

Monte Carlo Approaches to Statistics

Carri LeRoy, PhD

Lab II, 2265

360-867-5483

LeRoyC@evergreen.edu

Computer intensive (-)

- Computer intensive (-)
- Relatively new (because of the above) (-)

- Computer intensive (-)
- Relatively new (because of the above) (-)
- Relatively easy to understand (+)

- Computer intensive (-)
- Relatively new (because of the above) (-)
- Relatively easy to understand (+)
- Adaptable and applicable to many circumstances (+)

- Computer intensive (-)
- Relatively new (because of the above) (-)
- Relatively easy to understand (+)
- Adaptable and applicable to many circumstances (+)
- results can change due to random resampling (-)

How does it work?

Re-sampling vs. Bootstrapping

- Re-sampling w/o replacement = shuffling
- Re-sampling w/ replacement = bootstrapping

 Some analyses will require one or the other...most simple analyses require shuffling

4 Basic Analyses

Continuous Y Categorical Y

Categorical X

Continuous X

4 Basic Analyses

Continuous Y

Categorical Y

Habitat

Categorical X

Continuous X

But others include: ANCOVA MANOVA Multivariate Modeling

Community Analysis using

Communities

Communities

- Assemblages of plants, insects, microbes, birds
- Multi-trophic communities including producers, consumers & predators
- Assemblages of chemicals, environ. variables, genetic markers
- Assemblages of taxonomic attributes, traits
- Assemblages of values, opinions
- Any multivariate dataset

NMS Ordination: Possible uses

- Community ecology:
 - Main matrix: species abundance data
 - Second matrix: environmental data
- Chemical attributes:
 - Main matrix: a suite of chemical traits per sample
 - Second matrix: environmental data -soil samples

A Brief Introduction to Ordination

- Community data is inherently multivariate data, with a series of samples, each containing different abundances of taxa (or chemical concentrations; many variables)
- Ordination means to condense complicated data sets down to a few dimensions for visual inspection, and analysis

Stream

Fossil Creek

Oak Creek

▲ Wet Beaver Creek

Each symbol represents an entire community

There are 85 species in this dataset

Ordination reduced it to 2 so we can visualize community differences

Axis 2

How does it work?

- Between every pair of samples calculate a "similarity" value
- Create a similarity matrix
- Plot the samples in space to represent the similarity
- Do this many times and pick the best solution
- Determine whether good groups exist

Distance measures: Which?

- <u>Euclidean</u>: p-dimensional version of the pythagorean theorem.
 - Poor for ecological data good for environmental data or chemical data
- Sørensen's (Bray-Curtis): measured as percent similarity measured in "city-blockspace."
 - Great for ecological data either abundance or presence/absence

Example Similarity Matrix

	Sample 1	Sample 2	Sample 3
Sample 1	1.00	.78	.56
Sample 2	.78	1.00	.21
Sample 3	.56	.21	1.00

Raw Data - into PC-Ord

Some important data set issues

- Main matrix (samples & species)
- Second matrix (groups & other variables)
- Won't allow either a column or row of zeros
- Empty cells must be labeled as zero "0"
- Sample names cannot be numbers (must start with a letter, ALL1, ALL2, ALL3
- Import .xls files choose which sheet
- The program is very picky about data be patient

1. Summary statistics

- Under "Summary" basic community analysis
 - Means, std. dev., sums, min/max
 - Richness
 - H' (Shannon's)
 - Evenness
 - D (Simpsons)

2. Ordination

Non-metric Multidimensional Scaling (NMDS or NMS)

- Well-suited to non-normal data
- Based on rank distances tends to linearize the relationships
- Iterative search for ranking and placing samples in k dimensions (axes) that minimizes the "stress" of the configuration

See: Clarke, 1993 Aust. J. Ecol. 18: 117-143

Non-metric Multidimensional Scaling (NMDS or NMS)

- "stress" is a measure of how well the dissimilarity of the original data matrix is represented by the new k-dimensional solution (where k is usually 1-4).
- The original data matrix has p = # of species dimensions
- p-dimensions → k-dimensions is stressful!

First things first...to decrease the effect of overabundant species on your results...

Relativization by Species Maximum

Ordination basics

Ordination / NMS: either Autopilot mode or customized.... 1) Pick distance measure, 2) set parameters, 3) set output, 4) GO!

Increase iterations if you want and here you go!

Graph ordination ———

Ordination basics

Ordination / NMS: either Autopilot mode or customized.... 1) Pick distance measure, 2) set parameters, 3) set output, 4) GO!

Increase iterations if you want and here you go!

Graph ordination

Run an MRPP or PERMANOVA to go along with it

MRPP: Multi-response permutation procedure

- If planning on running MRPP or MRBP you should use the same dissimilarity measure as NMDS
- MRPP shuffles your second matrix like so...

MRPP

- Requires no distributional assumptions
- Assumes:
 - 1. Distance measure chosen adequately represents the variation of interest in data
 - 2. Sample units are independent

What to report?

- The software (because these procedures aren't available in general stats programs)
- Distance measure & justification
- How groups were defined (include the size of each group)
- Chance-corrected within-group agreement, A
- P-value

Some other special PC-ORD options...

Indicator Species Analysis
Correlations with ordination
Cluster Analysis
Mantel tests
Other types of ordination
Ordination through time

Indicator Species Analysis

Certain species "indicate" for certain conditions: old growth, wetlands, clean air, etc. – Are there any species in my dataset that "indicate" for one of my treatments? We can test for this!

Correlations with Main Matrix

Run correlations through your ordination space to look for relationships between community structure and environmental variables (pH, temp, DO, TDS, nitrate, etc.)

Questions????

