Two's Company, Three's . . . ANOVA!

Kathleen M. Saul May 10, 2011

Thinking back to two sample tests

- To evaluate the difference between two independent samples, we use a t-statistic and ttest:
- When the population variances equal,
 - $t = (xbar_1 xbar_2) (mu_1 mu_2)$ $sqrt{sp^2 * [(1/n_1) + (1/n_2)]}$
 - From our null hypothesis, $(mu_1 mu_2) = 0$
 - The numerator then relects the difference between the means of the two samples and denominator contains variance terms capturing the variation within each sample.

To compare three or more independent samples

- Example: Comparing sediment load in Mack Creek vs. that in Lookout Creek vs. that in McRae Creek in HJ Andrews Experimental Forest
- Data would take the form of three columns of independent measurements

ANOVA = Analysis of Variance

- Ho: $mu_1 = mu_2 = ... = mu_i$
- Ha: At least two means differ
- ANOVA analyzes sample means and variances to determine if the population means differ.
 - Requires the response variable be normally distributed with equal population variances.
- For a One Way ANOVA, we have data of the form:

Group 1 Group 2 Group 3 ... Group K

x11 x21 x31 xk1

x12 x22 x32 xk2

. . .

 $x1n_1$ $x2n_2$ $x3n_3$ xkn_1

(K columns and n_I rows)

- SSE = Variation of each observation around the group mean
 - SSE = $\Sigma_k \Sigma_{ni} (x_{kni} xbar_{ni})^2$
- SSG = Variation of the group means around the overall mean
 - SSG = Σ_{ni} (xbar_{ni} xbarbar)²
- SST = Variation of each observation around the overall mean
 - SST = $\Sigma_k \Sigma_{ni} (x_{kni} xbarbar)^2$

- If $N = n_1 + n_2 + ... + n_k$
- MSE = SSE / (N k)
- MST = SST / (N 1)
 - Where (N K) and (N 1) represent the associated degrees of freedom.

The statistic of interest is F

F = <u>variance between samples</u> variance within samples

F = MST / MSE

with numerator df = (k - 1) and denominator df = (N - k)

Consider my fictitious data on the HJ Andrews creek sediment loads:

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
MackCreek	9	105	11.66666667	13.75		
LookoutCreek	9	177	19.66666667	14.5		
McRaeCreek	9	190	21.11111111	11.86111111		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	465.8518519	2	232.9259259	17.42105263	2.11971E-05	3.402826105
Within Groups	320.8888889	24	13.37037037			
Total	786.7407407	26				

- If the p-value associated with F is less than alpha, we reject the null that all the population means are equal.
- But how do we know which groups differ????
 - Look at the pairwise differences in means:
 - Examine the Least Significant Difference (LSD)
 - LSD = t_(alpha/2) * sqrt {MSE (1/n_a + 1/n_b)} where MSE is the variation within groups
 - mu_a and mu_b differ significantly if
 |xbar_a xbar_b| > LSD

- But, we want the probability of a Type I error (alpha) to be no more than alpha.
- To correct this we must partition alpha for each of the pairs so that the total equals alpha.
- Let $C = \{k * (k-1)\} / 2$
 - Where k is the number of pairwise combinations
- Then, newalpha = alpha / C
- Use t $_{(newalpha/2)}$ to determine the LSD with df = (N k)

Multiple Comparisons			
			LSD
Treatment	Treatment	Difference	Alpha = 0.0008333
MackCreek	LookoutCreek	-8.00	6.58
	McRaeCreek	-9.44	6.58
LookoutCreek	McRaeCreek	-1.44	6.58

We would conclude that Mack Creek and Lookout Creek have significantly different sediment loads, as do Mack Creek and McRae Creek. Lookout Creek and McRae Creek do not differ significantly.

Two Way ANOVA: Randomized Block Design

Consider data of the form:

Group	Α	В	С	D
1				
2				
3				
4				
5				
n				

The response variable is expected to be normally distributed, and population variances are assumed equal.

• Ho: $mu_A = mu_B = mu_C$

Ha: At least two means differ

Results in output of the form:

ANOVA							
Source of Variation							
		SS	df	MS	F	p-value	F Crit
Rows							
Columns							
Error							
Total							

- The F statistic for the rows (Group) indicates whether there are statistically significant differences between the groups.
- The F statistic for the columns (Treatment) tells if the means of the treatments statistically differ.
- Follow up by testing pairwise to determine which pairs differ.

Two Factor ANOVA: Factorial Experiment

For data that take the form:

	Factor A: Fe		
	Brand X	Brand Y	None
Factor B: Light Condition			
Full Sun			
Shade			

- All possible combinations of levels of factors are considered.
- Assumes samples are independent.

- Need to perform multiple F tests
- First:
 - Ho: No difference between the means of the a levels of factor A
 - Ha: At least two means differ
- Next:
 - Ho: No difference between the means of the b levels of factor B
 - Ha: At least two means differ
- Finally:
 - Factors A and B do not interact to affect mean responses
 - Factors A and B do interact to affect mean responses

Results in an output of the form:

ANOVA							
Source of Va	ria	tion					
		SS	df	MS	F	p-value	F Crit
Factor A							
Factor B							
Interaction							
Within							
Total							

 Use the associated F statistics and p-values to test the three sets of hypotheses.

Coming Attractions:

R commands and examples of output.

