\qquad

1) Consider the following θ vs. t graph for an object. Draw the corresponding ω vs. t graph. Include appropriate numerical scales on both axes.

2) The merry-go-round has diameter 2.0 m and moment of inertia $50 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Tom pushes with a force of 20 N , and Jerry pushes with a force of 50 N , as shown in the figure.
a) Determine the net torque on the merry-go-round. The only forces which contribute to the torque are shown.

b) Determine the angular acceleration of the merry-go-round at the instant shown. Also, make sure to indicate whether the angular acceleration is clockwise or counter-clockwise.
3) The figure shows a 5.0 kg block on a horizontal frictionless surface accelerating to the right at $1.8 \mathrm{~m} / \mathrm{s}^{2}$. The 5.0 kg block is connected by a light rope to a 1.5 kg mass which accelerates down at $1.8 \mathrm{~m} / \mathrm{s}^{2}$. The rope passes over a pulley (radius 0.30 m , unknown mass) and does not slip.
a) Draw and label force diagrams useful for this situation.
b) Use your diagrams and Newton's second laws $\vec{F}_{n e t}=m \vec{a}$ and $\vec{\tau}_{n e t}=I \vec{\alpha}$ to write down equations useful for this situation.
c) Determine the moment of inertia of the pulley.
