Visibility, air quality and daily mortality in Shanghai, China

Wei Huang a, Jianguo Tan b, Haidong Kan c,d,⁎, Ni Zhao d, Weimin Song c, Guixiang Song e, Guohai Chen f, Lili Jiang g, Cheng Jiang e, Renjie Chen c, Bingheng Chen c

a Center for Environment and Health, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, China
b Shanghai Urban Environment Meteorology Center, Shanghai, China
c School of Public Health, Fudan University, Shanghai, China
d Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, North Carolina, NC, USA
e Shanghai Municipal Center of Disease Control and Prevention, Shanghai, China
f Shanghai Environmental Monitoring Center, Shanghai, China

doi:10.1016/j.scitotenv.2009.02.019
0048-9697/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

1. Introduction

Outdoor air pollution has been found to be associated with a wide range of adverse health outcomes, including increased mortality, increased rates of hospital admissions and emergency department visits, exacerbation of chronic respiratory conditions (e.g., asthma), and decreased lung function (Samet and Krewski, 2007). However, most of these studies were conducted in developed countries, and only a small number of studies have been conducted in developing countries. A common problem in conducting air pollution health research in developing countries is the scarcity or nonexistence of air monitoring data. Identifying appropriate air quality proxy that can be commonly available in developing countries would potentially benefit the conduct of health studies.

Environmental studies have found that particulate matter (PM) and gaseous pollutants in the air can scatter or absorb light, therefore reduce the visibility. For example, fine particles (PM2.5, particulate matter with aerodynamic diameter less than 2.5 μm) can be effective light scatters because the wavelength of visible light falls in this range (Sisler and Malm, 1994). Visibility data are routinely collected at airports or meteorology stations throughout the world, and thus available for interpolation of missing pollutant measurements in developing countries. It is reasonable to hypothesize that visibility can be used as a surrogate of air pollution level assessing the health effects in places where routine air monitoring is not available (Abbey et al., 1995; Schwartz, 1991; Vajanapoom et al., 2002).

As the largest developing country in the world, China has achieved rapid development in the recent two decades. However, levels of outdoor air pollution in China are among the highest in the world (Chen et al., 2004). Although the relationship between outdoor air pollution and daily mortality/morbidity has been examined in several studies.
large Chinese cities, such as Beijing (Xu et al., 1995, 1994), Chongqing (Venners et al., 2003), Shanghai (Kan and Chen, 2003a;b; Zhang et al., 2006; Kan et al., 2007), Wuhan (Qian et al., 2007a,b), and Shenyang (Xu et al., 2000), no study has ever assessed the relationships between visibility, air quality and health outcomes, as well as the feasibility of using visibility as a surrogate assessing the air pollution health effects. In this study, we made the first attempt to assess the possibility of using visibility decrease as an exposure proxy to interpret its association with air quality and with daily deaths in Shanghai, China.

2. Materials and methods

2.1. Data

Daily mortality data (excluding accidents and injuries) of residents living in the nine urban districts of Shanghai between March 4, 2004 and December 31, 2005 (668 calendar days) were collected from the central database of Shanghai Municipal Center of Disease Control and Prevention (SMCDCP). The death report system in Shanghai was implemented in 1951, and has become computerized since 1990. For both in-home and in-hospital deaths, physicians are responsible for completing the death certificate cards. Information on the cards is then sent to SMCDCP through internal computer network. Causes of deaths were coded according to the International Classification of Diseases, Revision 10 (ICD 10), and classified into deaths due to total non-accidental causes (A00–J99), cardiovascular diseases (I00–I99), and respiratory diseases (J00–J98).

Daily visibility data were measured at a fixed-site monitoring station in Baoshan District of Shanghai. The digital photo visibility system (DPVS) was installed about 3 m above ground, monitoring the real time atmospheric visibility.

Daily air pollution data, including PM$_{10}$ (particulate matter with aerodynamic diameter less than 10 μm), PM$_{2.5}$–PM$_{10-2.5}$ (particulate matter with aerodynamic diameter between 10 and 2.5 μm), sulfur dioxide (SO$_2$), nitrogen dioxide (NO$_2$), and ozone (O$_3$), were obtained from Shanghai Environmental Monitoring Center (SEMC), a government agency responsible for air pollution data collection in Shanghai. The monitoring system in Shanghai is part of National Environmental Monitoring Quality Control Management Network, and has been certified by China Ministry of Environmental Protection. Daily concentrations for each pollutant were collected from a fixed-site station located in Puduo District which is within the National Environmental Monitoring Quality Control Management Network. PM$_{10-2.5}$ concentrations were estimated by subtracting PM$_{2.5}$ from PM$_{10}$ measurements. We extracted 24-hour average concentrations for PM$_{10}$, PM$_{2.5}$, PM$_{10-2.5}$, SO$_2$ and NO$_2$; and an 8-hour (from 10 AM to 6 PM) average concentration for O$_3$. For the calculation of 24-hour average pollutant concentrations, at least 75% of the hourly values on that particular day have to be valid. For the 8-hour average of O$_3$, at least six hourly values from 10 AM to 6 PM have to be valid.

To allow adjustment for meteorologic effect on mortality, daily mean temperature and humidity data were obtained from the Shanghai Meteorological Bureau. Daily weather data were measured at a fixed-site station located in Xuhui District of Shanghai.

2.2. Statistical methods

We calculated the Spearman correlation coefficients of visibility with both particulate matter (PM$_{2.5}$, PM$_{2.5-10}$ and PM$_{10}$) and gaseous pollutants (SO$_2$, NO$_2$ and O$_3$). Visibility and meteorological parameters (humidity, temperature, wind speed and season) were used to predict PM$_{2.5}$ and PM$_{10}$ concentrations. R-squared (R^2) was used to measure how well the prediction model fit the data; and higher R^2 values indicated the preferred model.

We used the generalized additive model (GAM) with penalized splines to analyze the mortality, visibility, air pollution, and covariate data. Because counts of daily mortality counts typically follow a Poisson distribution, the core analysis used a GAM with log link and Poisson error that accounted for smooth fluctuations in daily mortality. Consistent with several latest other time-series studies (Ostro et al., 2006; Peng et al., 2006; Samoli et al., 2006), we used penalized splines in the GAM.

We first built basic models for various mortality outcomes excluding visibility and air pollution variables. We incorporated smoothed spline functions of time, which can accommodate nonlinear and non-monotonic patterns between mortality and time, offering a flexible modeling tool (Hastie and Tibshirani, 1990). Day of the week (DOW) was also included as dummy variable in the basic models. In our analysis, partial autocorrelation function (PACF) was used to guide the selection of degrees of freedom (df) for time trend until the absolute values of sum of PACF of residuals for lags up to 30 reach minimal (Katsouyanni et al., 2001; Peng et al., 2006; Touloumi et al., 2004, 2006). Peng et al. (2006) found that the df, which minimizes absolute value of sum of PACF of the residuals, corresponds closely with the df that leads a test for white noise failing to reject the null hypothesis. Residuals of the basic models were also examined to check whether there were discernable patterns and autocorrelation by means of residual plots and PACF plots.

After basic models were established, we introduced the visibility or pollutant concentrations (both actual and predicted) in the regression models, and analyzed their associations with mortality outcomes. Based on published literature (Bell et al., 2004; Dominici et al., 2006), 3 df (whole period of study) for mean temperature and relative humidity could control well for meteorologic effects on mortality, and it thus was chosen to be used in our models. Additionally, because the underlying assumption of linear relationship between death risk and visibility may not hold, we used smoothing function to graphically analyze their relationship (Daniels et al., 2004).

In summary, we fit the following log-linear generalized additive model to obtain the estimated log-relative rate β of visibility in Shanghai:

$$\log E(Y_t) = \beta Z_t + \text{DOW} + \text{ps(time,df)} + \text{ps(temperature,3)} + \text{ps(humidity,3)} + \text{intercept}$$

Here $E(Y_t)$ means the expected number of deaths at day t; β represents the log-relative rate of mortality associated with a unit increase of visibility or pollutant concentrations; Z_t indicates the visibility or pollutant concentrations at day t; DOW is day of the week effect; ps(time,df) is the penalized spline function of calendar time;

Table 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily death counts</td>
</tr>
<tr>
<td>Total (non-accident)</td>
</tr>
<tr>
<td>Cardiovascular</td>
</tr>
<tr>
<td>Respiratory</td>
</tr>
<tr>
<td>Visibility (km)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air pollutants concentrations</th>
<th>PM$_{10}$ (μg/m3)</th>
<th>PM$_{2.5}$ (μg/m3)</th>
<th>PM$_{10-2.5}$ (μg/m3)</th>
<th>SO$_2$ (μg/m3)</th>
<th>NO$_2$ (μg/m3)</th>
<th>O$_3$ (μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 668</td>
<td>107.9±2.39</td>
<td>61.0</td>
<td>39.5</td>
<td>93.5</td>
<td>135.8</td>
<td>403.0</td>
</tr>
<tr>
<td>PM$_{2.5}$ (μg/m3)</td>
<td>661</td>
<td>56.4±1.34</td>
<td>9.3</td>
<td>32.5</td>
<td>49.0</td>
<td>72.4</td>
</tr>
<tr>
<td>PM$_{10-2.5}$ (μg/m3)</td>
<td>661</td>
<td>52.3±1.57</td>
<td>2.0</td>
<td>28.5</td>
<td>42.0</td>
<td>66.0</td>
</tr>
<tr>
<td>SO$_2$ (μg/m3)</td>
<td>668</td>
<td>57.7±1.10</td>
<td>12.0</td>
<td>35.0</td>
<td>52.0</td>
<td>74.0</td>
</tr>
<tr>
<td>NO$_2$ (μg/m3)</td>
<td>668</td>
<td>61.8±0.97</td>
<td>14.4</td>
<td>43.2</td>
<td>59.2</td>
<td>75.2</td>
</tr>
<tr>
<td>O$_3$ (μg/m3)</td>
<td>668</td>
<td>77.0±2.89</td>
<td>5.6</td>
<td>36.7</td>
<td>58.3</td>
<td>84.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meteorologic measures</th>
<th>Mean temperature (°C)</th>
<th>Relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 668</td>
<td>18.8±0.34</td>
<td>69.3±0.46</td>
</tr>
<tr>
<td>Min</td>
<td>−2.8</td>
<td>33.0</td>
</tr>
<tr>
<td>P(25)</td>
<td>12.3</td>
<td>61.5</td>
</tr>
<tr>
<td>Median</td>
<td>19.8</td>
<td>70.0</td>
</tr>
<tr>
<td>P(75)</td>
<td>26.2</td>
<td>76.8</td>
</tr>
<tr>
<td>Max</td>
<td>35.0</td>
<td>94.8</td>
</tr>
</tbody>
</table>

24-hour average for PM$_{10}$, PM$_{2.5}$, PM$_{10-2.5}$, SO$_2$ and NO$_2$; 8-hr (10 AM to 6 PM) average for O$_3$.
Fig. 1. Daily visibility and air pollutant concentrations in Shanghai (Mar. 4, 2004–Dec. 30, 2005).
and ps(temperature/humidity,3) is the penalized spline function for current-day temperature/humidity with 3 df.

All analyses were conducted in R 2.6.1 using the MGCV package (R Development Core Team, 2007). To facilitate the comparison with previous studies (Kan et al., 2007, 2008), the results are presented as the percent change in daily mortality per inter-quartile range (IQR) increase of visibility, and per 10 μg/m^3 increase of PM_{2.5} or PM_{10}.

3. Results

3.1. Data description

From March 4, 2004 to December 31, 2005, a total of 79,530 deaths (41,857 males and 37,673 females) were recorded in this study population. The percentages of total deaths by age group were 0.2% for 0–4, 2.4% for 5–44, 13.9% for 45–64 and 83.4% for 65+, respectively. On average, there were 119 non-accidental deaths per day, including 46 deaths from cardiovascular diseases, and 13 deaths from respiratory diseases (Table 1). Approximately, cardiopulmonary disease accounted for 49.4% of total non-accidental deaths.

Daily visibility and air pollutant concentrations during our research period were described in Fig. 1 (n = 668 days). During the study period, the mean visibility was 17.1 km in distance. Generally, visibility was strongly, negatively correlated with both PM_{2.5} (correlation coefficient, r = −0.68), PM_{10} (r = −0.63), and moderately correlated with PM_{2.5-10} (r = −0.41), SO_{2} (r = −0.44) and NO_{2} (r = −0.38), but not with O_{3} (r = −0.04) (Table 2).

Fig. 2 describes the relations of visibility with PM_{2.5} and PM_{10}. In various models, visibility, together with humidity, was found appropriate in predicting PM_{2.5} (R^2 = 0.64) and PM_{10} (R^2 = 0.62). Further inclusion of temperature, wind speed or season did not significantly increase the R^2 values.

3.2. Regression results

Table 3 summarizes the associations of visibility with total and cause-specific mortality after controlling for long-term and seasonal trend of mortality, DOW, and weather conditions. Significant associations were found between visibility and daily deaths from all and cardiovascular causes. One inter-quartile range (8 km) decrease in visibility corresponded to 2.17% [95% confidence interval (95%CI): 0.46%, 3.85%] increase of total mortality, 3.36% (95%CI: 0.96%, 5.70%) increase of cardiovascular mortality, and per 10 μg/m^3 increase of PM_{2.5} or PM_{10}.

Table 3

<table>
<thead>
<tr>
<th>PM_{2.5}</th>
<th>PM_{2.5-10}</th>
<th>PM_{10}</th>
<th>SO_{2}</th>
<th>NO_{2}</th>
<th>O_{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td>−0.68</td>
<td>−0.41</td>
<td>−0.63</td>
<td>−0.44</td>
<td>−0.58</td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>1</td>
<td>0.42</td>
<td>0.80</td>
<td>0.80</td>
<td>0.79</td>
</tr>
<tr>
<td>PM_{2.5-10}</td>
<td>1</td>
<td>0.87</td>
<td>0.42</td>
<td>0.51</td>
<td>0.07</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>1</td>
<td>0.70</td>
<td>0.75</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>SO_{2}</td>
<td>1</td>
<td>0.75</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO_{2}</td>
<td>1</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The effect estimates using actual and visibility-based predicted particle concentrations were further assessed (Table 4). For total and cardiovascular mortality, significant associations were found with both actual PM_{10} and actual PM_{2.5}; for respiratory mortality, the association was significant only with actual PM_{2.5}, but not with actual PM_{10}. The effect estimates using predicted concentrations were similar to those assessed using actual concentrations.

4. Discussion

Consistent with several prior studies (Abbey et al., 1995; Schwartz, 1991; Vajanapoom et al., 2002), decreased visibility was significantly associated with elevated death rates from all causes and from cardiovascular disease in Shanghai. To our knowledge, this is the first study in Mainland China assessing the association between visibility and adverse health outcomes. In addition, the magnitudes of our estimates for PM_{2.5} and PM_{10} are comparable with previous analyses in Shanghai (Kan et al., 2007, 2008). Mortality outcomes showed associations, at similar magnitude, with actual and visibility-based predicted particle concentrations. Our findings support the use of visibility as a surrogate of air quality in health research in developing countries whereas visibility data are collected routinely at nearby airports.

In China, published data on the correlations between visibility and air quality is quite limited. Among measured pollutants, we found...
The strongest correlation of visibility with PM$_{2.5}$, which is consistent with prior studies showing that visibility had higher correlation with smaller particles (Ozkaynak et al., 1985). In addition, our regression model of visibility and PM$_{2.5}$ (Fig. 2), with R^2 of 0.64, were comparable to or even better than those reported in other studies. For example, Ozkaynak et al reported a mean of R^2 of 0.43 in their 12 large U.S. city regression models estimating PM$_{2.5}$ from visibility (Ozkaynak et al., 1985). Our analyses suggest that visibility measurement may provide relatively accurate predicted PM$_{2.5}$, and thus to be used as an exposure proxy assessing the health effects of PM$_{2.5}$.

Consistent with most prior air pollution studies (Englert, 2004), we found significant effects of visibility on both total and cardiovascular mortality. Of additional interest is the magnitude of the association of visibility with cardiovascular mortality relative to that for total mortality. In our study, visibility was more strongly associated with cardiovascular mortality than with all-cause mortality risk (Table 3). Many recent studies have addressed potential mechanisms linking air pollutants (e.g. PM$_{2.5}$) and cardiovascular diseases (Brook et al., 2004). For example, ambient particles have been associated with increased plasma viscosity (Peters et al., 1997), sequestration of red cells in the circulation (Seaton et al., 1999), and indicators of cardiac autonomic dysfunction including increased heart rate, decreased heart rate variability, and increased cardiac arrhythmias (Dockery, 2001). These findings provide evidence on possible pathways by which visibility, a surrogate of air pollutants, is associated with cardiovascular mortality.

![Smoothing plots of visibility against mortality risk (df = 3). X-axis is the current-day visibility (km). The estimated mean percentage of change in daily mortality is shown by the solid line, and the dotted lines represent twice the point-wise standard error (current-day temperature and relative humidity (lag = 0) were used; 3 df were applied to temperature and relative humidity respectively.](image)

![Graphs showing the relationship between respiratory mortality and visibility.](image)

Table 4

Percent change (95% CI) of mortality outcomes of Shanghai residents per 10 μg/m3 increase of PM$_{2.5}$ and PM$_{10}$.

<table>
<thead>
<tr>
<th></th>
<th>PM$_{2.5}$</th>
<th></th>
<th></th>
<th>PM$_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Predicted</td>
<td>Actual</td>
<td>Predicted</td>
</tr>
<tr>
<td>Total mortality</td>
<td>0.30 (0.06, 0.54)</td>
<td>0.34 (0.01, 0.67)</td>
<td>0.14 (0.02, 0.26)</td>
<td>0.10 (−0.03, 0.23)</td>
</tr>
<tr>
<td>Cardiovascular mortality</td>
<td>0.39 (0.12, 0.66)</td>
<td>0.30 (−0.01, 0.61)</td>
<td>0.24 (0.08, 0.40)</td>
<td>0.22 (0.01, 0.43)</td>
</tr>
<tr>
<td>Respiratory mortality</td>
<td>0.71 (0.05, 1.37)</td>
<td>0.63 (0.02, 1.24)</td>
<td>0.22 (−0.08, 0.52)</td>
<td>0.11 (−0.04, 0.26)</td>
</tr>
</tbody>
</table>

Current day temperature and relative humidity (lag = 0), and current-day visibility (lag = 0) were used; 3 df were applied to temperature and relative humidity respectively.
The limitations of our study should be noted. First of all, the chemical composition is hypothesized to affect the role of PM$_{2.5}$ in atmospheric visibility (Wu et al., 2005). Our analysis did not involve chemical composition assessment of particles in Shanghai, which may be critical in interpreting the correlation between visibility and particles, and therefore in explaining the uncertainties of using visibility as a surrogate of air pollution in health research. Secondly, as in other time-series studies (Samet et al., 2000), we used routinely collected outdoor monitoring data to represent the population exposure to air pollution. The potential exposure misclassification may have implications for interpreting the effect of air pollutants (Zeger et al., 2000). However, we lack information on personal exposure to air pollution to quantify this bias. Third, we did not consider the exposure from indoor sources. In Shanghai, little or no indoor air monitoring data is available. However, some studies suggested that the daily population average concentrations of pollutants derived from indoor sources are approximately independent of ambient levels (Wilson and Suh, 1997). When this is true, failure to measure indoor sources will not introduce further bias in the estimated effects of ambient pollutants (Zeger et al., 2000). Finally, our assessment of visibility and air pollution was derived entirely from one monitoring station. Compared with studies in Europe and North America, data collected in this study were limited by virtue of the single city and limited monitoring time period. This may have limited our power to detect significant associations with respiratory mortality.

On health research perspectives, Shanghai dataset offers advantages in investigating the visibility–air pollution–mortality relationship. Our study area, nine urban districts of Shanghai, is extremely densely populated. More than six-million permanent residents reside within 279 km2. In addition, compared with the residents in North America, a lower proportion of Shanghai residents have access to or use air conditioning. Thus, the monitored air pollution data from the summer months may be more closely associated with average population exposures in Shanghai than in cities in North America.

In summary, our analyses provide statistically significant evidence on the association between daily mortality and visibility in general population of Shanghai. Given that the availability of routinely collected air pollution monitoring data is much lower in developing countries, our results provide important implications that routinely-collected visibility data can be used as a surrogate for air quality in health studies conducted in developing world, and likely to make the findings comparable to those observed in developed countries.

Acknowledgements

The study was supported by the Gong-Yi Program of China Ministry of Environmental Protection (No. 2008467109); National Natural Science Foundation of China (No. 30800892); the National High Technology Research and Development Program of China (863 Program) (No. 2007AA06Z409); and the Gong-Yi Program of China Meteorological Administration (No. GY200706019).

References

