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(a) Show, nevertheless, that this is not a possible Minkowski force. [Him: See Prob. 12.384,]

(b) Find a correction term that, when added to the right side, removes the objection you raised
in (a), without affecting the 4-vector character of the formula or its nonrelativistic limit.2!
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to include magnetic charge. [Refer to Sect. 7.3.4.]

Forinteresting commentary on the relativistic radiation reaction, see F. Rohrlich, Am. J, Phys. 65, 1051 (1997).

Appendix A

Vector Calculus in Curvilinear
Coordinates

A.1 Introduction

In this Appendix I sketch proofs of the three fundamental theorems of vector calculus, My
aim js to convey the essence of the argument, not to track down every epsilon and dehta.
A much more elegant, modern, and unified—but necessarily also much longer—treatment
will be found in M. Spivak's book, Calculus on Manifolds (New York: Benjamin, 1965).

For the sake of generality, [ shall use arbitrary (orthogonal) curvilinear coordinates
(1, v, w), developing formulas for the gradient, divergence, curl, and Laplacian in any such
system. You can then specialize them to Cartesian, spherical, or ¢ylindrical coordinates, or
any other system you might wish to use. If the generality bothers you on a first reading, and
you'd rather stick to Cartesian coordinates, just read (x, ¥, z) wherever you see (u, v, w),
and make the associated simplifications as you go along.

A.2 Notation

We identify a point in space by its three coordinates, u, v, and w, (in the Cartesian system,
{x, y, 2); in the spherical system, (r, 6, ¢); in the cylindrical system, (s, ¢, 2)). [ shall
assume the system is orthogonal, in the sense that the three unir vectors, @, ¥, and W,
pointing in the direction of the increase of the corresponding cootdinates, are mutually
perpendicular, Note that the unit vectors are functions of position, since their directions
(except in the Cartesian case) vary from point to point. Any vector can be expressed in
terms of i, ¥, and W—in particular, the infinitesimal displacement vector from {(u, v, w) to
{u + du, v + dv, w + dw) can be written

dl= fdud+gdvi+hdww, (A1
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where f, g, and 4 are functions of position characteristic of the particular coordinate
system (in Cartesian coordinates f = g = & = 1; in spherical coordinates f =1, g =r,
h = rsin@; and in cylindrical coordinates f = h = 1, g = 5). As you'll scon see, these
three functions tell you everything you need to know about a coordinate system.

Gradient

If you move from point (x, v, w) to point (u + du, v +dv,w + dw), a scalar function
#(u, v, w) changes by an amount

at at at
= — — —dw; A2
de a“af.m+(,ma'v-i-aw w (A2)
this is a standard theorem on partial differentiation.! We can write it as a dot preduct,
dt =Vi.dl=(V), fdu+ (Vt), gdv+ (Vi) hdw, (A3)
provided we define
1 8¢ 16t 1 3
Vi, =——, (Vi)y=—-——, (Vi)p=——.
(Vi) 7 o (Vi) PE (Vi)y P

The gradient of ¢, then, is

t 143 1 3t
Voo Lig Ly 10,

¥y A4
Fou T g0 T how (A-4)

If you now pick the appropriate expressions for f, g, and & from Table A.1, you can easily
generate the formulas for Vr in Cartesian, spherical, and cylindrical coordinates, as they
appear in the front cover of the book.

System u v wif g h

Cartesian x y z 11 1 1

Spherical r 8 ¢! |l r rsing

Cylindrical { s ¢ 2z {1 s 1
Table A.1

 From Eq. A.3 it follows that the total change in ¢, as you go from point a to point b
(Fig. A.1), is

b b
t(h) —r(a) = f df = f {Ve) - dl, (A.5)
a a

which is the fundamental theorem for gradients (not much to prove, really, in this case).
Notice that the integral is independent of the path taken froma tob,

Ml M. Boas, Mathematical Methads in the Physical Sciences, 2nd ed., Chapter 4, Sect. 3 (New York: John Wiley,
83).
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Figure A1

A.4 Divergence

Suppose that we have a vector function,
A, v, w) = A, i+ A, ¥ + Ay W,

and we wish to evaluate the integral § A - da over the surface of the infinitesimal volume
generated by starting at the point («, v, w) and increasing each of the coordinates in succes-
sion by an infinitesimal amount (Fig. A 2). Because the coordinates are orthogonal, this is
(at least, in the infinitestmal limit) a rectangular solid, whose sides have lengths d1,, = f du,
dly = g dy, and dly, = h dw, and whose volume is therefore

dr =dl, dl, dly, = (fgh) dudvdw. (A.6)

(The sides are nor just du, d v, dw—-after all, v might be an angle, in which case dv doesn’t
even have the dimensions of length. The correct expressions follow from Eq. A.1.)
For the front surface,
da = —(gh)dvdwi,

s0 that
A-da=—(ghAy)dvdw.

The back surface is identical (except for the sign), only this time the quantity gh Ay, is to be
evaluated at (u + du), instead of u. Since for any (differentiable) function < (u),

dF
F(u +du) — Flu) = — du,
du

(in the limit), the front and back together amount to a contribution

9
—(ghA,)dr.

a
[5;(8’”4.‘)] dudvdw = mau

By the same token, the right and left sides yield

a

!
mav(fhf‘u)df,
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(u + du, v+ dv, w)

x‘*" g dv (0, v + dv, w '
(u, v, W)
h duw
(o, v, w+ dw) t

| l (e + du, v+ dv, w + du)

—_—

£

and the top and bottom give

All told, then,

The coefficient of dt serves to

(u, v + dv, w + dw)

Figure A.2

1 4

ma_w(ngw)df-

1 [a 3 3
A da=_— | —(ghA —(fhA —(fgA dr. AT
f fgh__au(g u)+31.'(f u)+aw(fg w)] T (A7)
define the divergence of A in curvilinear coordinates:
1 [3a b] 3
VA= —|— JF+ —(fhA —{(fedy) . A8
z Fo | B+ 5, (FhAD + (e w)] A8

.
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and Eq. A.7 becomes

%A -da=(V- -Adr. (A.9)
Using Table A.1. vou can now derive the formulas for the diverzence in Cartesian. spherical.
and cylindrical coordinates, which appear in the front cover of the book.

As it stands, Eq. A9 does not prove the divergence theorem, for it pertains only to
infinitesimal volumes, and rather special infinitesimal volumes at that. Of course, a finite
volume can be broken up into infinitesimal pieces, and Eq. A.9 can be applied to each one.
The trouble is, when you then add up all the bits, the left-hand side is not just an integral
over the oufer surface, but over all those tiny internal surfaces as well. Luckily, however,
these contributions cancel in pairs, for ach internal surface occurs as the boundary of two
adjacent infinitesimal volumes, and since da always points curward, A - da has the opposite
sign for the two members of each pair (Fig. A.3). Only those surfaces that bound a single
chunk—which is to say, only those at the outer boundary—survive when everything is
added up. For finite regions, then,

%A'da=f(V-A)dt,

and you need only integrate over the external surface.? This establishes the divergence
theorem.

(A1)

Figure A.3

2What about regions that cannot be fit perfectly by rectangular solids no matter kow tiny they are—such as
planes cut at an angle to the coordinate lines? 1t's not hard to dispose of this case; try thinking it out for yourself,
orlook at H. M. Schey's Div, Grad, Curl and All That (New York: W. W. Norton, 1973), starting with Prob. I1-15.
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Curl

‘To obtain the curl in curvilinear coordinates, we calculate the line integral,

gaa

arcund the infinitesimal loop generated by starting at (#, v, w) and successively increasing
u and v by infinitesimal amounts, holding w constant (Fig. A.4), The surface is a rectangle
(at least, in the infinitesimal limit), of length di, = f du, width 41, = g dv, and area

da = (fgidudy®. (A.1D
Assuming the coordinate system is right-handed, w points out of the page in Fig. A4,

Having chosen this as the positive direction for da, we are obliged by the right-hand rule
to run the line integral counterclockwise, as shown.

A
(i, v + du, w) \ (u + du, v + dov, w)
gdv
(%, v, 1) (i + du, v, w)
fdu L}
Figure A.4

Along the bottormn segment,
dl = fdui,
8b
A-dl = (fA,) du.

Along the top leg, the sign is reversed, and fA, is evaluated at (v + dv) rather than v.
Taken together, these two edges give

d
[q(fA"),u+du + (fA")LJ] du = — [a’(fAu)] duduy.

_d
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Similarly, the right and left sides yield
a
—(gAw) | dudy,
du !
so the total is
a3 8
Adl = (A — —(fA) | dudy
du duv
(A.12)

1
S

The coefficient of da on the right serves to define the w-component of the curl. Constructing
the # and v components in the same way, we have

a 3 .
[EJ(SAU) -~ EE(fAu)] W da.

1Ta d PO B - d .
VxA= g_h[ga(hAw)""'a‘—w‘(gAu)]“‘f’ﬁ[a‘u'(fAu)“a(f!Aw)]V
+—l— L A)——a~ A | %
fz 3H(g v B‘U(f ul | W,
{A.13)
and Eq. A.11 generalizes to
fA -dl=(V x A) - da. (A.14)

Using Table A.l, you can now derive the formulas for the curl in Cartesian, spherical, and
cylindrical coordinates.

Equation A.14 does not by itself prove Stokes’ theorem, however, because at this point
it pertains only to very special infinitesimal surfaces. Again, we can chop any finite surface
into infinitesimal pieces and apply Eq. A.14 to each one (Fig. A.5). When we add them up,
though, we obtain (on the Teft) not only a line integral around the outer boundary, but a lot
of tiny line integrals around the internal loops as well. Fortunately, as before, the internal

Figure A.5
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contributions cancel in pairs, because every internal line is the edge of fwe adjacent Joops
running in opposite directions. Consequently, Eq. A.14 can be extended to finite surfaces,

%A-dl: [(V x A) - da, (A.15)

and the line integral is to be taken over the external boundary orlly.3 This establisheé Stokes’ Appendix B
theorem.

"A.6 Laplacian | The Helmholtz Theorem

Since the Laplacian of a scalar is by definition the divergence of the gradient, we can read
off from Eqs. A.4 and A.8 the general formula

v = L [i (5’_1?1) + 9 (ﬁ Ei) + 9 (&E’_)] . (A.16) Suppose we are told that the divergence of a vector function F(r} is a specified scalar
feh [ du \ f Bu v\ g dv dw \ h dw function D{r):
V.-F=D, (B.1)
Once again, you are invited to use Table A.1 to derive the Laplacian in Cartesian, spherical, . i ]
and cylindrical coordinates, and thus to confirm the formulas inside the front cover. and the curl of F(r) is a specified vector function C(r}:
VxF=C (B.2)

For consistency, C must be divergenceless,
vV.C=0, (B.3)

i because the divergence of a curl is always zero. Question: can we, on the basis of this
| information, determine the function F? If D(r} and C(r) go to zero sufficiently rapidly at
: infinity, the answer is yes, as I will show by explicit construction.

[ I claim that
F=-VU+VxW, (B4)
; where | D)
Uy = —f—(—dr', (B.5)
4 2
and , c
W(r) = —_[ LR (B.6)
4 2
the integrals are over all of space, and, as always, 2 = |r - 1'|. Forif F is given by Eq. B4,
then its divergence (using Eq. 1.102) is

1 |
\ VF=-VU=-— f DVv? (—) dr' = fD(r')63(r- r')dr’ = D(r).
*What sbout surfaces that cannot be fit perfectly by tiny rectangies, no matter how smail they are (such as T *

triangles) or sutfaces that do not correspond to holding one coordinate fixed? If such cases trouble you, and you J .
I cannot resolve them for yourself, look at H. M. Schey's Div, Grad, Curl, and All That, Prob. INI-2 (New York: W. (Remember that the divergence of a curl is zero, so the W term drops out, and note that the

W.Norton, 1973). differentiation is with respect to r, which is contained in 2.)

y - ror
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So the divergence is right; how about the curl?
VxF=Vx(VxW=-VW4+V(V.W) (B.7)

(Since the curl of a gradient is Zero. the I7 farm drane ane 3 Kaco
-VW = L [ cv? (1) dr’ = fC(l")ﬁj(r —r)dr =C(r),
4 r

which is perfect—I'll be done if I can just persuade you that the second term on ti‘1e rf'ght
side of Eq. B.7 vanishes. Using integration by parts (Eq. 1.59), and noting that denvagwes
of » with respect to primed coordinates differ by a sign from those with respect to unprimed

coordinates, we have
] ' / l 2
[C.V -lde' == C-V'|-)dr
% 2
1, 1
[—V-Cdr—f—c-da. (B.8)
2 2

But the divergence of C is zero, by assumption (Eq. B.3), and the surface integral (way out
at infinity) will vanish, as long as C goes to zero sufficiently rapidly.

Of course, that proof tacitly assumes that the integrals in Egs. B.5 and B.6 converge—
otherwise U and W don’t exist at all. At the large r’ limit, where 2 & ', the integrals have

the form * X0) .
f 2 iy = [ F X dr. (B.9)
rf

{Here X stands for D or C, as the case may be). Obviously, X (#) must go to zero at large
r'~—but that's not enough: if X ~ 1/#’, the integrand is constant, so the integral blows
up, and even if X ~ 1/r?2, the integral is a logarithm, which is still no good at #' — 0.
Evidently the divergence and curi of F must go to zero more rapidly than 1/r? for the proof
to hold. (Incidentally, this is more than enough 10 ensure that the surface integral in Eq. B.8
vanishes.)

Now, assuming these conditions on D(r) and C(r) are met, is the solution in Eq. B.4
unigue? The answer is clearly no, for we can add to F any vector function whose divergence
and curl both vanish, and the result stifl has divergence D and curl C. However, it so happens
that there is no function that has zero divergence and zero curl everywhere and goes to zero
atinfinity (see Sect. 3.1.5). So if we include arequirement that F(r) goes to zercas r — 0,
then solution B.4 is unique. !

IV - W

l“Pica")' we do expect the electric and magnetic fields to go to zero at large distances from the charge.s al_1d
currents that produce them, so this is net an unreasonable stipulation. Occasionally ohe encounters artificial
problems in which the charge or current distribution itself extends to infinity —infinite wires, for instance, or

infinite planes. In such cases other means must be found to establish the existence and uniqueness of solutions to
Maxwell's equations.
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Now that all the cards are on the table, [ can state the Helmholtz theorem more rigor-
ously: ;

Ifthe divergence D(r)and tha reel 0oy o8y funcuon 1(r) are specified,

and if they both go to zero faster than 1/+2 as r — o0, and if F(r} goes to zero
as r — oo, then F is given uniquely by Eq. B.4.

The Helmholtz theorem has an interesting corollary:

Any (diﬂ'ercntiab]e) vector function F(r) that goes to zero faster than 1/7 as
r -> 00 can be expressed as the gradient of a scalar plus the curl of a vector:2

—I VJ . F s ] 4 J
F(r) _ V(___f___i).dr") +v X (_f md":') . (BIO)
4 4 4 4
For example, in electrostatics V- E = p/epand V x E = 0, so
I r
E(r) = -V (-Hf-’i—)dz')=~vv, B.11)
4meg 2

where V is the scalar potential, while in magnetostatics V-B=0and V x B = tol. so

B(r)=V x (%:-f i({-qdr’) =V x A, (B.12)

where A is the vector potential.

2As a matter of fact, any differentiable vecior function whatever (regardless of its behavior at infinity) can be
written as a gradient plus a curl, but this more general result does not follow directly from the Heimholtz thearem,
nor does Eq. B. |0 supply the explicit construction, since the integrals, in general, diverge.



 Appendix C

Units

In our units (the Systéme International) Coulomb’s law reads

1 qi92.
F= ——x (SI). .
drey 2 * 6D (1

Mechanical quantities are measured in meters, kilograms, seconds, and charge is in coulombs
(Table C.1). In the Gaussian system, the constant in front is, in effect, absorbed into the
unit of charge, so that

F= q—lfii (Gaussian). (C.2)

.Mechanical quantities are measured in centimeters, grams, seconds, and charge is in elec-
trostatic units (or esu). For what it's worth, an esu is evidently a (dyne)!/?-centimeter.
Converting electrostatic equations from SI to Gaussian units is not difficult: just set

€n —> —.

4T

For example, the energy stored in an electric field (Eq, 2.45),

U= EZQfEZdr (S,
becomes
1
U= —fEZdT (Gaussian).
8n

| (l-Tormulas pertaining to fields inside dielectrics are not so easy to translate, because of
differing definitions of displacement, susceptibility, and so on; see Table C.2.)

558

Quantity S Factor Gaussian

Length meter (m) 102 centimeter

Mass kilogram (kg) 10 pram

1me second (s) | second

Force newton (N) 10° dyne

Energy joule (I} 107 erg

Power watt (W) 107 erg/second

Charge coulomb (C) 3% 10° esu (statcoulomb)
Current ampere (A) 3Ix10° esw/second (statampere)
Electric field volt/meter {1/3) x 107*  statvolt/centimeter
Potential volt (V) 1/300 statvolt

Displacement  coulomb/meter’ 127 x 10° statcoul omb/centimeter?
Resistance ohm () (1/9) x 107" second/centimeter
Capacitance farad (F) 9 x 10! centimeter

Magnetic field tesla (T) 104 gauss

Magnetic flux  weber (Wb) 108 maxwell

H ampere/meter 4 x 1073 oersted

Inductance henry (H) (1/9) x 10" second®/centimeter

559

Table C.1 Conversion Factors. [Note: Except in exponents, every “3” is short for
a = 2.99792458 (the numerical value of the speed of light), 9" means ol

and “12” is 4o.]

The Biot-Savart law, which for us reads

dlx 2
B=y f =2 (8D, (€3
4 22
becomes, in the Gaussian system,
I fdlxa
B=- f % (Gaussian), (C4)
< %

where ¢ is the speed of light. and current is measured in esw’s. The Gaussian unit of
magnetic field (the gauss) is the one quantity from this system in everyday use: people
speak of volts, amperes, henries, and so on {all S units), but for some reason they tend to
measure magnetic fields in gauss (the Gaussian unit); the correct SI unit is the tesla (10*
gauss).

One major virtue of the Gaussian system is that electric and magnetic fields have the
same dimensions (in principle, one could measure the electric fields in gauss too, though
no one uses the term in this context). Thus the Lorentz force faw, which we have written

F=q(E+vxB) (81), (C.5)
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S1 Gaussian
Maxwell’s equations
" v x E= —3B/ar V x E=-13B/a
In general: V.B=0 V.B=0
V x B=puoJ+ poeodE/dr  V xB=3J+ 13E/:
V-D=py V D=Adnpy
i _ | VxE=—3B/a V xE=—13B/at
n matter: V.B=0 V.B=0
vV xH=J;+3D/at VxH=4%]J,4 1aD/a
Dand H
_— D=¢gE+P D=E+4xP
Definitions: H= ﬁB -M H—B - 4xM
P=yx.E, D=c¢E
Linear media: Xe y

P:'G()XeE, D=¢E
M=x,H, H=_1B

M = ymH, H=’1—LB

Loreniz force law

F=g(E+vxB}

F=g(E+!xB)

Energy and power
Energy: U:%f(ng2+ﬁBz)dr U=g ((E*+B?) dt
Poynting vector: S= I%0('55 x B) §$=ExB)
La - _ 1 _24%? =24
rmor formula: P=g-3t F= _TQTI_
S—

Table C.2 Fundamental Equations in SI and Gaussian Units.
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(indicating that £/ B has the dimensions of velocity), takes the form
v
F:q@+zx@ (Gaussian). (C.6)

In effect, the magnetic field is “scaled up” by a factor of c. This reveals more starkly the
parallel structure of electricity and magnetism. For instance, the total energy stored in
electromagnetic fields is

= é f (E? + BYdt (Gaussian), (.7

eliminating the ¢p and gy that spoil the symmetry in the ST formula,

1 1
== / (ngz + —82) dr (SD. (C.8)
2 Ho

Table C.2 lists some of the basic formulas of electrodynamics in both systems. For
equations not found here, and for Heaviside-Lorentz units, I refer you to the appendix of
1. D. Jackson, Classical Electrodynamics, 3rd ed. (New York: John Wiley, 1999), where a
more complete listing is to be found.!

!For an interesting “primer” on electricat 1 units see N. M. Zimmerman, Am, J. Phys. 66, 324 (1998).



