stewart 8.2, 8.3

- 1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.
 - (b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

5.

n	s_n
1	0.44721
2	1.15432
3	1.98637
4	2.88080
5	3.80927
6	4.75796
7	5.71948
8	6.68962
9	7.66581
10	8.64639

The series $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+4}}$ diverges, since its terms do not approach 0.

- 9. (a) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{2n}{3n+1} = \frac{2}{3}$, so the sequence $\{a_n\}$ is convergent by (8.1.1).
 - (b) Since $\lim_{n\to\infty} a_n = \frac{2}{3} \neq 0$, the series $\sum_{n=1}^{\infty} a_n$ is divergent by the Test for Divergence.
- 11. $3-4+\frac{16}{3}-\frac{64}{9}+\cdots$ is a geometric series with ratio $r=-\frac{4}{3}$. Since $|r|=\frac{4}{3}>1$, the series diverges.
- 16. $\sum_{n=1}^{\infty} \frac{10^n}{(-9)^{n-1}} = \sum_{n=1}^{\infty} \frac{10(10)^{n-1}}{(-9)^{n-1}} = 10 \sum_{n=1}^{\infty} \left(-\frac{10}{9}\right)^{n-1}$. The latter series is geometric with a = 10 and ratio $r = -\frac{10}{9}$.

Since $|r| = \frac{10}{9} > 1$, the series diverges.

- 21. $\sum_{k=2}^{\infty} \frac{k^2}{k^2 1}$ diverges by the Test for Divergence since $\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{k^2}{k^2 1} = 1 \neq 0$.
- 25. $\sum_{n=1}^{\infty} \sqrt[n]{2} = 2 + \sqrt{2} + \sqrt[3]{2} + \sqrt[4]{2} + \cdots$ diverges by the Test for Divergence since

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} 2^{1/n} = 2^0 = 1 \neq 0.$$

30. $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n} \right)$ diverges because $\sum_{n=1}^{\infty} \frac{2}{n} = 2 \sum_{n=1}^{\infty} \frac{1}{n}$ diverges. (If it converged, then $\frac{1}{2} \cdot 2 \sum_{n=1}^{\infty} \frac{1}{n}$ would also converge by

Theorem 8(i), but we know from Example 7 that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.) If the given series converges, then the

difference $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n} \right) - \sum_{n=1}^{\infty} \frac{3}{5^n}$ must converge (since $\sum_{n=1}^{\infty} \frac{3}{5^n}$ is a convergent geometric series) and equal $\sum_{n=1}^{\infty} \frac{2}{n}$, but

we have just seen that $\sum_{n=1}^{\infty} \frac{2}{n}$ diverges, so the given series must also diverge.

31. Using partial fractions, the partial sums of the series $\sum_{n=2}^{\infty} \frac{2}{n^2-1}$ are

$$s_n = \sum_{i=2}^n \frac{2}{(i-1)(i+1)} = \sum_{i=2}^n \left(\frac{1}{i-1} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \left(\frac{1}{n-3} - \frac{1}{n-1}\right) + \left(\frac{1}{n-2} - \frac{1}{n}\right)$$

This sum is a telescoping series and $s_n = 1 + \frac{1}{2} - \frac{1}{n-1} - \frac{1}{n}$.

Thus,
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n - 1} - \frac{1}{n} \right) = \frac{3}{2}$$
.

47. For n = 1, $a_1 = 0$ since $s_1 = 0$. For n > 1,

$$a_n = s_n - s_{n-1} = \frac{n-1}{n+1} - \frac{(n-1)-1}{(n-1)+1} = \frac{(n-1)n - (n+1)(n-2)}{(n+1)n} = \frac{2}{n(n+1)}$$

Also,
$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - 1/n}{1 + 1/n} = 1$$
.

59. The series $1-1+1-1+1-1+\cdots$ diverges (geometric series with r=-1) so we cannot say that

 $0 = 1 - 1 + 1 - 1 + 1 - 1 + \cdots$

- 61. Suppose on the contrary that $\sum (a_n + b_n)$ converges. Then $\sum (a_n + b_n)$ and $\sum a_n$ are convergent series. So by Theorem 8(iii), $\sum [(a_n + b_n) a_n]$ would also be convergent. But $\sum [(a_n + b_n) a_n] = \sum b_n$, a contradiction, since $\sum b_n$ is given to be divergent.
- 2. From the first figure, we see that

 $\int_{1}^{6} f(x) dx < \sum_{i=1}^{5} a_{i}$. From the second figure,

we see that $\sum\limits_{i=2}^6 a_i < \int_1^6 f(x)\,dx$. Thus, we

have $\sum_{i=2}^{6} a_i < \int_{1}^{6} f(x) dx < \sum_{i=1}^{5} a_i$.

- 3. (a) We cannot say anything about $\sum a_n$. If $a_n > b_n$ for all n and $\sum b_n$ is convergent, then $\sum a_n$ could be convergent or divergent. (See the note after Example 2.)
 - (b) If $a_n < b_n$ for all n, then $\sum a_n$ is convergent. [This is part (i) of the Comparison Test.]

stewart 8.2, 8.3

5. $\sum_{n=1}^{\infty} n^b$ is a *p*-series with p=-b. $\sum_{n=1}^{\infty} b^n$ is a geometric series. By (1), the *p*-series is convergent if p>1. In this case,

 $\sum_{n=1}^{\infty} n^b = \sum_{n=1}^{\infty} \left(1/n^{-b} \right), \text{ so } -b > 1 \quad \Leftrightarrow \quad b < -1 \text{ are the values for which the series converge. A geometric series}$

- $\sum_{n=1}^{\infty} ar^{n-1} \text{ converges if } |r| < 1, \text{ so } \sum_{n=1}^{\infty} b^n \text{ converges if } |b| < 1 \quad \Leftrightarrow \quad -1 < b < 1.$
- 7. The function $f(x) = 1/\sqrt[5]{x} = x^{-1/5}$ is continuous, positive, and decreasing on $[1, \infty)$, so the Integral Test applies.

$$\int_{1}^{\infty} x^{-1/5} \, dx = \lim_{t \to \infty} \int_{1}^{t} x^{-1/5} \, dx = \lim_{t \to \infty} \left[\frac{5}{4} x^{4/5} \right]_{1}^{t} = \lim_{t \to \infty} \left(\frac{5}{4} t^{4/5} - \frac{5}{4} \right) = \infty, \text{ so } \sum_{n=1}^{\infty} 1/\sqrt[5]{n} \text{ diverges.}$$

- 10. $\frac{n^3}{n^4-1} > \frac{n^3}{n^4} = \frac{1}{n}$ for all $n \ge 2$, so $\sum_{n=2}^{\infty} \frac{n^3}{n^4-1}$ diverges by comparison with $\sum_{n=2}^{\infty} \frac{1}{n}$, which diverges because it is a p-series with $p=1 \le 1$ (the harmonic series).
- 13. $1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \frac{1}{125} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^3}$. This is a *p*-series with p = 3 > 1, so it converges by (1).
- 16. $f(x) = \frac{x^2}{x^3 + 1}$ is continuous and positive on $[2, \infty)$, and also decreasing since $f'(x) = \frac{x(2 x^3)}{(x^3 + 1)^2} < 0$ for $x \ge 2$,

so we can use the Integral Test [note that f is not decreasing on $[1, \infty)$].

$$\int_2^\infty \frac{x^2}{x^3+1} \, dx = \lim_{t \to \infty} \left[\frac{1}{3} \ln(x^3+1) \right]_2^t = \frac{1}{3} \lim_{t \to \infty} \left[\ln(t^3+1) - \ln 9 \right] = \infty, \text{ so the series } \sum_{n=2}^\infty \frac{n^2}{n^3+1} \text{ diverges, and so does } \sum_{n=2}^\infty \frac{n^2}{n^3+1} = \frac{1}{3} \lim_{t \to \infty} \left[\ln(t^3+1) - \ln 9 \right] = \infty$$

the given series, $\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$.

- 20. $\frac{n^2-1}{3n^4+1} < \frac{n^2}{3n^4+1} < \frac{n^2}{3n^4} = \frac{1}{3}\frac{1}{n^2}$. $\sum_{n=1}^{\infty} \frac{n^2-1}{3n^4+1}$ converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{3n^2}$, which converges because it is a constant multiple of a convergent p-series [p=2>1]. The terms of the given series are positive for n>1, which is good enough.
- 29. Use the Limit Comparison Test with $a_n = \sin\left(\frac{1}{n}\right)$ and $b_n = \frac{1}{n}$. Then $\sum a_n$ and $\sum b_n$ are series with positive terms and

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\sin(1/n)}{1/n}=\lim_{\theta\to0}\frac{\sin\theta}{\theta}=1>0. \text{ Since }\sum_{n=1}^\infty b_n \text{ is the divergent harmonic series,}$$

 $\sum_{n=1}^{\infty} \sin(1/n)$ also diverges. [Note that we could also use l'Hospital's Rule to evaluate the limit:

$$\lim_{x \to \infty} \frac{\sin(1/x)}{1/x} \stackrel{\mathrm{H}}{=} \lim_{x \to \infty} \frac{\cos(1/x) \cdot \left(-1/x^2\right)}{-1/x^2} = \lim_{x \to \infty} \cos\frac{1}{x} = \cos 0 = 1.$$

stewart 8.2, 8.3

42. First we observe that, by l'Hospital's Rule, $\lim_{x\to 0}\frac{\ln(1+x)}{x}=\lim_{x\to 0}\frac{1}{1+x}=1$. Also, if $\sum a_n$ converges, then $\lim_{n\to\infty}a_n=0$ by

Theorem 8.2.6. Therefore, $\lim_{n\to\infty}\frac{\ln(1+a_n)}{a_n}=\lim_{x\to0}\frac{\ln(1+x)}{x}=1>0$. We are given that $\sum a_n$ is convergent and $a_n>0$.

Thus, $\sum \ln(1+a_n)$ is convergent by the Limit Comparison Test.