RULES FOR CLASSIFICATION INTO POINT GROUPS

1. If the molecule is linear, look for the highest rotational axis. This axis is infinite fold (c_{∞}) for a linear molecule.

- If the molecule has a center of inversion (i) [or in other words, the two ends of the molecule are identical], then the point group is $\mathbf{D}_{\infty h}$
- Otherwise $\mathbf{C}_{\infty \mathrm{v}}$

2. If the molecule is non-linear and if the highest rotational axis is 3,4 or 5 fold, look for other axes of the same order. There are 3 possibilities.
a) Several 5-fold axes $\left(\mathrm{C}_{5}\right)$:

The molecule belongs to $\mathbf{I}_{\mathbf{h}}$ point group if it has a plane of symmetry. If not, the point group is \mathbf{I}.
b) Three 4 -fold $\left(\mathrm{C}_{4}\right)$ axes:

The molecule belongs to $\mathbf{O}_{\mathbf{h}}$ point group if it has a plane of symmetry. If not, the point group is \mathbf{O}.
c) Four 3-fold axis $\left(\mathrm{C}_{3}\right)$ but no C_{4} or C_{5} axis:

- If there are no mirror planes or a center of inversion, the point group is \mathbf{T}
- If there is a center of inversion, the point group is $\mathbf{T}_{\mathbf{h}}$
- If there are 6 mirror planes and three S_{4} axes, the point group is $\mathbf{T}_{\mathbf{d}}$

3. If only one axis has $\mathrm{n} \geq 2$ or if the axis of highest order is a C_{2} axis, check for n more 2-fold axes $\left(\mathrm{C}_{2}\right)$ at right angles. If these exist and:

- There are no mirror planes $\rightarrow \mathbf{D}_{\mathbf{n}}$ point group
- Has a horizontal mirror plane $\rightarrow \mathbf{D}_{\text {nh }}$ point group
- No horizontal mirror planes, but has n vertical mirror planes $\rightarrow \mathbf{D}_{\mathbf{n d}}$ point group

4. If only one n-fold axis exists, check for $S_{2 n}$ axis. If this exists then the point group is $\mathrm{S}_{2 \mathrm{n}}$. If not, the molecule belongs to:

- $\mathbf{C}_{\mathbf{n}}$ if it has no mirror planes
- $\mathbf{C}_{\mathbf{n h}}$ if it has a horizontal mirror plane
- $\mathbf{C}_{\mathbf{n v}}$ if it has n vertical mirror planes

5. If the molecule has no symmetry axes, but has a:

- center of inversion \rightarrow point group is $\mathbf{C}_{\mathbf{i}}$
- mirror plane \rightarrow point group is $\mathbf{C}_{\mathbf{s}}$
- none of the above \rightarrow point group is $\mathbf{C}_{\mathbf{1}}$

