Lac Operon Review
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(a) When cAMP is present, it binds to CAP.The cAMP-CAP complex binds to
DNA at the CAP site and increases binding of RNA polymerase to promoter.
Transcription occurs frequently.
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(b) When cAMP is absent, CAP does not bind to DNA. RNA polymerase does
not bind the promoter efficiently, and transcription occurs rarely.

CAP ,,.I t&,ﬁg*

et - INFREQUENT TRANSCRIPTION

e AT B AT AT
WP TP Dt OO DIPDP

Pl L I i G B Bd P Ul Ud
CAP - | ‘Operator  lacZ lacY lacA
site OV
RNA polymerase bound
loosely to promoter

Figure 17-8 Blological Sclence, 2/e © 2005 Pearson Prentice Hall, Inc,




related to the concentration of glucose.
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Which of the following experiments would help you to
determine whether the B-galactosidase gene is induced
by lactose or glucose?

a. Measure the amount of B-galactosidase produced by E.
coli grown on a glucose plate

b. Measure the amount of B-galactosidase produced by
E. coli grown on a glucose + lactose plate

c. Measure the amount of B-galactosidase produced by E.
coli grown on a glucose plate, a lactose plate, and a
glucose + lactose plate

d. Measure the amount of B-galactosidase produced by
E. coli grown on a lactose plate



In a normal system, if no lactose were present, where
would RNA polymerase initiate transcription on the
DNA shown in the figure below?
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A hypothetical bacterium isolated from a Martian sea
uses a silica-based sugar called silicose as its main
energy source. Which of the following would be the most
efficient type of control for the production of silicase, the
enzyme used to metabolize silicose?

a.
b.
C.

Constitutive transcription of silicase gene
Negative control of transcription of silicase gene
Catabolite repression transcription of silicase
gene

Inducible operon in control of transcription of
silicase gene
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DNA has a (-) charge, Histone proteins are (+)
So, DNA wraps around 8 histones with linkers

H1 protein attached
to linker DMNA and
nuclaosome
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THE ELEMEMTS OF TRAMSCRIPTIOMAL COMTROL: A MODEL
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miRMAs TARGET CERTAIM mRMAS FOR DESTRUCTION
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DNA Methylation and Transcriptional Repression

Direct interference with transcription activator
factor binding

a. Active transcription
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b. Repression by inhibition of TF binding
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Examples: Methylation sensitive TF: AP-2, E2ZF, NFkB
Methylation insensitive TF: Sp1
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