
\#3 Points possible: 10. Total attempts: 1
Solve for x
$\frac{x-1}{x}+\frac{1}{2}=\frac{-4}{x}$
$x=$
-2
\#4 Points possible: 10. Total attempts: 1
The sum of the reciprocal of a positive number and the reciprocal of 3 more than the number is $\frac{7}{10}$
. Find the number.
Write an equation with the following characteristics:

1. It uses x to represent the number.
2. It uses the information as it is given above.
3. It can be solved to answer the question.
Equation:
The number is
$\frac{1}{x}+\frac{1}{x+3}=7 / 10$
2
> $\overline{47.56}$.мy!

> Use this information and the equation to estimate the speed of the car in miles/hour, to 1 decimal
place. towards us was 270 Hz and the frequency while driving away was 240 Hz , suggesting a stationary
frequency of 255 Hz . Using a spectrum analyzer, we could determine the observed frequency when the car was driving
towards us was 270 Hz and the frequency while driving away was 240 Hz , suggesting a stationary v is the speed of the sound source, in this case the car, in miles per hour
f_{0} is the frequency of the sound when stationary f is the observed frequency (pitch) of the sound, in Hertz

> The equation for this is $f=\left(\frac{c}{c+v}\right) f_{0}$, where
> moving away from you to sound lower pitched, like observed in listening to the car horn in the
video. The Doppler effect causes a sound moving towards you to sound higher pitched and a sound

$$
\begin{aligned}
& \text { She walks } \\
& \frac{24}{r}=\frac{104}{r+10} \\
& 3
\end{aligned}
$$ information as it is given above that can be used to solve this problem.

Equation: Using r as your variable to represent the rate at which she walks, write an equation using the
information as it is given above that can be used to solve this problem. A woman can bicycle 104 miles in the same time as it takes her to walk 24 miles. She can ride 10
mph faster than she can walk. How fast can she walk? \#8 Points possible: 10. Total attempts: 1 $\overline{160} \mathrm{mph}$
mph slower than the plane, find the speed of the plane. A plane can fly 960 miles in the same time as it takes a car to go 180 miles. If the car travels 130 \#7 Points possible: 10 . Total attempts: 1

210 $\frac{27}{90+x}$
\xrightarrow{L}
${ }^{10}$
Round your answer to 1 decimal place.
b. Use that equation to determine how many mL of water should be added to obtain a 9% solution. Concentration $=$
a. Write an equation for the concentration of acid in the solution after adding $x \mathrm{~mL}$ of pure water.

A chemist has in a beaker 90 mL of solution consisting of 30% acid
\#6 Points possible: 10. Total attempts: 1

Wd t t: I 'ti/8I/t
https://www.wamap.org/assessment/printtest.php
Nd $t t: I$ ' $t I / 8 I / t$
\#10 Points possible: 10 . Total attempts: 1
Antonio can paddle his kayak 7 miles per hour in still water. It takes him as long to paddle 16
miles upstream as it takes him to travel 40 miles downstream. Determine the speed of the river's
current.
Enter an equation with the following properties:

1. It uses the variable c to represent the speed of the river's current in miles per hour.
2. It uses the information as it is given above.
3. It can be solved to answer the question.
Equation:
How fast is the river's current?
$\frac{16}{7-c}=\frac{40}{7+c}$
3
\#11 Points possible: 10. Total attempts: 1
A boat, which moves at 31 miles per hour in water without a current, goes 945 miles upstream and
945 miles back again in 62 hours. Find the speed of the current to the nearest tenth.
The speed of the current is
4
$\frac{6}{r}=\frac{200}{r-110}$
The plane flies $\quad _\mathrm{mph}$
$640 \quad 200$
Equation: Using r as your variable to represent the speed of the plane in miles per hour, write an equation
using the information above that can be solved to find the answer to this problem. A plane can fly 640 miles in the same time as it takes a car to go 200 miles. If the car travels 110
mph slower than the plane, find the speed of the plane. \#9 Points possible: 10. Total attempts: 1
$\stackrel{\circ}{\stackrel{\circ}{3}}$
Wd t t: I 'ti/8I/t

