at the boundaries and the need for y — O as x
lead to the selection of only certain wave functions and quantized energies for val
E within the well, i.e., 0 < E < V. The important feature of Equation 6-33 is th
second derivative J", which is the curvature of the wave function, has the same s

@ VX ) Vix) }

Fig. 6-8 (a) The finite square
well potential. (b) The finite
well ammanged symmietrically i
about x = 0. Region I is that ‘
withx < —g, D with —g <

x < +a, and I with x > +a.

Vo e
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f(x) § f(x) | hg 6-9 .(fl) Positive function
with positive curvature;

/ (b) negative function with
g negative curvature.

(a) (b)

e wave function {r. If s is positive, " is also positive and the wave function curves

fiway from the axis, as shown in Figure 6-9a. Similarly, if ¥ is negative, /" is negative

Nand again, ¢ curves away from the axis. This behavior is different from that inside the

ell, where (0 << x < L. There, s and ¢" have opposite signs so that Jy always curves

bward the axis like a sine or cosine function. Because of this behavior outside the well,

most values of the energy the wave function becomes infinite as x — *%, i.e., Yix)

not well behaved. Such functions, though satisfying the Schrodinger equation, are

pt proper wave functions because they cannot be normalized.

Figure 6-10 shows the wave function for the energy E = p%2m = h*2m\? for

4L. Figure 6-11 shows a well-behaved wave function corresponding to wave-

gth A = N, which is the ground-state wave function for the finite well, and the

Behavior of the wave functions for two nearby energies and wavelengths. The exact
ptermination of the allowed energy levels in a finite square well can be obtained

m a detailed solution of the problem. Figure 6-12 shows the wave functions and
probability distributions for the ground state and for the first two excited states. ;
fom this figure we see that the wavelengths inside the well are slightly longer than :
corresponding wavelengths for the infinite well of the same width, so the corre- |
nding energies are slightly less than those of the infinite well. Another feature of |
f finite well problem is that there are only a finite number of allowed energies, that

mber depending of the size of V,. For very small Vj, there is only one allowed
Berey level, i.e., only one bound state can exist. This will be quite apparent in the :
ed solution in the More section.

wix) |
A=4L
)
‘.\“ ,.."'
- As
Kd \Y
I i N
-05L 0 L 150 x

-16 The function that satisfies the Schrodinger equation with X = 4L inside the well is
acceptable wave function because it becomes infinite at large x. Although at x = L the
fition is heading toward zero (slope is negative), the rate of increase of the slope " is so
1that the slope becomes positive before the function becomes zero, and the function then
ses. Since J” has the same sign as W, the slope always increases and the function

fases without bound. [This computer-generated plot courtesy of Paul Doherty, The
ratoriun. |
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Fig. 6-12 Wave functions
,(x) and probability distribu-
tions Y2(x) forn = 1, 2, and
3 for the finite square well.

. Compare these with Figure
6-4 for the infinite square
well, where the wave func-
tions are zero at x = 0 and
x = L. The wavelengths are
slightly longer than the corre-
sponding ones for the infinite
well, so the allowed energies
arc somewhat smaller.

Chapter 6 The Schrodinger Equation

=Y

Fig. 6-11 Functions satisfying the Schridinger equation with wavelengths near the critical
wavelength A, If X is slightly greater than A, the function approaches infinity like that in 3
Figure 6-10. At the wavelength ), the function and its slope approach zero together. This is an §
acceptable wave function corresponding to the energy E; = h¥2mAf. If A is slightly less than 3
\;, the function crosses the +x axis while the slope is still negative. The slope becomes more %
negative because its rate of change " is now negative. This function approaches negative

infinity at large x. [This computer-generated plot courtesy of Paul Doherty, The Exploratori)

Note that, in contrast to the classical case, there is some probability of findi i
the particle outside the well, in the regions x > L or x < 0. In these regions, the tot
energy is less than the potential energy, so it would seem that the kinetic enerj
must be negative. Since negative kinetic energy has no meaning in classical physid
it is interesting to speculate about the meaning of this penetration of wave functif§
beyond the well boundary. Does quantum mechanics predict that we could measi
a negative kinetic energy? If so, this would be a serious defect in the theory. Ford}
nately, we are saved by the uncertainty principle. We can understand this qu
tively as follows (we shall consider the region x > L only). Since the wave funcy
decreases as ¢ with a given by Equation 6-34, the probability density 4 =
becomes very small in a distance of the order of Ax =~ o~ 1. If we consider Js(x)

WSA \vgl
AT S ’
Q 5 A L b 4 0 L
e
Vﬂ \v%l
/"; /FM“"» L
. _ | . . i
0 L d X 0 L
‘I‘1 \Ij121|
—~
| - - |
0 x 0 L




£ negligible beyond x = L + a~!, we can say that finding the particle in the region
E x > L is roughly equivalent to localizing it in a region Ax = «~!. Such a measure-
ment introduces an uncertainty in momentum of the order of Ap =~ #ifAx = fioc and
minimum kinetic energy of the order of (Ap)*2m = Ai%a?2m = V, — E. This
inetic energy is just enough to prevent us from measuring a negative kinetic
energy! The penetration of the wave function into a classically forbidden region
oes have important consequences in tunneling or barrier penetration, which we
hall discuss in Section 6-6.
Much of our discussion of the finite well problem applies to any problem in
hich E > V(x) in some region and E < V(x) outside that region. Consider, for

xample, the potential energy V(x) shown in Figure 6-13. Inside the well, the
chridinger equation is of the form

W(x) = —kAp(x) 6-35

vhere k= 2m[E — V(x))/i? now depends on x. The solutions of this equation are no
ger simple sine or cosine functions because the wave number £k = 2n/A varies
th x, but since " and s have opposite signs, ¥ will always curve toward the axis
the solutions will oscillate. Outside the well, J will curve away from the axis so

ghere will be only certain values of E for which solutions exist that approach zero as
pproaches infinity.

More

In most cases the solrltlon of fimite well problems invélves transcen-
dental equations ‘and -is- very difficult. For some finite potentials,

however, graphical solutions are- relanvcbr sitple and provide both
insights and numerical rcsults. As an example ‘we have included the
Graphical Solution of the Finite Squizre Well ‘on the home page:

www.whireeman: oomlmadphyslcstie Sw aIso Equaﬁons 6-36
through 6-43. and Figure 6~14 herc ' :

ntum Wells

lopment of techniques for fabricating devices whose dimensions are of the order

Banometers, called nanostructures, has enabled the construction of quantum wells.

are finite potential wells of one, two, and three dimensions that can channel

n movement in selected directions or, in the case of three-dimensional wells,

d quantum dots, restrict electrons to quantized energy states within the well. The

have potential applications in data storage and quantum computers, devices that
eatly enhance computing power and speed.

Dne-dimensional quantum wells, called quantum wires, offer the possibility of

cally increasing the speed at which clectrons move through a device in

d directions. This in turn would increase the speed with which signals move

n circuit elements in computer systems. Figure 6-15 is an outline of how such
might be formed.
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Vix) §

Fig. 6-13 Arbitrary well-type
potentiaf with possible
energy E. Inside the well

[E > V(x}], Y(x) and §(x)
have opposite signs, and the
wave function will oscillate.
Qutside the well, J(x) and
Y"(x) have the same sign and,
except for certain values of £,
the wave function wilf not be
well behaved.
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Fig. 6-15 (a) Two infinite
square wells of different
widths I, and L,, each con-
taining the same number

of electrons, are put

together. An electron from
well 1 moves to the lowest
empty level of weil 2. () The
energies of the two highest
electrons are equalized, but
the unequal charge in the two
wells distorts the energy-level
structure. The distortion of
the lowest empty levels in
each well results in a poten-
tial well at the junction
between the wells. The orien-
tation of the newly formed
well is perpendicuiar to the
plane of the figure,

Chapter 6 The Schridinger Equation

{a} Energy

(b) Energy i

h

6-4 Expectation Values and Operators
Expectation Values

The objective of theory is to explain experimental observations. In classical mecly
ics the solution of a problem is typically specified by giving the position of a pa
or particles as a function of time. As we have discussed, the wave nature of
prevents us from doing this for microscopic systems. Instead, we find the wave
tion W(x, 1) and the probability distribution function I¥{x, f)I%. The most that w
know about a particle’s position is the probability that a measurement will yield
ous values of x. The expectation value of x is defined as

{x) = f_ :‘P*(x, HxV(x, £ dx



6-4 ExPECTATION VALUES AND OPERATORS

reraent of the po a large n er of particles with the £ Wa
). As we have seen, for a particle in a state of definite energy the proba-
. bility distribution is independent of time. The expectation value of x is then given by

x) = ﬁ ] PF(0x Yix) dx 6-45

or example, for the infinite square well, we can see by symmetry {(or by direct cal-
ulation) that (x) is L/2, the midpoint of the well.
In general, the expectation value of any function f(x) is given by

(f09) = f W) b dx 646

r example, (x?) can be calculated as above, for the infinite square well of width L.
it is left as an exercise to show that

12 2
() = — — =——
3 2nln?

6-47
We should note that we don’t necessarily expect to make a measurement whose
Esuli equals the expectation value. For example, for even n, the probability of mea-

Ang x = L/2 in some range dx around the midpoint of the well is zero because the
ve function sin (nwx/L) is zero there. We get {x) = L/2 because the probability
tion Yr*y is symmetrical about that point.

erators

we knew the momentum p of a particle as a function of x, we could calculate the
ctation value {p) from Equation 6-46. However, it is impossible in principle to
p as a function of x since, according to the uncertainty principle, both p and x
ot be determined at the same time. To find {p) we need to know the distribution
tion for momentum. If we know yi(x), it can be found by Fourier analysis. It can
own that {p) can be found from

= rm‘l"*(ﬁi)\lfdx : 6-48

—e i ox

larly, { p%} can be found from

= (RaNHh O
o= [ () v

that in computing the expectation value the operator representing the physical
ty operates on W(x, ), not on ¥*(x, 1); i.e., its correct position is between
d W. This is not important to the outcome when the operator is simply some
t it is critical when the operator includes a differentiation, as in the case of the
jentum operator.
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§§ EXAMPLE 6-5 Expectation Values for p and p? Find {p) and {p?) for the ground-
& state wave function of the infinite square well. (Before we calculate them, what do §
@ you think the results will be?)

¢ Solution
f We can ignore the time dependence of ¥, in which case we have

o= [ o)

2w (L X
= —;—-11 sinlcos%dx =0

The particle is equally as likely to be moving in the —x as in the +x direction, so#§
its average momentum is zero. -
Similarly, since

hafha _ zﬂ__z(_“z\ji-ﬂ)
iax(iax)"'_ T TP e NI L

¢ we have

#om?
(rH = IE

Note that {p?) is simply 2mE since, for the infinite square well, E = p*2m. The qus
tity (A/i)d/ax, which operates on the wave function in Equation 6-48, is called
momentum operator p,;:

ho
[

Pup=.6

]

The time-independent Schrodinger equation {(Equation 6-18) can be written col
niently in terms of p,:

1
(5,;) Pepb(x) + V() P(x) = E(x)

where

. a%p
2 2 _ sy Y - 32
:_ P d(x) 1ax[tax Y )] i
In classical mechanics, the total energy writien in terms of the positio
momentum variables is called the Hamiltonian function H = p*2m + V. If we 1
the momentum by the momentum operator p,, and note that V = V(x), we ob
Hamiltonian operator H,,:
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p2
=L + V(x) 6-51

|
VH =
P 2m

_The time-independent Schrédinger equation can then be written

Hob = E 6-52

e advantage of writing the Schrodinger equation in this formal way is that it
ows for easy generalization to more complicated problems such as those with
veral particles moving in three dimensions. We simply write the total energy
the system in terms of position and momentum and replace the momentum
ariables by the appropriate operators to obtain the Hamiltonian operator for the
Mystem.
Table 6-1 summarizes the several operators representing physical quantities that
Bve have discussed thus far and includes a few more that we will encounter later on.

TasLe 6-1 Some qu_antdmfmec_haniCaI 6peratbts;.__; _. .

Physical quantity Qﬁera_tci‘"' or
Any function of x—e.g., the position x, Jix)
the potential energy V(x), etc.
' kha
x component of momentum =
i dx
A d
y component of momentum - -5;
i
fid
z component of momentum - 5;
H
Hamiltonian (time-independent) —g-zﬂ + Vi(x)
m
e . 0
Hamiltonian (time-dependent) it P
ﬁz 62
kinetic ener -—
netic energy 2m ax?
L, 0
z component of angular momentum —if 3&;

plain (in words) why {p) and {p®) in Example 6-5 are not both zero.
an {x} ever have a value that has zero probability of being measured?
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V(x)
4 1 mo?x?
2
E
| i
—A 0 +A X

Fig. 6-17 Potential energy
function for a simple har-
monic oscillator. Classically,
the particle with energy E

is confined between the
“turning points” —A and +A.

More

modphysicsde) describes the process and applies it to the emission
of light from an atom. ‘See also Equatnons 6-52a—e and Figure ;4
6-16 here., i

6-5 The Simple Harmonic Oscillator

One of the problems solved by Schridinger in the second of his six famous pape ]
was that of the simple harmonic oscillator potential, given by

Vix) = %sz = il,m(x)zx2

where K is the force constant and « the angular frequency of vibration defined f
w = (K/m)'* = 2uf. The solution of the Schridinger equation for this potential]
particularly important, as it can be applied to such problems as the vibration of mo§§
cules in gases and solids. This potential energy function is shown in Figure 6-§
with a possible total energy E indicated. A

In classical mechanics, a paricle in such a potential is in equilibrium at the 4
gin x = 0, where V(x) is minimum and the force F, = —dV/dx is zero. If disturti@
the particle with energy E will oscillate back and forth between x = ~A and x = 4§
the points at which the kinetic energy is zero and the total energy is just equal to§
potential energy. These points are called the classical turping points. The distanc
is related to the total energy E by

E = A2
Classically, the probability of finding the particle in dx is proportional to the §
spent in dx, which is dxfv. The speed of the particle can be obtained from the cof
vation of energy:

Tmv? + Ime™? = E

The classical probability is thus

dx dx
P(x)dyx~==
ohx) e v NQImYE — Imo™?)

Any value of the energy F is possible. The lowest energy is E = 0, in which
particle is at rest at the origin.
The Schridinger equation for this problem is

A2 d) |

2m dx‘z 2 lep(x) = Eq"(x)

In order for interesting things to happen in systems with quantized 3
energies, the probability density must change in time, Only in this 3
way can energy be emitted or absorbed by the system. Transitions §
Between Energy Statés on the home page (www.whireeman.com/



E The mathematical techniques involved in solving this type of differential equation are
- standard in mathematical physics, but unfamiliar to most students at this level. We will,
therefore, discuss the problem qualitatively. We first note that since the potential is sym-
E-metric about the origin x = 0, we expect the probability distribution function W(x)i? also
10 be symmetric about the origin, i.e., to have the same value at —x as at +x.

N(—x)? = W

e wave function y(x) must then be either symmetric J(—x) = + J(x), or antisym-
etric Y(~x) = —{P(x). We can therefore simplify our discussion by considering
sitive x only, and find the solutions for negative x by symmetry. (The symmetry of
s discussed further in the Exploring section on “Parity”; see page 272.)

- Consider some value of total energy E. For x less than the classical turning point
# defined by Equation 6-53, the potential energy V(x) is less than the total energy E,
phereas for x > A, V(x) is greater than E. Our discussion in Section 6-3 applies
irectly to this problem. For x << A, the Schrodinger equation can be written

V'(x) = —kH(x)

2m
K= ?[E — Vix)]

W) = +ati(x)

2m
) V() — E]

h(x) curves away from the axis. Only certain values of E will lead to solutions
e well behaved, i.e., which approach zero as x approaches infinity. The allowed
ps of E for the simple harmonic oscillator must be determined by solving the
bdinger equation; in this case they are given by

E,=(n+3he n=012 ... 6-56

the ground-state energy is %ﬁm and the energy levels are equally spaced, each
i state being separated from the levels immediately adjacent by #w.

Bhe wave functions of the simple harmonic oscillator in the ground state and in
t two excited states (n = 0, n = 1, and n = 2) are sketched in Figure 6-18.
Bround-state wave function has the shape of a Gaussian curve, and the lowest
@ E, = !fiw is the minimum energy consistent with the uncertainty principle.
Rlowed solutlons to the Schridinger equation, the wave functions for the simple
oscillator, can be written

Y, (x) = Cre ™ H (x) . 6-57

6-5 THE SiMPLE HARMONIC OSCILLATOR
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Fig. 6-18 Wave functions for
the ground state and the first
two excited states of the
simple harmonic oscillator
potential, the states with
n=0,1,and 2.

Molecules vibrate as har-
monic oscillators. Measuring
vibration frequencies (see
Chapter 9) enables determi-
nation of force constants,
bond strengths, and proper-
ties of solids.

where the constants C, are determined by normalization and the functions H,(x)
polynomials of order » called the Hermite polynomials.!* The solutions for n = 0,3
and 2 (see Figure 6-18) are 4

Yolx) = Age st

U(1) = A\ o2 xemarth

h
2
) = Az(l - 2"',‘,:”‘ )e-m‘”"

Notice that for even values of n the wave functions are symmetric about the o
for odd values of n, they are antisymmetric. In Figure 6-19 the probability disti§
tions YsZ(x) are sketched for n = 0, 1, 2, 3, and 10 for comparison with the cla
distribution.

A property of these wave functions that we shall state without proof is that

Fom
f YExd,dc=0 unless n=m=* 1

This property places a condition on transitions that may occur between allowed
This condition, called a selection rule, limits the amount by which n can ¢
(electric dipole) radiation emitted or absorbed by a simple harmonic oscillator:

The quantum number of the final state must be 1 less than or 1 greaf
than that of the initial state.

This selection rule is usually written



e the difference in energy between two successive states is fiw , this is the energy
e photon emitted or absorbed in an electric dipole transition. The frequency of
photon is therefore equal to the classical frequency of the oscillator, as was
ed by Planck in his derivation of the blackbody radiation formula. Figure 6-20
¢s an energy-level diagram for the simple harmonic oscillator, with the allowed
transitions indicated by vertical arrows.

Vix} A

Vix) = -Kx2 = -‘%mmzx2

\ JE5= 5+—)fnn

\ L /.é=4+—)ﬁm

Ey=(3+ —)flm

l 4/E=2-:f—'-u))fim
NIV

e

E,
1
27‘:
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Fig. 6-19 Probability density
2 for the simple harmonic
oscillator plotted against the
dimensionless variable
u = {mw/h)x, forn=10,1,
2, 3, and 10. The dashed
curves are the classical proba-
bility densities for the same
energy, and the vertical lines
indicate the classical turning
points x = A4,

Fig. 6-20 Energy levelsin
the simple harmonic oscilla-

tor potential. Transitions
obeying the selection rule

An = *1 are indicated by the
arrows (those pointing up
indicate absorption). Since
the levels have equal spacing,
the same energy fiw is emitted
or absorbed in all aliowed
{ransitions. For this special
potential, the frequency of
the emitted or absorbed
photon equals the frequency
of oscillation, as predicted by
classical theory.



Exploring

Parity

= We made a special point of arranging the simple harmonic oscillator potential sym-
“ metrically about x = O (see Figure 6-17), just as we had done with the finite square
well in Figure 6-85 and will do with various other potentials in later discussions. The
/. usual purpose in each case is to emphasize the symmetry of the physical situation and
to simplify the mathematics. Notice that arranging the potential V(x) symmetrically
about the origin means that V(x) = V(—x). This means that the Hamiltonian operator
%+ Hop, defined in Equation 6-31, is unchanged by a transformation that changes x — —x.
%, Such a transformation is called a parity operation and is usually denoted by the opera-
5 + tor P. Thus, if Js(x) is a solution of the Schrodinger equation

Hb(x) = Ed(x) 6-52 5_

- then a parity operation P leads to
Hopb(—x} = E(—x)

and Yi(—x) is also a solution to the Schridinger equation and corresponds to the 3
ame energy. When two (or more) wave functions are solutions corresponding to 4
* the same value of the energy F, that level is referred to as degenerate. In this case,
-where two wave functions, Y(x) and i —x), are both solutions with energy E, w
“call the energy level doubly degencrate.

_ It should be apparent from examining the two equations above that J(x) an
- —x) can differ at most by a multiplicative constant C, i.e.,

U = Ch(—x)  Y(—x) = Cx)

W(x) = Cll(—x) = CH(x)

om which it follows that C = *1. If C = 1, yi(x) is an even function, i.e., J{(—x) 4
(x). If C = —1, then Ji(x) is an odd function, i.e., P(—x)} = —(x). Parity is used

uantum mechanics to describe the symmetry properties of wave functions under §§
- reflection of the space coordinates in the origin, i.e., under a parity operation. Th
erms even and odd parity describe the symmetry of the wave functions, not whe
the quantum numbers are even or odd.

6-6 Reflection and Transmission of Waves

Up to this point, we have been concerned with bound-state problems in whi
potential energy is larger than the total energy for large values of x. In this 58
we shall consider some simple examples of unbound states for which F is §
than V(x) as x gets larger in one or both directions. For these problems d?
and Yi(x) have opposite signs for those regions of x where E > V(x), so
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ose regions curves toward the axis and does not become infinite at large values of
. Any value of E is allowed. Such wave functions are not normalizable, since
E4(x) does not approach zero as x goes to infinity in at least one direction and, as a
fconsequence,

+w
f ()2 dx — o
complete solution involves combining infinite plane waves into a wave packet of
finite width. The finite packet is normalizable. However, for our purposes it is suffi-
ient to note that the integral above is bounded between the limits @ and b, provided
y that Ib — al <{ o. Such wave functions are most frequently encountered, as we
about to do, in the scattering of beams of particles from potentials, so it is usual
ormalize such wave functions in terms of the density of particles p in the beam.
3,

fl¢<x)r2dx - f:pdx - de =N

fhere dN is the number of particles in the interval dx and A is the number of parti-
les in the interval (b — @)." The wave nature of the Schrodinger equation leads,
Pen so, to some very interesting consequences.

ep Potential
sider a region in which the potential energy is the step function

Vix) =0 for x<0
Vix)=V, for x>0

ghown in Figure 6-21. We are interested in what happens when a beam of parti-

. each with the same total energy £, moving from left to right encounters the step.

The classical answer is simple. For x << 0, each particle moves with speed v = Wix) |
i)', At x = 0, an impulsive force acts on it. If the total energy E is less than Vp,
:»;'-. icle will be turned around and will move to the left at its original speed; that
. will be reftected by the step. If E is greater than V;, the particle will continue
fing to the right but with reduced speed, given by v = (2(E — V)/m)"2. We might
pre this classical problem as a ball rolling along a level surface and coming toa
B hill of height y,, given by mgy, = V. If its original kinetic energy is less than 18 6-21 Step potential. A
fhe ball will roll partway up the hill and then back down and to the left along the ~©12ssical particle incident from
g surface at its original speed. If E is greater than Vi, the ball will roll up the hill T 16t With total energy £

: . greater than Vy, is always
jroceed to the right at a smaller speed. transmitied. The potential

change at x = 0 merely pro-
vides an impulsive force

Vo

X

space regions shown in the diagram is given by which reduces the speed of
g the particle. A wave incident
from the left is partially trans-
) mitted and partially reflected
x < 0) &) _ W) 6-61  Decause the wavelength

dx? B changes abruptly at x = 0.
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Fig. 6-22 (a) A potential step. (a)
Particles are incident on the

step from the left toward the

right, each with total energy

E > Vy (b) The wavelength of

the incident wave (Region I) is

shorter than that of the trans-

mitted wave (Region II).

Since k; < ky, ICP? > 1AP;

however, the transmission

coefficient T < 1., (b)

Region IT

where

The general solutions are

Region I

Region II

Specializing these solutions to our situation where we are assuming the j
beam of particles to be moving from left to right, we see that the first term
tion 6-63 represents that beam, since multiplying Ae®”* by the time part of
¢~* vyields a plane wave (i.e., a beam of free particles) moving to the right.
ond term, Be*, represents particles moving to the left in Region I. In Equati
D = 0, since that term represents particles incident on the potential step
right and there are none. Thus, we have that the constant A is known or
obtainable (determined by normalization of Ae®* in terms of the density of.
in the beam as explained above) and the constants B and C are yet to be fg
find them by applying the continuity condition on Y(x) and dd/dx at x = ()

x>0

x>0

Energy
E
Vix) = Vo
Vixy=0 N
0 Cx
I :
wix) 4
0 x
1}
dAb(x
(x>0 1,(2 ) _ —k3(x)
2mE V2m(E — V)
ky= —ﬁ,— and ky, = —T—

(x) = Ae™* + Be~%x

Pulx) = Ce™* + De~it>




:requiring that §4(0) = (0} and AP(0)/dx = diy(0)/dx. Continuity of ¢ at x = 0
yields

W(0) =A+B=yg0)=C

A+B=C 6-65q
ontinuity of d/dx at x = 0 gives

kA — kB =kC 6-65b
‘vlving Equations 6-65a and b for B and C in terms of A (see Problem 6-43), we

kl"_kz _EIIZ_.(E.._VO)UZ

TR T ERr E v

2k, 2E?
ky+ky,  EV+(E- V2

C | 6-67

here Equations 6-66 and 6-67 give the relative amplitude of the reflected and trans-
Bited waves, respectively. It is usual to define the coefficients of reflection R and
mission 7, the relative rares at which particles are reflected and transmitted, in
of A, B, and C as?®

B k| — ky\?
* = ) -
o _kald 4k 669
kAP (ky + kP
which it can be readily verified (see Problem 6-43) that
T+R=1 6-70

g the interesting consequences of the wave nature of the solutions to
inger’s equation, notice the following:

en though E > Vj, R is not 0; i.e., in contrast to classical expectations,
me of the particles are reflected from the step. (This is analogous to the
ternal reflection of electromagnetic waves at the interface of two media.)

e value of R depends on the difference between &, and k;, but not on which
larger; i.e., a step down in the potential produces the same reflection as a
p up of the same size.

= pifi = 2m/A, the wavelength changes as the beam passes the step. We
also expect that the amplitude of |y, will be less than that of the incident wave;
er, recall that the [y is proportional to the particle density. Since particles
more slowly in Region II (k, < k), Wy may be larger than W%, Figure 6-225

6-6 REFLECTION AND TRANSMISSION OF WaAVES

-
27



276

Fig. 6-23 Time development
of a one-dimensional wave
packet representing a particle
incident on a step potential
for E > V,. The position of a
classical particle is indicated
by the dot. Note that part of
the packet is transmitted and
part is reflected. The sharp
spikes that appear are arti-
facts of the discontinuity in
the slope of V(x) atx =0

Fig. 6-24 (a) A potential
. step. Particles are incident on
" the step from the left moving
toward the right, each with
total energy E < V. (b) The
wave transmitted into Region

Il is a decreasing exponential.

However, the value of R in
this case is 1 and no net
energy is transmitted,

Chapter 6 The Schrodinger Equation

e, 12~

illustrates these points. Figure 6-23 shows the time development of a wave pacld
incident on a potential step for E > V.
Now let us consider the case shown in Figure 6-24a, where E < V,. Classica}

we expect all particles to be reflected at x = 0; however, we note that &, in Equa ii
6-64 is now an imaginary number, since E < V;,. Thus, 4
Wi(x) = Ce™* = Ce ™

is a real exponential function where a = V2m(V, — E)/#. (We choose the po
roct so that Yy — 0 as x — .} This means that the numerator and denomina
the right side of Equation 6-66 are complex conjugates of one another, hence
AP and R = 1 and T = 0. Figure 6-25 is a graph of both R and T versus energy-
potential step. In agreement with the classical prediction, all of the particles (w:
are reflected back into Region 1. However, another interesting result of our solj
of Schridinger’s equation is that the particle waves do not all reflect at x = 0.

(a) Energy

Vix)=0
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is an exponential decreasing toward the right, the particle density in Region II is
Roportional to

W2 = IC12 g% 6-72

re 6-24b shows the wave function for the case E < V,. The wave function
not go to zero at x = 0 but decays exponentially, as does the wave function
e bound state in a finite square well problem. The wave penetrates slightly
the classically forbidden region x > 0 but eventually is completely reflected.
discussed in Section 6-3, there is no prediction that a negative kinetic energy
fi‘be measured in such a region, because to locate the particle in such a region
boduces an uncertainty in the momentum corresponding to a minimum kinetic
fiey greater than V, — E.) This situation is similar to that of total internal
tion in optics. '

AMPLE 6-6 Reflection from a Step with E < V,, A beam of electrons, each
energy E = (.1 V,, are incident on a potential step with ¥, = 1 eV, This is of
order of magnitude of the work function for electrons at the surface of metals.
raph the relative probability W? of particles penetrating the step up to a distance
10~* m, or roughly five atomic diameters.

x > 0 the wave function is given by Equation 6-71. The value of ICP is, from
ation 6-67,

o ] 201V P 04

T o1 vy ¥ (—o0ovyir T

re we have taken I4% = 1. Computing ¢~2** for several values of x from 0 to
’m gives, with 2a = 2[2m(0.9V)]"*/#, the first two columns of Table 6-2.
fing e~ and then multiplying by IC? = 0.4 yield W%, which is graphed in
Bire 6-26. :
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Fig. 6-25 Reflection coeffi-
cient R and transmission
coefficient T for a potential
step V, high versus energy E
(in units of V).



[

278 Chapter 6 The Schrisdinger Equation

TaBLE 6-2 [f?
x (m) 2ax 2
0 0 0.40
0.1 X 10-10 0.137 0.349 0.4
~ 0.3
1.0 X 1071 1374  0.101 ES
2.0 X 10°10 2748  0.026 01
5.0 X 10°10 6.869  0.001 - ‘11'0 -
100 X 10-10 13,74 ~0 (107 m)
Fig. 6-26
Barrier Potential

Now let us consider one of the.more_ interesting quantum-mechanical potentials, - :
barrier, illustrated by the example in Figure 6-27. The potential is
Vo for 0<x<a
V =
(=) {0 for 0>x and x>a
Classical particles incident on the barrier from the left in Region I with E
will all be transmitted, slowing down while passing through Region II
moving at their original speed again in Region III. For classical particles §
E <V incident from the left, all are reflected back into Region 1. The quarii

mechanical behavior of particles incident on the barrier in both energy ran
much different!

(a} Energy T

Fig. 6-27 (a) Square barrier ! ! it

potential. {&) Penetration of
the barrier by a wave with

* energy less than the barrier
energy. Part of the wave is
transmitted by the barrier
even though, classically, the _ _
particle cannot enter the : -0 a X
region 0 < x < a in which - e
the potential energy is greater
than the total energy.

(b) wix)




k First, let us see what happens when a beam of particles, all with the same energy
} E < V,, as illustrated in Figure 6-27, is incident from the left. The general solutions
Lto the wave equation are, following the example of the potential step,

Y(x) = Ae™* + Be ®**  x <0
iglx) = Ce™ ™ + De™ 0<x<a 6-74
Yy(x) = Fe®* + Ge x>a

here, as before, k, = \2mE/% and a = 2m(V, — E)/#%. Note that {s; involves real
ponentials, whereas \;; and iy contain complex exponentials. Since the particle
Peam is incident on the barrier from the left, we can set G = 0. Once again, the value
Bf A is determined by the particle density in the beam and the four constants B, C, D,
gnd F are found in terms of A by applying the continuity condition on ¢ and d/dx at
L= 0 and at x = a. The details of the calculation are not of concern to us here, but
fveral of the more interesting results are.

E  As we discovered for the potential step with E < Vj, the wave function incident
m the left does not decrease immediately to zero at the barrier but instead will decay
kponentially in the region of the barrier. Upon reaching the far wall of the barrier, the
Mve function must join smoothly to a sinusoidal wave function to the right of the bar-
Er, as shown in Figure 6-27b. This implies that there will be some probability of the
les represented by the wave function being found on the far right outside of the
r, although classically they should never be able to get through, i.e., there is a
bility that the particles approaching the barrier can penetrate it. This phenomenon
ed barrier penetration or funneling (see Figure 6-28). The relative probability of
urrence in any given Situation is given by the transmission coefficient.

The coefficient of transmission 7 from Region I into Region Il is found to be

2 k2 -1
r=IFE_[, , _sint’aa
AP E ( E) 6-75
4—l1-=
Y Va
$ 1, Equation 6-75 takes on the somewhat simpler form to evaluate
E E
T=16—|1— —]e 2= 6-76
Vo( V)¢

ing Tunneling Microscope In the scanning tunneling microscope (STM),
in the 1980s by Gerd Binnig and Heinrich Rohrer, a narrow gap between a
ting specimen and the tip of a tiny probe acts as a potential barrier to electrons
in the specimen as illustrated in Figure 6-29. A small bias voltage applied
the probe and the specimen causes the electrons to tunnel through the barrier
ing the two surfaces if the surfaces are close enough together. The tunneling cur-
extremely sensitive to the size of the gap, i.e., the width of the barrier, between
and specimen. A change of only (.5 nm (about the diameter of one atom) in
th of the barrier can cause the tunneling current to change by as much as a fac-

. As the probe scans the specimen, a constant tunneling current is maintained
electric feedback system that keeps the gap constant, Thus, the surface of the
can be mapped out by the vertical motions of the probe. In this way, the
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An important application of
tunneling is the tunnel
diode, a common compo-
nent of electronic circuits.
Another is field emission,
tunneling of electrons facili-
tated by an electric field,
now being used in wide-
angle, flat-screen displays
on some |aptop computers,

Fig. 6-28 Optical bartier
penetration, sometimes called
frustrated total internal reflec-
tion. Because of the presence
of the second prism, part of
the wave penetrates the air
barrier even though the angle
of incidence in the first prism
is greater than the critical
angle. This effect can be
demonstrated with two 45°
prisms and a laser ora
microwave beam and 45°
prisms made of paraffin.
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Fig. 6-29 Schematic illustra-
tion of the path of the probe
of an STM (dashed line)
scanned across the surface of
a sample while maintaining
constant munneling current.
The probe has an extremely
sharp micro-tip of atomic
dimensions. Tunneling occurs
over a small area across the
narrow gap, allowing very
small features (even individ-
ual atoms) to be imaged as
indicated by the dashed line,

Z

Chapter 6 The Schridinger Equation

surface features of a specimen can be measured by STMs with a resolution of the u;

of the size of a single atom.

Scanning tunneling microscopes
(STMs) have the disadvantage of
requiring a conducting surface for
their operation. This problem is
avoided in atomic force microscopes
(AFMs) that track the sample sur-
face by maintaining a constant inter-

~ atomic force between the atoms on

the scanner tip and the sample’s sur-
face atoms. In this AFM image of
actin filaments from contractile
myofibrils in skeletal muscle the
8-nm width of the filaments is
clearly resolved. [Taken from
www.di.com, of Digital Instruments,
Veeco Metrology Group, Santa
Barbara, CA.]

)

u.ll .
SN

Exploring
Alpha Decay

arrier penetration was used by:Gamd“?,'-_Condon, and Gumey in 1928 to exf
normous variation in the mean'iiifﬁ for o decay of radioactive nuclei and
gly paradoxical very existence of o decay.'s While radioactive o decay w
ussed more throughly in Chapter11; in"general the smaller the energy of th
particle, the larger the mean 1ifé./The enérgies of o particles from naturald
ve sources range from about 4 t6 9 MeV, whereas the mean lifetimes ra
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£ 6-30 (a) Model of potential energy function for an o particle and a nucleus. The strong
Bictive nuclear force for 7 less than the nuclear radius R can be approximately described by
otential well shown. Outside the nucleus the nuclear force is negligible, and the potential
Bven by Coulomb’s law, V(r) = +kZ2e¥r, where Ze is the nuclear charge and 2e is the

fee of the o particle. An o particle inside the nucleus oscillates back and forth, being

fited at the barrier at R. Because of its wave propertics, when the « particle hits the barrier

Biis a smal] chance that it will penctrate and appear outside the well at » = ry. The wave
is similar to that shown in Figure 6-275. (b) The decay rate for the emission of &

rimental results.

t 10'° years to 1075 s. Gamow represented the radioactive nucleus by a potential
ontaining an a particle, as shown in Figure 6-30q. For r less than the nuclear
R, the a particle is attracted by the nuclear force. Without knowing much
i this force, Gamow and his co-workers represented it by a square well. Outside
fnucleus, the e particle is repelled by the Coulomb force. This is represented by
oulomb potential energy +kZze¥/r, where z = 2 for the a particle and Ze is the
g nuclear charge. The energy E is the measured lsmeuc energy of the emitted
cle, since when it is far from the nucleus its potentlal energy is zero. We see
 the figure that a small increase in F reduces the relative height of the barrier
+E and also reduces the thickness. Because the probability of transmission varies
entially with the relative height and barrier thickness; as indicated by Equation
small increase in E leads to a large increase in the ptobablllty of transmission,
tum to a shorter lifetime. Gamow and his co—workgrs were able to derive an

good agreement with experimental results as foli
he probability that an o particle will tunne] thriugh the barrier in any one
h is given by T from Equation 6-76. In fact, in thls case aq is so large that
ponential dominates the expression and

T = eﬁZ\‘Z;(Vu—E') alk 6-77

b is a very small number, ie., the o particle is usually ected. The number of
second N that the o particle approaches the barrier is. gwen approximately by

0.3 04 05 x

from radioactive nuclei. The solid curve is the prediction of Equation 6-79; the points

281
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In the event that E/V, > 1,
there is no reflected wave
forag =, 2m, ... asa
result of destructive interfer-
ence. For electrons incident
on noble gas atoms, the
resulting 100 percent trans-
mission is called the
Ramsauer-Townsend effect
and is a way of measuring
atomic diameters for those
elements.

* reciprocal of the mean life T, is given by

e L o= 2VERV, =) ath

d te =
ecay rate 2R

A |-

Figure 6-30b illustrates the good agreement between the barrier penetration
alculation and experimental measurements.

T NH; Atomic Clock

= Barrier penetration also takes place in the case of the periodic inversion of th
. ammonia molecule. The NH; molecule has two equilibrinm configurations as il
& trated in Figure 6-31a. The three hydrogen atoms are arranged in a plane.
nitrogen atom oscillates between two equilibrium positions equidistant from e
of the H atoms above and below the plane. The potential energy function V(x)
2ing on the N atom has two minima located symmetrically about the center of
plane as shown in Figure 6-31b. The N atom is bound to the molecule,
the energy is quantized and the lower states lic well below the central maxim
Ziithe potential. The central maximum presents a barrier to the N atoms in the
*states through which they slowly tunnel back and forth.!” The oscillation freq
f = 2.3786 X 10" Hz when the atom in the state characterized by the energy

Figure 6-31b. This frequency is quite low compared with those of most mol
vibrations, a fact that allowed the N atom tormeling frequency in NH; to be u
~the standard in the first atomic clocks, devices that now provide the world’s

It

4: -dard for precision timekeeping.

(a) X T (b) Vix)

6-31 (a) The NH; molecule oscillates between the two equilibrium positions s!
orns form a plane; the N atom is colored. (&) The potentiat energy of the N ato
the distance above and below the plane of the H atoms. Several of the allowed
uding the two lowest shown, lie below the top of the central barrier through whi
om tunnels.
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More

Quantum-mechanical tunneling involving two bartiers is the basis for
a number of devices such as the tunne] diode and the Josephson junc-
tion, both of which have a wide variety of useful applications. As an
example of such systems, the Tunnel Diode is described on the home
page: www.whireeman.com/modphysicsde See also Equation 6-80
and Figure 6-32 here,
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5. _Simple harmonic oscillator .

) AIlowed energles
6 Reﬂecl:ton and transmlssmn

GENERAL REFERENCES

The following general references are written at a level appro-
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NoTtES

1. Felix Bloch (1905—1983), Swiss-American physicist.
He was a student at the University of Ziirich and attended the
colloquium referred to. The quote is from an address before
the American Physical Society in 1976. Bloch shared the
1952 Nobel Prize in physics for measuring the magnetic
moment of the neutron, using a method that he invented that
led to the development of the analytical technique of nuclear
magnetic resonance (NMR) speciroscopy.

2. Peter J. W. Debye (1884 — 1966), Dutch-American physi-
cal chemist. He succeeded Einstein in the chair of theoretical
physics at the University of Ziirich and received the Nobel
Prize in chemistry in 1936.

3. Erwin R. J. A. Schrisdinger (1887—1961), Austrian physi-
cist. He succeeded Planck in the chair of theoretical physics at
the University of Berlin in 1928 following the latter’s retire-
ment and two years after publishing in rapid succession six
papers that set forth the theory of wave mechanics. For that
work he shared the physics Nobel Prize with P. A. M. Dirac in
"1933. He left Nazi-controlled Europe in 1940, moving his
household to Ireland.

4. To see that this is indeed the case, consider the effect on
FW(x, (/o of muliplying ¥(x, /) by a factor C. Then
FCV(x, H/3x* = C*W(x, H/ax?, and the derivative is increased
by the same factor. Thus, the derivative is proportional to the
first power of the function, i.e., it is linear in ¥{x, ),

5. The imaginary / appears because the Schrodinger equa-
tion relates a first time derivative to a second space derivative

E,= (n + Pho

When the potential changes abruptly in a distance small compared to the
de Broglie wavelength, a particle may be reflected even though E > V(x).
A particle may also penetrate into a region where E < V(z).

n=0,12, ... 6-56

Mehra, J., and H. Rechenberg, The Historical Development 4
Quantum Theory, Vol. 1, Springer-Verlag, New York, 1988

Park, D., Introduction to the Quantum Theory, 3d
McGraw-Hill, New York, 1992.

Sherwin, C., Introduction to Quantum Mechanics, Holt, R
hart & Winston, New York, 1960.

Visual Quantum Mechanics, Kansas State University, Manhj
tan, 1996. Computer simulation software allows the uf
to analyze a variety of one-dimensional potentif}
including the square wells and harmonic oscillator &
cussed in this chapter.

as a consequence of the fact that the total energy is rel
the square of the momentum. This is unlike the cl
wave equation (Equation 5-11), which relates two
derivatives. The implication of this is that, in gene:
W{x, ) will be compiex functions, whereas the y(x, )
6. The fact that ¥ is in general complex does not me:
its imaginary part doesn’t contribute to the values o
surements, which are real. Every complex number
written in the form z = a + bi, where g and b are reai}
bers and i = (—1)'2. The magnitude or absolute value:
defined as (a2 + b»)'2. The complex conjugate of z
a~—bisoz*z = (@ — bi)(a + bi) = a* + b = I%
value of 'PI? will contain a contribution from its
part.
7. Here we are using the convention of probability
tistics that certainty is represented by a probability of
8. This method for solving partial differential equ
called separation of variables, for obvious reason:
most potentials in quantum mechanics, as in
mechanics, are time-independent, the method may be
to the Schridinger equation in numerous situations. -
9. We should note that there is an exception to th
quantum theory of measurement.
10. £ = 0 cormresponding to n = 0 is not a possi
for a particle in a box. As discussed in Section 5-6,
tainty principle limits the minimum energy for such a,
to values > A% 2mi2.



E-11. Recalling that linear combinations of solutions to
j Schrodinger’s equation will also be solutions, we should note
Ehere that simulation of the classical behavior of a macroscopic
a icle in a macroscopic box requires wave functions that
gre the superpositions of many stationary states. Thus, the
ical particle never has definite energy in the quantum-
nechanical sense.
42, To simplify the notation in this section we shall some-
u omit the functional dependence and merely write ¥, for
f.(x) and ¥, for W,(x, 1).
The Hermite polynomials are known functions which are
ated in most books on quantum mechanics.
It is straightforward to show that the only difference
een a P(x) normalized in terms of the particle density
one for which W(x)I? is the probability density is a mylti-
Ricative constant.
and R are derived in ferms of the particle currents, i.e.,
les/unit time, in most iniroductory quantum mechanics

dinger equation.

nd the classical wave equation (Equation 6-1).

f its angular frequency w is given by V(x) =

written E = }fiw.
) does satisfy this equation.

total energy, and (c) de Broglie wavelength.

ts wave function is Ji(x) =
e a sketch of V(x) versus x.

nction be normalized between —o and +%?

6-2 The Infinite Square Well

on 6-1 The Schridinger Equation in One Dimension
Show that the wave function ¥(x, £} = Ae™*' does not satisfy the time-dependent
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16. Rutherford had shown that the scattering of 8.8-MeV
o particles from the decay of 2?Po obeyed the Coulomb
force law down to distances of the order of 3 X 107 m, i.e.,
down to about nuclear dimensions. Thus, the Coulomb bar-
rier at that distance was at least 8.8 MeV high; however, the
energy of ¢ particles emitted by 2®U is only 4.2 MeV, less
than half the barrier height. How that could be possible pre-
sented classical physics with a paradox.

17. Since the molecule’s center of mass is fixed in an inertial
reference frame, the plane of H atoms also oscillates back
and forth in the opposite direction to the N atom; however,
their mass being smaller than that of the N atom, the ampli-
tude of the plane's motion is actually larger than that of the
N atom. It is the relative motion that is important.

18. See, for example, F. Capasso and S. Datta, “Quanturn
Electron Devices,” Physics Today, 43, 74 (1990). Leo Esaki
was awarded the Nobel Prize in physics in 1973 for inventing
the resonant tunnel diode.

‘Show that ¥(x, £) = A" satisfies both the time-dependent Schrédinger equa-

“In a region of space, a particle has a wave function given by Yi(x) = Ae 2 and
y 2/2mlI2, where L is some length. (@) Find the potential energy as a function of x,
ketch V versus x. (b) What is the classical potential that has this dependence?

) For Problem 6-3, find the kinetic energy as a function of x. (&) Show thatx = L
assical turning point. (c) The potential energy of a simple harmonic oscillator in
3mwt?. Compare this with your
to part (@) of Problem 6-3, and show that the total energy for this wave function

«{a) Show that the wave function ¥(x, ) = A sin (kx — i) does not satisfy the
pendent Schrijdinger equation. (b) Show that W(x, £) = A cos (kx — ws) + iA sin

he wave function for a free electron, i.e., one on which no net force acts, is given
= A sin (2.5 X 10% x) where x is in meters. Compute the electron’s (a) momen-

particle with mass m and total energy zero is in a particular region of space
Ce ™", (g) Find the potential energy V(x) versus x and

ormalize the wave function in Problem 6-2 between —a and +a. Why can’t that

‘ particle is in an infinite square well of size L. Cajculate the ground-state energy
¢ particle is a proton and L = 0.1 nm, a typical size ,for a molecu]e and (b) the
is a proton and L = 1 fm, a typical size for a nucleus,
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6-10. A particle is in the ground state of an infinite square well potential given by Equation
6-21. Find the probability of finding the particle in the interval Ax = 0.002 L at (g} x = L/2,
(&) x = 2L/3, and (¢) x = L. (Since Ax is very small, you need not do any integration.)
6-11. Do Problem 6-10 for particle in the second excited state (n = 3) of an infinite
square well potential. '
6-12. A mass of 107¢g is moving with a speed of about 107! cm/s in a box 1cm in
length. Treating this as a one-dimensional infinite square well, calculate the approximate
value of the quantum number 7.
6-13. {a) For the classical particle of Problem 6-12, find Ax and Ap, assuming that Ax/I.
0.0I percent and Ap/p = 0.01 percent. (b) What is (AxAp)/#?
6-14. A particle of mass m is confined to a tube of length L. (@) Use the uncertainty rela
tionship to estimate the smallest possible energy. () Assume that the inside of the tube
a force-free region and that the particle makes elastic reflections at the tube ends. U
Schrédinger’s equation to find the ground-state energy for the particle in the tube. Co
pare the answer to that of part (a).
6-15. (g) What is the wavelength associated with the particle of Problem 6-14 if the p:
cle is in its ground state? (5) What is the wavelength if the particle is in its second exci
state (quantum number n = 3)? (¢) Use de Broglie’s relationship to find the magnitu
for the momentum of the particle in its ground state. (d) Show that p?/2m gives the cof
rect energy for the ground state of this particle in the box. ;
6-16. The wavelength of light emitted by a ruby laser is 694.3 nm. Assuming that
emission of a photon of this wavelepgth accompanies the transition of an electron fra
the n = 2 level to the n = 1 level of an infinite square well, compute L for the well. -§
6-17. Suppose a macroscopic bead with a mass of 2.0 g is constrained to move 011
straight frictionless wire between two heavy stops clamped firmly to the wire 10 i
apart. If the bead is moving at a speed of 20 mm/yr (i.e., to all appearances it is at reg
what is the value of its quantum number #?
6-18. An electron moving in a one-dimensional infinite square well is trapped in the n
state. (@) Show that the probability of finding the electron between x = 0.2 L and x =
is 1/5. (b) Compute the probability of finding the electron within the “volume” Ax = 0.
atx = LA2.
6-19, In the early days of nuclear physics before the neutron was discovered, it
thought that the nucleus contained only electrons and protons. If we consider
nucleus to be a’one-dimensional infinite well with L = 10 fm and ignore rel
compute the ground-state energy for (a) an electron and () a proton in the n
(¢) Compute the energy difference between the ground state and the first excited
for each particle. (Differences between energy levels in nuclei are found to be typ:
of the order of 1 MeV.)
6-20. An electron is in the ground state with energy E, of a one-dimensional infini
with L = 107°m. Compute the force that the electron exerts on the wall di
impact on cither wall. (Hint: F = —dE,/dL. Why?) How does this result compare w
weight of an electron at the surface of Earth?
6-21. The wave functions of a particle in a one-dimensional infinite square well are
by Equation 6-32. Show that for these functions [y, (x)\,.(x) dx = 0, i.e., that Yrf
r,.(x} are orthogonal.

Section 6-3 The Finite Square Well

6-22. Sketch (a) the wave function and (b) the probability distribution for the »
for the finite square well potential.

6-23. Repeat Problem 6-22 for the n = 5 state of the well.

6-24. An electron is confined to a finife square well whose “walls” are 8.0 eV hi
ground-state energy is 0.5 eV, estimate the width of the well.
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Fig. 6-33 Problem 6-25.

X

. For a finite square well potential that has six quantized levels, if @ = 10 nm (a) sketch
finite well, (b) sketch the wave function from x = —2q to x = +2a for n = 3, and
ketch the probability density for the same range of x.

. The mass of the deuteron (the nucleus of the hydrogen isotope *H) is 1.88 GeV/c®.
deep must a finite potential well be whose width is 2 X 1071 m if there are two
gy levels in the well?

Brtion 6-4 Expectation Values and Cperators

Find (@) {x) and (&) {x2) for the second excited state (# = 3) in an infinite square
8 potential,

9. (@) Show that the classical probability distribution function for a particle in a one-
sional infinite square well potential of length L is given by P(x) = 1/L. (b) Use your
in {a) to find {x} and (x*) for a classical particle in such a well.

Show directly from the time-independent Schridinger equation that {p?) =
— W(x)]) in general and that {p*) = (2mE) for the infinite square well. Use this

Find o, = V(x?) — {x)?, 0, = ¥(p?) — {p)% and 0,0, for the ground-state wave
n of an infinite square well. (Use the fact that {p} = 0 by symmetry and {p?) =
from Problem 6-30.)

Compute {x) and {x?} for the ground state of a harmonic oscillator (Equation 6-58).
(k)P4

Use conservation of energy to obtain an expression connecting x* and p? for a har-
oscillator, then use it along with the result from Problem 6-32 to compute {p?) for
onic oscillator ground state.

a) Using Ay from Problem 6-32, write down the total wave function W(x, ¢) for

pund state of a harmonic oscillator, (b) Use the operator for p, from Table 6-1 to
te {p?).

bn 6-5 The Simple Harmonic Oscillator

r the harmonic oscillator ground state n = ( the Hermite polynomial H {x) in
6-57 is given by Hy = 1. Find (a) the normalization constant C,, (b} (x?}, and
)} for this state. (Hint: Use Table B1 to compute the needed integrals.)

or the first excited state, H,(x) = x Find (a) the normalization constant C;, (b) {x),
o)y (V(x)) for this state (see Problem 6-35).

guantum harmonic oscillator of mass m is in the ground state with classical tum-
s at *A. (a) With the mass confined to the region Ax = 24, compute Ap for this

ProBLEMS
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state, (b) Compare the kinetic energy implied by Ap with (1) the ground-state total energy-4
and (2) the expectation value of the kinetic energy. 3
6-38. Compute the spacing between adjacent energy levels per unit energy, ie., AE /E,,
for the quantum harmonic oscillator and show that the result agrees with Bohr's corre-
spondence principle (see Section 4-3) by letting n — o2,
6-39. The period of a macroscopic pendulum made with a mass of 10 g suspended from
massless cord 50 cm long is 1.42 s. (@) Compute the ground-state (zero-point) ene
(b} If the pendulum is set into motion so that the mass raises 0.1 mm above its equili
rium position, what will be the quantum number of the state? (c) What is the frequency
the motion in (#)?

6-40. Show that the wave functions for the ground state and the first excited state
the simple harmonic oscillator, given in Equation 6-58, are orthogonal, that is, shg

that () (x) dx = 0.

Section 6-6 Reflection and Transmission of Waves

6-41. A free particle of mass m with wave number k; is traveling to the right. At x =%
the potential jumps from zero to V, and remains at this value for positive x. (a) If &
total energy is E = #%3#/2m=2V,, what is the wave number &, in the region x >3
Express your answer in terms of k; and V. (b) Calculate the reflection cocfﬁclent :
the potential step. (c) What is the transmission coefficient T? (d) If one million partif
with wave number k; are incident spon the potential step, how many particles}
expected to continue along in the positive x direction? How does this compare with:
classical prediction?

6-42. In Prcblem 6-41, suppose that the potential jumps from zero to —V; at x
that the free particle speeds up instead of slowing down. The wave number for the
dent particle is again k,, and the total energy is 2V,. (@) What is the wave numb
the particle in the region of positive x? (b) Calculate the reflection coefficient R
potential step. (¢) What is the transmission coefficient T?7 (d) If one million pa
with wave number k; are incident upon the potential step, how many particl
expected to continue along in the positive x direction? How does this compare
classical prediction? -

6-43. Use Equations 6-68 and 6-69 to derive Equation 6-70.

6-44. For particles incident on a step potential with £ < V;, show that T = 0 usin,
tion 6-70.
6-45. Derive Equations 6-66 and 6-67 from those that immediately precede them
6-46. A beam of electrons, each with kinetic energy E = 2.0 €V, is incident on a p
barrier with ¥y = 6.5 eV and width 5.0 X 107 m. (See Figure 6-26.) What frac]
the electrons in the beam will be transmitted through the barrier?

6-47. A beam of protons, each with kinetic energy 40 MeV, approaches a step
of 30 MeV. (@) What fraction of the beam is reflected and transmitted? (b) How
answer change if the particles are electrons?

Level I

6-48. A proton is in an infinite square well potential given by Equation 6-21 with L

(a) Find the ground-state energy in MeV. (b) Make an energy-level diagram for this
Calculate the wavelength of the photon emitted for the transitions (¢) » = 2 to
(dn=3twn=2and(e)n=3ton=1.
6-49. A particle is in the ground state of an infinite square well potential given by ]
6-21. Calculate the probability that the particle will be found in the region (@) 0 <
(b)0<x<3L,and(c)0<x< zL
6-50. (a) Show that for large », the: ﬁ'actlonal difference in energy between stg
state n + 1 for a particle in an infinite square - well is given approximately by
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k. (b) What is the approximate percentage energy difference between the states #, = 1000 and
- n, = 10017 (¢) Comment on how this result is related to Bohr’s correspondence principle.
£ 6-51. In this problem you will obtain the time-independent Schridinger equation from
f the time-dependent equation by the method of separation of variables. () Substitute the

f trial function W(x, £) = Y(xR?) into Equation 6-6, and divide each term by Y(x}fi} to
j obtain the equation

’ 2 »
SO X[ J
£ 2m
i{h) Since the left side of the equation in (@) does not vary with x, the right side cannot vary

ith x. Similarly, neither side can vary with ¢ thus they both must equal some constant C.
ow that this implies that f{¢) is given by A1} = e ¥ Use the de Broglie relation to
gue that C must be the total energy E. (¢) Use the result of (&) to obtain Equation 6-14.

2. Quantum mechanics predicts that any particle localized in space has a nonzero
Rclocity and consequently can never be at rest. Consider a Ping-Pong ball of diameter 2 cm
knd mass 2 g that can move back and forth in a box of length 2.001 cm. Hence, the space in
ich the ball moves is only 0.001 cm in length. (@) What is the minimum speed of the Ping-
g ball according to Schridinger’s equation? (b) What is the period of one oscillation?

. A particle of mass /m is in an infinjte square well potential given by

V=0 x<-iL
V=0 -L<x<+iL
V= +%L<x

e this potential is symmetric about the origin, the probability density Mi(x)? must
© be symmetric. (@) Show that this implies that either d(—x) = $(x) or P(—x) =

i(x}. (&) Show that the proper solutions of the time-independent Schridinger equation
:be written

2
lll(x)=‘\/;c05%t n=1357 ...

2
¢(x)=\/£sinf%‘3 n=2,4,608, ...

how that the allowed energies are the same as those for the infinite square well given

uation 6-24.

. The wave function Wy(x) = Ae /2L represents the ground-state energy of a har-

ic oscillator. (@)} Show that ¢, = L diy(x)/dx is also a solution of Schridinger’s equa-
(b} What is the energy of this new state? (¢) From a look at the nodes of this wave

on, how would you classify this excited state?

r For the wave functions

2 | nux _
llr(x)—‘\l;sm 3 n=1,2,3 ...

PROBLEMS
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M S

corresponding to an infinite square well of length L, show that

L _ L
=3 " 2
6-56. A 10-eV electron is incident on a potential barrier of height 25 eV and width 1 nm,
(a) Use Equation 6-76 to calculate the order of magnitude of the probability that the elec-
tron will munnel through the barrier. () Repeat your caiculation for a width of 0.1 nm. _
6-57. A particle of mass m moves in a region in which the potential energy is constant 3
V = V,. {(a) Show that neither ¥(x, 1) = A sin (kx — wf) nor ¥(x, 1) = A cos (kx — wf) §
safisfies the time-dependent Schridinger equation. (Hint: If C; sin & + C, cos ¢ = 0 for ¥
all values of ¢, then C; and C, must be zero.) (b) Show that ¥(x, 1) = A[cos (kx — wf) +‘—
i sin (kx ~ wt)] = Ae™ ~ D does satisfy the time-independent Schridinger equation pro-;
viding that &, V;, and w are related by Equation 6-5.
6-58. A particle of mass m on a table at z = 0 can be described by the potential energy

V=mgz for z>0
V=« for z<<0

For some positive value of total energy E, indicate the classically allowed region on a s!
of V(z) versus z. Sketch also the kinetic energy versus z. The Schridinger equation for
problem is quite difficult to solve, Using arguments similar to those in Section 6-3 abou
curvature of a wave function as given by the Schridinger equation, sketch your “gues
for the shape of the wave function for the ground state and the first two excited states,

Level Il

6-59. Use the Sichrédjnger equation to show that the expectation value of the ki
energy of aparticle is given by

+% ﬁz dz
(Ep = f ) w(x)(—g—jff)) dx

6-60. An electron in an infinite square well with L = 1072 m is moving at rela
speed; hence, the momentum is nof given by p = (2mE)"2. (a) Use the uncertainty
ple to verify that the speed is relativistic. (b) Derive an expression for the ele
allowed energy levels and (c¢) compute E;. (d) By what fraction does E; comp
(c) differ from the nonrelativistic E,? ‘
6-61. (@) Derive Equation 6-75. (#) Show that, if ag >>> 1, Equation 6-76 follow:
Equation 6-75 as an approximation.
6-62. A beam of protons, each with energy £ = 20 MeV, is incident on a potenti;
40 MeV high. Graph the relative probability of finding protons at values of x >
x=0tox = 5 fm. (Hint: Take IA? = 1 and refer to Example 6-6.)



