

Where Do Solution "Recipes" Come From?

- Original Scientific Literature
- Lab Manuals (professional)
- Handbooks
- Manufacturers and suppliers
- Make their way into instructional Lab manuals

Ways To Express
 Concentration Of Solute

- Source of confusion: more than one way to express concentration of solute in a solution

Example:

- $2 \mathrm{mg} / \mathrm{mL}$ proteinase K
- Means 2 mg of proteinase K in each mL of solution.
- Example: How much proteinase K is required to make 50 mL of solution at a concentration of $2 \mathrm{mg} / \mathrm{mL}$?

Can Solve as A

Proportion Problem
2 mg proteinase $\mathrm{K} \quad=\quad \mathrm{X}$
1 mL solution
50 mL solution
$X=100 \mathrm{mg}$
= amount proteinase K needed.
http://matcmadison.edu/biotech

For a particular compound, add the atomic weights of the atoms that compose the compound.
$\mathrm{H}_{2} \mathrm{SO}_{4}$:
2 hydrogen atoms $2 \times 1.00 \mathrm{~g}=2.00 \mathrm{~g}$
1 sulfur atom $\quad 1 \times 32.06 \mathrm{~g}=32.06 \mathrm{~g}$
4 oxygen atoms $4 \times 16.00 \mathrm{~g}=64.00 \mathrm{~g}$ 98.06 g
http://matcmadison.edu/biotech/

To Make Solution Of Given Molarity And Volume:

- Find the FW of the solute, usually from label.
- Determine the molarity desired.
- Determine the volume desired.
- Determine how much solute is necessary by using the formula.
http://matcmadison.edu/biotech/

Procedure Cont.

- Weigh out the amount of solute.
- Dissolve the solute in less than the desired final volume of solvent.
- Place the solution in a volumetric flask or graduated cylinder. Add solvent until exactly the required volume is reached, "Bring To Volume", "BTV".

Example:

By Proportions

- How would you prepare 500 mL of a 5 \% (w/v) solution of NaCl ?

1. Total volume required is 500 mL .
2. $5 \%=0.05$
3. $(0.05)(500 \mathrm{~mL})=25$
http://matcmadison.edu/biotech/

\% Example

Continued
4. 25 is the amount of solute required in grams.
5. Weigh out 25 g of NaCl . Dissolve it in less than 500 mL of water.
6. In a graduated cylinder or volumetric flask, bring the solution to 500 mL .

Example:

A solution is 3:2:1

ethylene:chloroform:isoamyl alcohol

Might combine:

3 liters ethylene
2 liters chloroform
1 liter isoamyl alcohol
http://matcmadison.edu/biotech/

Ppm And Ppb

- ppm: The number of parts of solute per 1 million parts of total solution.
- ppb: The number of parts of solute per billion parts of solution.

Ppm Example:

- 5 ppm chlorine $=5 \mathrm{~g}$ of chlorine in 1 million g of solution,
- or 5 mg chlorine in 1 million mg of solution,
- or 5 pounds of chlorine in 1 million pounds of solution

Conversions

To convert ppm or ppb to simple weight per volume expressions:
5 ppm chlorine $=5 \mathrm{~g}$ chlorine $=5 \mathrm{~g}$ chlorine $10^{6} \mathrm{~g}$ water $\quad 10^{6} \mathrm{~mL}$ water
$=5 \mathrm{mg} / 1 \mathrm{~L}$ water
$=5 \times 10^{-6} \mathrm{~g}$ chlorine/ 1 mL water
$=5 \mathrm{micrograms} / \mathrm{mL}$
http://matcmadison.edu/biotech/

How Solutions are Prepared, Topics:

- Preparing Dilute Solutions from Concentrated Ones ($\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$)
- Biological Buffers
- Assuring the Quality of a Solution
- Preparing Solutions with More Than One Solute (another Power Point)

Preparing Dilute Solutions From Concentrated Ones

- Concentrated solution = stock solution
- Use this equation to decide how much stock solution you will need:
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
- $\mathrm{C}_{1}=$ concentration of stock solution
- $\mathrm{C}_{2}=$ concentration you want your dilute solution to be
- $\mathrm{V}_{1}=$ how much stock solution you will need
- $\mathrm{V}_{2}=$ how much of the dilute solution you want to make

Example

- How would you prepare 1000 mL of a 1 M solution of Tris buffer from a 3 M stock of Tris buffer?
- The concentrated solution is 3 M , and is C_{1}.
- The volume of stock needed is unknown, ?, and is V_{1}.

Substituting Into The Equation:

$$
C_{1} \quad V_{1}=C_{2} V_{2}
$$

$$
3 \mathrm{M}(?)=1 \mathrm{M}(1000 \mathrm{~mL})
$$

$$
?=333.33 \mathrm{~mL}
$$

So, take 333.33 mL of the concentrated stock solution and BTV 1 L .

"X" Solutions

- The concentration of a stock solution is sometimes written with an " X ".
- The " X " is how many more times the stock is than normal.
- You generally want to dilute such a stock to 1X, unless told otherwise.

Example

- A can of frozen orange juice is labeled 4 X . How would you dilute it to make 1 L of drinkable juice?
- Using the $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$ equation:
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
4 X (?) $=1 \mathrm{X}$ (1L)
? $=0.25 \mathrm{~L}$
Use 0.25 L of orange juice, BTV 1L.

Biological Buffers

- Laboratory buffers
solutions to help maintain a biological system at proper pH
- pKa of a buffer the pH at which the buffer experiences little change in pH with addition of acids or bases $=$ the pH at which the buffer is most useful

Temperature

- Some buffers change pH as their temperature and/or concentration changes
- Tris buffer, widely used in molecular biology, is very sensitive to temperature

Dilution

- Some buffers are sensitive to dilution
- Phosphate buffer is sensitive to dilution

Adjusting

the pH of a Buffer

- This is done to set the buffer to a pH value which is...
- somewhat close to its pKa
- useful for the biological system the buffer is to be used with
- Often adjust pH using NaOH or HCl
- Note: these are not appropriate for adjusting the pH of phosphate buffer

Bringing a Solution to the Proper pH

- Adjust the pH when the solution is at the temperature at which you plan to use it.
- Mix the solute(s) with most, but not all, the solvent. Do not bring the solution to volume.
- Stir solution.

- Check the pH .
- Add a small amount of acid or base.
- The recipe may specify which to use.
- If not, HCl and NaOH are commonly used.
- Stir again and then check the pH .

Assuring The Quality Of A Solution

- Documentation, labeling, recording what was done
- Traceability
- Standard Operating Procedures (SOPs)
- Maintenance and calibration of instruments
- Stability and expiration date recorded
- Proper storage

