RULES FOR CLASSIFICATION INTO POINT GROUPS - 1. If the molecule is linear, look for the highest rotational axis. This axis is infinite fold (c_{∞}) for a linear molecule. - If the molecule has a center of inversion (i) [or in other words, the two ends of the molecule are identical], then the point group is $\mathbf{D}_{\infty h}$ - Otherwise $C_{\infty v}$ - 2. If the molecule is non-linear and if the highest rotational axis is 3, 4 or 5 fold, look for other axes of the same order. There are 3 possibilities. - a) Several 5-fold axes (C₅): The molecule belongs to I_h point group if it has a plane of symmetry. If not, the point group is I. - b) Three 4-fold (C_4) axes: The molecule belongs to O_h point group if it has a plane of symmetry. If not, the point group is O. - c) Four 3-fold axis (C_3) but no C_4 or C_5 axis: - If there are no mirror planes or a center of inversion, the point group is **T** - If there is a center of inversion, the point group is T_h - If there are 6 mirror planes and three S_4 axes, the point group is T_d - 3. If only one axis has $n \ge 2$ or if the axis of highest order is a C_2 axis, check for n more 2-fold axes (C_2) at <u>right angles</u>. If these exist and: - There are no mirror planes $\rightarrow \mathbf{D_n}$ point group - Has a horizontal mirror plane $\rightarrow \mathbf{D}_{nh}$ point group - No horizontal mirror planes, but has n vertical mirror planes $\rightarrow \mathbf{D}_{nd}$ point group - 4. If only one n-fold axis exists, check for S_{2n} axis. If this exists then the point group is S_{2n} . If not, the molecule belongs to: - C_n if it has no mirror planes - C_{nh} if it has a horizontal mirror plane - C_{nv} if it has n vertical mirror planes - 5. If the molecule has no symmetry axes, but has a: - center of inversion \rightarrow point group is C_i - mirror plane \rightarrow point group is C_s - none of the above \rightarrow point group is C_1