PYTHON HOMEWORK 7:

THE MINI-PROJECT
Calculated Fiction

2/21/08

Due at 10am on 3/12/08 (the Wednesday of Week 10)

As was discussed in the Lab 7 handout, this is the last Python homework assignment of the quarter. Your task is to choose, design, and implement (that is, program) a mini-project. You have considerable freedom in choosing your topic, so choose something that you actually find interesting. As with any project, it's difficult to quantify how big or long it needs to be, but you should shoot for at least roughly 1.5 homework assignments of work.

Your mini-project is due in two parts: a proposal and a program.
The Proposal

Due by 5pm on Feb. 29 (Friday of Week 8)

Once you've chosen an idea for your mini-project, write up a short proposal describing your idea – about half a page should do it. In your proposal, describe what your program will do and say as much as you can about how, specifically, it will work.

As you work toward choosing an idea, think about ways to make programming relevant to ideas from the rest of Calculated Fiction – from the texts we've read, or from last quarter's math workshops, or from thoughts you've had in response to the material we've discussed. If you don't yet know what you'd like to do, read through the list of mini-project ideas at the end of this document. Feel free to talk with me (Brian) about your ideas, too; I can probably help you turn even a quite fuzzy idea into a concrete and appropriately sized mini-project idea.

E-mail your proposal to me at bwalter@evergreen.edu by 5pm on February 29 (the Friday of Week 8); once I get it, I'll reply as quickly as I can with any comments, suggestions, or directions I have for you regarding your mini-project. The sooner you send me your proposal, the sooner I can reply and the sooner you can get going on your mini-project.
The Program

Due by 10am on March 12 (Wednesday of Week 10)

During programming lab time in Week 10, each of you will give a brief (5-10 minute) explanation and demonstration of your mini-project program. Spend a little time thinking about how to effectively walk the class through your program; explain how it works and then show us what it does. We'll have prizes for the best projects, so make it flashy!

Your program should be well commented, with a clear description of its purpose in the header and useful comments throughout the code. Make good use of functions to split your program into meaningful pieces. Use whitespace and sensible variable names to make your program more readable.

Everything from your hw7 directory will be copied to the grading directory on March 12 (the Wednesday of Week 10). For once you're free to give your files whatever names you like. We're gonna make this the best prom ever!

As always, let me know if you have questions or run into trouble.

MINI-PROJECT IDEAS

1.
Write a program to help decode a message encoded with a Caesar cipher (described in HW 6).

Such a program might work by trying each of the 26 possible shifts and looking for English words that appear in the resulting strings of letters. (To check for valid English words, the program should load a list of acceptable words from a file.) The string containing the most English words is likely to be the correctly decoded message, so the program could show the user the two or three shifted versions with the most English words in them.
2.
Write a program that looks for words encoded in a number sequences.

For example, if we consider the Fibonacci numbers mod 26, we can regard them as referring to the 26 letters of the alphabet. Thus since the 5th, 6th, and 7th Fibonacci numbers are 5, 8, and 13, which correspond to the letters f, i, and n (where 0 is a, 1 is b, 2 is c, and so on), we can say meaningfully that the word "fin" is hiding inside the Fibonacci sequence. We might also look for words that have been shifted (that is, encoded with a Caesar cipher). For example, Fibonacci numbers 62-66, taken mod 26, are 21, 0, 21, 21, and 16; shifting by 8 and turning them into letters yields d, i, d, d, and y. So "diddy" is also hiding inside the Fibonacci numbers. (I wondered what he was up to.)

That's how the decoding might work. To check for valid English words, the program should load a list of acceptable words from a file and then check each subsequence to see if it's in the list.

Taken mod 26, the Fibonacci numbers repeat after a short while, so it might be more interesting to consider a nonrepeating sequence. How about the digits of (or e?
3.
Write a program that finds anagrams.

Such a program might work by generating all permutations of the input string and then checking each permutation to see if it can be broken up into a sequence of English words. (To check for valid English words, the program should load a list of acceptable words from a file.) That way is likely to take a very long time because so many permutations won't be made of valid words. Another approach: generate permutations a few characters at a time, checking for valid words as you go.

A similar and slightly simpler project would be to write a program that finds Scrabble words constructible from a given collection of letters.

4.
Write a program that takes a text file as input and randomly generates a body of text based on the input.

Such a program might work as follows. Randomly choose a sentence from the input and add its first word to the output; say the word so chosen is "Whenever". Now choose one of the occurrences of "Whenever" (or "whenever"; we should ignore case here) from the input text and add the word immediately following it to the output. Continue in this fashion until the word selected ends with terminal punctuation (., !, or ?); then a sentence has been constructed, so we can start the process over again.

For example, if the input text were

Matt was upset. Whenever he got upset, Matt wanted to play with Fred's Wii until he felt better. Matt felt like Fred was sometimes mean to him, which made him upset, but at least Fred said that whenever Matt wanted to, he could play with his Wii.
then the output text might begin with

Whenever Matt wanted to play with his Wii. Matt was upset. Matt felt like Fred said that whenever Matt wanted to, he got upset. Matt felt better.
(This process generally works better with a longer source text.) Notice that this doesn't always generate totally grammatical text – can you find ways to improve the algorithm so that the output will be more grammatical?
5.
Write a spoonerizing program – a program to turn regular text into something like the text we saw in Mathews's "The Doctor Distracted".

Such a program might swap consonant clusters (recall that vowels were left where they started out) randomly between words until every word had been modified. Or it might perform a particular sequence or number of swaps. You get to decide.
6.
Write a program that takes an existing text as input – perhaps from a file – and modifies it in some other interesting way.

7.
Write a random haiku/food/theorem/literature/??? generator.

