PYTHON LECTURE NOTES 2/11/08

Functions!
What’s good about putting our code into functions?
* we can call them

* they help us to break down complex processes into simpler, repeatable ones with meaningful names

* they make code more readable as a result

* they make it easy to reuse code (instead of typing it over & over), both within a program and between programs (using import statements)

* easier to troubleshoot – we can test just the function in question rather than having to test that code over and over in different scenarios

* they often give us simple solutions to difficult problems through recursion
Defining a function:

def <function name>(<parameters, separated by commas>):

"""<documentation string>"""

<block>

return <return values, separated by commas>
Calling a function:

<function name>(<parameters, separated by commas>)

Outputs:
Functions can have two kinds of outputs: their side effects and their return values.

side effects are whatever the function does during computation that has some effect (which may be observable by the user). E.g., printing something to the screen, writing something to a file, reading something from a file, changing the value of a variable.

return values are simply the thing(s) that the function passes back as the “answer”.
To return a return value, we use a return statement (see template above).

If you return more than one value, they come out of the function as a tuple.
Recursion:
Functions can call other functions!

Functions can even call themselves!!!!!!!! That’s recursion.

Example: the Fibonacci numbers (see fibs.py)
The sequence of calls to the fib function resulting from the call fib(5):

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(2)

fib(3)

fib(2)

fib(1)

This is redundant – it computes the same values over and over – which is why it's a very slow program for inputs larger than 30.
Variable scope:

Variables/parameters that exist only inside function definitions aren’t “visible” outside the function in which they’re defined.
Efficiency:

That fibs.py program is really slow. We can make it faster by keeping track of more information along the way.

Consider: fastfibs.py

The sequence of calls that result from the call fastfib(5):
fastfib(5)

fibhelp(5, [1,1])

fibhelp(4, [2,1,1])

fibhelp(3, [3,2,1,1])

fibhelp(2, [5,3,2,1,1])

It doesn't make a whole tree of redundant calls; it only computes each value once. Hence it's much more efficient (as we saw by comparing how long it takes to compute fib(36) with how long it takes to compute fastfib(36)).

Reading for Wednesday: Ch6
