Name: \qquad

1a) $G(x)=\int_{1}^{x} e^{t^{2}} d t$. Find $G^{\prime}(x)$.
1b) $G(x)=\int_{x}^{1} e^{t^{2}} d t$. Find $G^{\prime}(x)$.
1c) $G(x)=\int_{1}^{x^{2}} e^{t^{2}} d t$. Find $G^{\prime}(x)$.
2) A particle moving along a straight line has its position function given by $y(t)=4+\int_{1}^{t}\left(x^{2}-5\right) e^{x} d x$, where y is in meters when t is in seconds.
a) Where is the particle at $t=1 \mathrm{~s}$?
b) Determine what time(s), if any, this particle reverses direction.
3) Evaluate the following:
a) $\int e^{x} \cos \left(e^{x}\right) d x$
b) $\int_{0}^{1} x \sqrt{1-x^{4}} d x$. Hint: as you did on a homework problem, make a substitution and interpret the resulting integral in terms of an area. If you don't have a graphing calculator, check with instructor if you would like to see a graph.
4) Consider the two shaded areas A and B shown in the figure.
Prove that A equals B. Note: you are not required to evaluate any integrals.

