\qquad

1) The graph of g consists of two straight lines and a semicircle, as shown. Use it to evaluate each integral.
a) $\int_{1}^{1} g(x) d x$
b) $\int_{2}^{0} g(x) d x$
c) $\int_{2}^{6} g(x) d x$
d) $\int_{0}^{6} g(x) d x$
e) $\int_{2}^{6}(1-2 \cdot g(x)) d x$

2) The velocity function (in meters per second) for a particle moving in a straight line is given by $v(t)=t^{2}-2 t-8$ and its graph is shown.
a) At what time does the particle change direction (if any)?
b) Determine the acceleration of the particle at 4 s .
c) Determine the displacement of the particle between 1 s and 6 s .
d) Determine the distance traveled by the particle between 1 s and 6 s .

e) Can you determine where the particle is at $t=6 \mathrm{~s}$? If yes, do so, with supporting work. If not, explain why not.
3) Water flows out from a leak in the bottom of a covered storage tank at a rate of $r(t)=200-4 t$ liters per minute, where $0 \leq t \leq 50 \mathrm{~min}$.
a) Find the amount of water that flows from the leak in the first 10 minutes.
b) Can you determine how much water was in the tank at $t=0$? If yes, do so with supporting work. If not, explain why not.
