REQUIREMENTS FOR AN ACCEPTABLE WAVEFUNCTION

- 1. The wave function ψ must be continuous. All its partial derivatives must also be continuous (partial derivatives are $\frac{\partial \psi}{\partial x}$, $\frac{\partial \psi}{\partial y}$ etc.). This makes the wave function "smooth".
- 2. The wave function ψ must be **quadratically integrable**. This means that the integral $\int \psi^* \psi \, d\tau$ must exist.
- 3. Since $\int \psi^* \psi d\tau$ is the probability density, it must be single valued.
- 4. The wave functions must form an orthonormal set. This means that
 - the wave functions must be **normalized.**

$$\int_{-\infty}^{\infty} \psi_i^* \ \psi_i \ d\tau = 1$$

• the wave functions must be **orthogonal**.

$$\int_{-\infty}^{\infty} \psi_i^* \psi_j d\tau = 0$$

OR $\int_{-\infty}^{\infty} \psi_i^* \psi_j d\tau = \delta_{ij}$ where $\delta_{ij} = 1$ when i = j and $\delta_{ij} = 0$ when $i \neq j$

 δ_{ij} is called Kronecker delta

- 5. The wave function must be **finite everywhere**.
- 6. The wave function must satisfy the **boundary conditions** of the quantum mechanical system it represents.