The Final Chapter

Kathleen M. Saul May 17, 2011

Clarification: Multiple Regression

- R returns both a <u>multiple</u> r² and an <u>adjusted</u> r² for regression models
 - For simple linear regression (one independent variable), use the multiple r² value to determine the percent of variation in y explained by the model.
 - For multiple regression, use the adjusted value of r². It takes into account the number of independent variables in your model as well as the number of observations to yield a more accurate value of r².

Last Week: Two Way ANOVA

Original data take the form of a table:

		Factor		
		Α	В	C
	X			
	Y			
Factor B	Z			

- Hypotheses:
 - For the columns:

Ho: muA = muB = muC . . .

Ha: At least two means differ

For the rows (Groups or Blocks):

Ho: muX = muY = muZ . .

Ha: At least two means differ

- In R: anova(lm(measure~column+row)
- If the p-value for rows or for columns < alpha, perform pairwise comparisons to determine which pairs differ
 - pairwise.t.test(measure,column,
 - + p.adj="bonferroni"), Or
 - pairwise.t.test(measure,row,p.adj="bonferroni")

Factorial ANOVA

- Data take the form of a table, with multiple measures for each combination of Hypotheses:
 - For the columns:
 - Ho: muA = muB = muC . . .
 - Ha: At least two means differ
 - For the rows (Groups or Blocks):
 - Ho: muX = muY = muZ . .
 - Ha: At least two means differ

- For the interactions:
 - Ho: The column and row factors do not interact to affect the mean responses
 - Ha: The column and row factors do interact to affect the mean responses
- In R: anova(Im(measure~factorA+factorB+factorA*factorB)
- If the p-value for rows or columns< alpha, perform pairwise comparisons to determine which pairs differ

What if my table contains <u>counts</u> and not <u>measurements</u>?

Example: What if we had the count of the number of trees harvested in given county, in a given year?

	Douglas Fir	Western Hemlock	Cedars	Other Conifer	Red Alder	Other Hardwood
Forest Industry	10109	12254	1998	2866	3352	501
Private Large	10640	20622	1300	2499	2687	740
Private Small	3640	4128	822	10132	1557	2365
State	21984	19235	5495	3295	3845	1100
National Forest	1440	2693	167	737	117	0

Adapted from DNR harvest data, 2000

Use Chi Squared! X²

- \blacksquare X² = Σ {(observed expected)² / expected}
 - Expected value = (<u>column total</u> * <u>row total</u>) sample size
- $\blacksquare df = (rows 1) * (columns 1)$
- Hypotheses:
 - Ho: The two variables are independent
 - Ha: The two variables are not independent (one affects the other)

■ Transform the data by removing the column and row headings (but remember what they are!):

10109	12254	1998	2866	3352	501
10640	20622	1300	2499	2687	740
3640	4128	822	10132	1557	2365
21984	19235	5495	3295	3845	1100
1440	2693	167	737	117	0

In R: Read in the data and assign the column and row names:

```
> cut<-read.csv("Timber.csv",sep=",",header=F)
> colnames(cut) <-
c("DougFir","Hemlock","Cedar","OtherFir","Alder","OtherHard")
> rownames(cut)<-
c("Industry","LgPriv","SmPriv","State","NatlFor")</pre>
```

· oat						
	DougFir	Hemlock	Cedar	OtherFir	Alder	OtherHard
Industry	10109	12254	1998	2866	3352	501
LgPriv	10640	20622	1300	2499	2687	740
SmPriv	3640	4128	822	10132	1557	2365
State	21984	19235	5495	329	3845	1100
NatlFor	1440	2693	167	737	117	0

> cut

> chisq.test(cut)

Pearson's Chi-squared test

data: cut

X-squared = 37214.60, df = 20, p-value < 2.2e-16
$$(6-1)*(5-1)$$

■ Since the p-value < alpha = 0.05, we reject the null that there is no association between the two variables

- Now we look at the pairwise X² values
- First, calculate the expected values:

> chisq.test(cut)\$expected

	DougFir	Hemlock	Cedar	OtherFir	Alder	OtherHard
Industry	9755.961	12024.728	1995.9596	3984.7776	2358.3419	960.2316
LgPriv	12081.321	14890.854	2471.7018	4934.5598	2920.4589	1189.1054
SmPriv	7107.915	8760.873	1454.1991	2903.1951	1718.2205	699.5973
State	17249.971	21261.483	3529.1493	7045.6714	4169.8945	1697.8304
NatlFor	1617.832	1994.062	330.9902	660.7961	391.0841	159.2353

Next, recall the observed values:

> chi sq.test(cut)\$observed

•	DougFir	Hemlock	Cedar	OtherFir	Alder	OtherHard
Industry	10109	12254	1998	2866	3352	501
LgPriv	10640	20622	1300	2499	2687	740
SmPriv	3640	4128	822	10132	1557	2365
State	21984	19235	5495	3295	3845	1100
NatlFor	1440	2693	167	737	117	0

Calculate the contribution to the overall X² statistic for each cell:

- > E<-chisq.test(cut)\$expected
- > O<-chisq.test(cut)\$observed
- > (O-E)*(O-E)/E

	DougFir	Hemlock	Cedar	OtherFir	Alder	OtherHard
Industry	(12.78)	4.37	(2.0914e-03)	314.11	418.67	219.63
LgPriv	171.95	2205.79	5.55e+02	1202.13	18.66	169.62
SmPriv	1691.98	2449.93	2.75e+02	17999.35	15.13	3964.52
State	1299.19	193.15	1.10e+03	1996.62	25.31	210.50
NatlFor	19.5	244.98	8.13e+01	(8.79)	192.09	159.24

Cells with low contributions warrant further investigation.

Approach to Data Analyses

- Look at the format of the raw data, think about what tests might be appropriate:
 - Do you have columns? How many?
 - One → z test (given sigma) or t test (given s)
 - Two → t test of independent samples or matched pairs t test
 - Three or more → ANOVA
 - Is it a table? Are the values in the table numeric or categorical?
 - Numeric → ANOVA
 - Categorical → X²
 - Do you have cause and effect data?
 - → Regression

- Plot the data
- For numeric data:
 - Histogram
 - For a single numeric variable
 - In R: hist(x,freq=F) curve(dnorm(x),add=T)
 - Normal Quartile/Quantile plot
 - In R: qqnorm(x) qqline(x)
 - Are the data normally distributed? If not, would a transformation result in a normal distribution?
 - Most statistical tests assume an underlying normal population and thus, a normally distributed sample.

For categorical data:

- Box plot
 - For categorical variables
 - In R: boxplot(x)
 - Or, for parallel plots: boxplot(a,b)
- Look for the presence of outliers and for the relative positions of medians and quartiles

Generate Descriptive Statistics

- Mean = the arithmetic average
 - For a single variable/vector, in R: mean(x)
 - For one variable of a matrix, in R: mean(name\$x)
- Median = the midpoint of ordered data
 - In R: median(x) or median(name\$x)
- Standard Deviation = the variation around the mean
 - In R: sd(x) or sd(name\$x)
- Summary
 - In R: summary(dataframe)

- Establish the hypotheses to be tested with your data (Ho and Ha)
- Run the tests to generate the statistics and associated p-values
 - If the p-value is less than your alpha, reject the null hypothesis
- R commands:
 - One sample t test:
 - t.test(y,mu=value)
 - T test of two independent samples:
 - t.test(a,b)

- Paired two sample t test:
 - t.test(a,b,paired=T)
- Simple Linear Regression:
 - Im(y~x)
- Multiple Regression:
 - Im(y~a+b+c+ . . . +a*b*c* . . .)
- One Way ANOVA:
 - anova(Im(measure~category)
- Two Way ANOVA:
 - anova(Im(measure~category+category))

- Factorial ANOVA:
 - anova(lm(measure~a+b+c+a*b*c))
- Chi Squared test:
 - chisq.test(table)
- Interpret the results!
 - What does rejecting or not rejecting Ho tell you about your research question?

Questions?

