- 1) Determine the following limits, if they exist:
- a) $\lim_{x\to 1} \frac{x^a 1}{x^b 1}$. Also, what conditions must be put on a and b?

b)
$$\lim_{x \to 0^+} \frac{\sin x}{1 - \cos x}$$

c)
$$\lim_{x \to 1} \frac{e^{3t} - 1}{t}$$

d)
$$\lim_{x\to 0} (\sin x)^{(\sin x)}$$

- 2) A particle moves along the *x*-axis with acceleration function given by $a(t) = 4 3t^2$, where *a* is in m/s when *t* is in s.
- a) Find the most general anti-derivative of the function a(t).
- b) At t = 0, the velocity of the particle is 3 m/s. Determine its velocity at 2 s.
- c) At t = 0 s, the particle is located at x = 0. Determine its position at 2 s.
- 3) The graph shows the velocity vs time graph for a particle moving along the *x*-axis, with time in s and velocity in m/s.
- a) Estimate the displacement of the particle between 0 seconds and 6 seconds.
- b) Estimate the total distance traveled by the particle between 0 seconds and 6 seconds.
- c) Can you determine where the particle is at 6 s? If yes, do so, with supporting work. If not, explain why not.

