Environmental Health Chemistry basics

Week 2

Properties of chemicals Physical Color, odor, density, melting point, boiling point and hardness Changes in appearance, or state but not in composition Chemical Change in structure, reaction with other (flammability)

Metric I	Jnits	(SI	system)
----------	-------	-----	--------	---

Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s ^a
Temperature	Kelvin	K
Amount of substance	Mole	mol
Electric current	Ampere	А
Luminous intensity	Candela	cd

BLE 1.1	The Top Ten Chemicals	Produced by the	e Chemical Industry in 2000	D ^a
lank	Chemical	Formula	2000 Production (billions of pounds)	Principal End Uses
1	Sulfuric acid	H ₂ SO ₄	87	Fertilizers, chemical manufacturing
2	Nitrogen	N_2	81	Fertilizers
3	Oxygen	O2	55	Steel, welding
4	Ethylene	C_2H_4	55	Plastics, antifreeze
5	Lime	CaO	44	Paper, cement, steel
6	Ammonia	NH_3	36	Fertilizers
7	Propylene	C_3H_6	32	Plastics
8	Phosphoric acid	H_3PO_4	26	Fertilizers
9	Chlorine	Cl_2	26	Bleaches, plastics, water purification
10	Sodium hydroxide	NaOH	24	Aluminum production, soap

Properties of H_2O , H_2 and O_2

	Water	Hydrogen	Oxygen
State ^a	Liquid	Gas	Gas
Normal boiling point	100°C	-253°C	−183°C
Density ^a	1.00 g/mL	0.084 g/L	1.33 g/L
Flammable	No	Yes	No

Metric scale					
TABLE 1.5	Selected Prefixes	Used in the M	etric System		
Prefix	Abbreviation	Meaning	Example		
Giga	G	10 ⁹	1 gigameter (Gm) = 1×10^9 m		
Mega	М	10^{6}	1 megameter (Mm) = 1×10^6 m		
Kilo	k	10^{3}	1 kilometer (km) = 1×10^3 m		
Deci	d	10^{-1}	1 decimeter (dm) = 0.1 m		
Centi	с	10^{-2}	1 centimeter (cm) = 0.01 m		
Milli	m	10^{-3}	1 millimeter (mm) = 0.001 m		
Micro	μ^{a}	10^{-6}	1 micrometer (μ m) = 1 × 10 ⁻⁶ m		
Nano	n	10^{-9}	1 nanometer (nm) = 1×10^{-9} m		
Pico	р	10^{-12}	1 picometer (pm) = 1×10^{-12} m		
Femto	f	10^{-15}	1 femtometer (fm) = 1×10^{-15} m		
^a This is the Gree	ek letter mu (pronounced	"mew").			

Temperature conversion (°C, °F)

$$^{\circ}C = \frac{5}{9}(^{\circ}F - 32)$$
 or $^{\circ}F = \frac{9}{5}(^{\circ}C) + 32$

	Density	y	
Density	$=\frac{\text{mass}}{\text{volume}}$	mg/L g/L a/cm ³	
TABLE 1.6 Densit	ties of Some Selecte	ed Substances at 25°C	
Substance		Density (g/cm ³)	_
Air		0.001	
Balsa wood		0.16	
Ethanol		0.79	
Water		1.00	
Ethylene glycol		1.09	
Table sugar		1.59	
Table salt		2.16	
Iron		7.9	
Cold		19.32	

Stoichiometry

$CH_4 + O_2 \longrightarrow CO_2 + H_2O$	(unbalanced)	1
$CH_4 + O_2 \longrightarrow CO_2 + 2H_2O$	(unbalanced)	2
$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$	(balanced)	3

Composition and decomposition reactions

Combination Reactions					
$\begin{array}{l} A + B \longrightarrow C \\ C(s) + O_2(g) \longrightarrow CO_2(g) \\ N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g) \\ CaO(s) + H_2O(l) \longrightarrow Ca(OH)_2(s) \end{array}$	Two reactants combine to form a single product. Many elements react with one another in this fashion to form compounds				
Decomposition Reactions					
$\begin{array}{ccc} C & \longrightarrow & A & + & B \\ 2KClO_3(s) & \longrightarrow & 2KCl(s) & + & 3O_2(g) \\ PbCO_3(s) & \longrightarrow & PbO(s) & + & CO_2(g) \\ Cu(OH)_2(s) & \longrightarrow & CuO(s) & + & H_2O(l) \end{array}$	A single reactant breaks apart to form two or more substances. Many compounds react this way when heated.				

The mole (mol)

Avagadro's number = 6.022×10^{23} = number of atoms in 12 g of ¹²C

 $1 \text{ mol} {}^{12}\text{C} \text{ atoms} = 6.02 \times 10^{23} {}^{12}\text{C} \text{ atoms}$ $1 \text{ mol} H_2\text{O} \text{ molecules} = 6.02 \times 10^{23} \text{ H}_2\text{O} \text{ molecules}$ $1 \text{ mol} \text{ NO}_3^- \text{ ions} = 6.02 \times 10^{23} \text{ NO}_3^- \text{ ions}$

Molar Mass Atomic mass = (AW * # atoms) g

1mole = (AW * 6.022*10²³) g

FW - molar mass

Name	Formula	Formula Weight (amu)	Molar Mass (g/mol)	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	6.022×10^{23} N atoms
Molecular nitrogen	N_2	28.0	28.0	$\int 6.022 \times 10^{23} \text{ N}_2 \text{ molecule}$
				$2(6.022 \times 10^{23})$ N atoms
Silver	Ag	107.9	107.9	6.022×10^{23} Ag atoms
Silver ions	Ag^+	107.9 ^a	107.9	6.022×10^{23} Ag ⁺ ions
				$\left[6.022 \times 10^{23} \text{ BaCl}_2 \text{ units} \right]$
Barium chloride	$BaCl_2$	208.2	208.2	$6.022 \times 10^{23} \text{ Ba}^{2+} \text{ ions}$
				$2(6.022 \times 10^{23}) \text{ Cl}^{-1}$ ions

^aRecall that the electron has negligible mass; thus, ions and atoms have essentially the same mass.

-12				Family			
	Alkane	Alkene	Alkyne	Aromatic	Haloalkane	Alcohol	Ether
Functional group	C—H and C—C bonds)c=c(́	-C=C	Aromatic ring	^L	—с́—ён	-ç-ö-ç-
General formula	RH	$\begin{array}{l} \text{RCH} = \text{CH}_2 \\ \text{RCH} = \text{CHR} \\ \text{R}_2\text{C} = \text{CHR} \\ \text{R}_2\text{C} = \text{CR}_2 \end{array}$	RC≕CH RC≕CR	ArH	RX	ROH	ROR
Specific example	CH ₃ CH ₃	CH2=CH2	HC≡CH	\bigcirc	CH ₃ CH ₂ CI	CH ₃ CH ₂ OH	CH ₃ OCH ₃
IUPAC name	Ethane	Ethene	Ethyne	Benzene	Chloroethane	Ethanol	Methoxymethane
Common nameª	Ethane	Ethylene	Acetylene	Benzene	Ethyl chloride	Ethyl alcohol	Dimethyl ether

TABLE 2.6 Attractive Elec	tric Forces		
Electric Force	Relative Strength	Туре	Example
Cation-anion (in a crystal)	Very strong	\oplus \bigcirc	Lithium fluoride crystal lattic
Covalent bonds	Strong (140–523 kJ mol ⁻¹)	Shared electron pairs	H—H (436 kJ mol ⁻¹) CH ₃ —CH ₃ (378 kJ mol ⁻¹) I—I (151 kJ mol ⁻¹)
lon-dipole	Moderate	$ \begin{pmatrix} \delta + \\ \delta - \\ \delta + \delta - \end{pmatrix} \begin{pmatrix} \bullet \\ \bullet \\ \delta + \end{pmatrix} \begin{pmatrix} \bullet \\ \delta - \\ \delta + \end{pmatrix} $	Na* in water (see Fig. 2.9)
Dipole-dipole (including hydrogen bonds)	Moderate to weak (4-38 kJ mol ⁻¹)	Z ^{δ-} ^{δ+} and	$ \begin{array}{c} R & \ddot{O}^{\delta-} \\ \vdots & \ddot{O} \vdots & \overset{\delta+}{H} \\ \overset{\delta+}{CH_3-Cl} & \overset{\delta+}{CH_3-Cl} \end{array} $
van der Waals	Variable	Transient dipole	Interactions between methane molecules

