Answer Key Chemistry workshop for May 13, 2008- Part I

I.

1. $2 \mathrm{H}^{+}+\mathrm{e}^{-}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$ (oxygen is -2 in each case, N is reduced from +3 to +2
2. $\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{-} \rightarrow \mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}(\mathrm{O}$ is -2 in each case, N is oxidized from +3 to $+5)$
3. $2 \mathrm{e}^{-}+2 \mathrm{H}^{+}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$ (dimethylsulfoxide to dimethylsulfide, sulfur reduced from +4 to +2 , or +2 to O , depending on how you want to treat the C-S bond)
4. $2 \mathrm{e}^{-}+2 \mathrm{H}^{+}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{~S}$ (S is reduced from 0 to -2)
5. $\mathrm{S}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{e}^{-}+6 \mathrm{H}^{+}$(S is oxidized from 0 to +6)
6. $2 \mathrm{e}^{-}+\mathrm{Hg}_{2}{ }^{+2} \rightarrow \mathrm{Hg}$ (Mercury is reduced from +1 to 0)
II. Balance each of the following equations by the half-reaction method. In your balanced equation indicate the element oxidized, the element reduced, the oxidizing agent, and the reducing agent.

$$
\begin{aligned}
& \text { A. } \mathrm{H}_{2}+\mathrm{SO}_{4}^{-2} \rightarrow \mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& 4\left(\mathrm{H}_{2}\right. \\
& \left.8 \mathrm{e}^{-}+9 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2} \rightarrow \mathrm{H}^{+}+2 \mathrm{e}^{-}\right) \\
& \text {Net: } \mathbf{4 \mathbf { H } _ { \mathbf { 2 } } + \mathbf { H } ^ { + } + 4 \mathrm { H } _ { 2 } \mathrm { O }}+\mathbf{S O}_{\mathbf{4}}^{-\mathbf{2}} \rightarrow \mathbf{H S}^{-}+\mathbf{4} \mathbf{H}_{\mathbf{2}} \mathrm{O} \text { (S is reduced, } \mathbf{H} \text { is oxidized; } \mathbf{H}_{\mathbf{2}} \text { is the } \\
& \text { reducing agent, } \mathbf{S O}_{\mathbf{4}}{ }^{-2} \text { is the oxidizing agent) }
\end{aligned}
$$

B. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{MnO}_{2} \rightarrow \mathrm{Mn}^{2+}+\mathrm{S}$
$\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$2 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{MnO}_{2} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
Net: $\mathbf{H}_{2} \mathrm{~S}+\mathbf{2} \mathbf{H}^{+}+\mathbf{M n O}_{\mathbf{2}} \rightarrow \mathbf{S}+\mathbf{M n}^{\mathbf{2 +}}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ (S is oxidized, Mn is reduced; $\mathbf{H}_{\mathbf{2}} \mathrm{S}$ is the reducing agent, MnO_{2} is the oxidizing agent.

