\qquad

1) Determine the following limits, if they exist:
a) $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}$. Also, what conditions must be put on a and b ?
b) $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{1-\cos x}$
c) $\lim _{x \rightarrow 1} \frac{e^{3 t}-1}{t}$
d) $\lim _{x \rightarrow 0}(\sin x)^{(\sin x)}$
2) A particle moves along the x-axis with acceleration function given by $a(t)=4-3 t^{2}$, where a is in m / s when t is in s.
a) Find the most general anti-derivative of the function $a(t)$.
b) At $t=0$, the velocity of the particle is $3 \mathrm{~m} / \mathrm{s}$. Determine its velocity at 2 s .
c) At $t=0 \mathrm{~s}$, the particle is located at $x=0$. Determine its position at 2 s .
3) The graph shows the velocity vs time graph for a particle moving along the x-axis, with time in s and velocity in m / s.
a) Estimate the displacement of the particle between 0 seconds and 6 seconds.
b) Estimate the total distance traveled by the particle between 0 seconds and 6 seconds.
c) Can you determine where the particle is at 6 s? If yes, do so, with supporting work. If not, explain why not.

