1a)
$$G(x) = \int_{1}^{x} e^{t^2} dt$$
. Find $G'(x)$.

1b)
$$G(x) = \int_{0}^{1} e^{t^2} dt$$
. Find $G'(x)$.

1c)
$$G(x) = \int_{1}^{x^2} e^{t^2} dt$$
. Find $G'(x)$.

- 2) A particle moving along a straight line has its position function given by $y(t) = 4 + \int_{1}^{t} (x^2 5)e^x dx$, where y is in meters when t is in seconds.
- a) Where is the particle at t = 1 s?
- b) Determine what time(s), if any, this particle reverses direction.
- 3) Evaluate the following:
- a) $\int e^x \cos(e^x) dx$
- b) $\int_{0}^{1} x \sqrt{1-x^4} dx$. Hint: as you did on a homework problem, make a substitution and interpret the resulting integral in terms of an area. If you don't have a graphing calculator, check with instructor if you would like to see a graph.
- 4) Consider the two shaded areas *A* and *B* shown in the figure. Prove that *A* equals *B*. Note: you are not required to evaluate any integrals.

