Proving termination, and beyond

Byron Cook

Microsoft Research &
University College London

Talk to Byron after his talk - Lib 2612 3:15

-> 10 years work on termination

-> More broadly about me, my career, jobs,
other things | work on

- Some notes on Evergreen & me

- Questions

" though please interrupt when things are
unclear!

Automatic formal verification

=> View artifact of interest as a mathematical system:
= Software
= Hardware
= Biological system
= Railway switching

=» Automatically prove desired properties using mathematics
and logic

-» Status:

= Active area of research in the 70s,
= Dead in the 80s-90s,
= Renaissance since 2000

Example property

“The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

Example property

“The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

“The parallel port devic. river’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

Thorongh Static Analysis of Device Drivers

Thomas Ball, Ella Bounimosa, Byron Cook, Viadimir Levin, Jakob Licltenberg,
‘.-‘LHL b«ji:Gaﬂ"\‘.‘:\'. B‘:ﬂ]“l—'ﬂ E}J“JTLL“'II'L .‘-\'I.'i:rﬂ.l:l:l K ani:l.l:l:lﬂ.l:l:l. ﬂllll. .‘*.l:llJ'llJ]ﬂh .[.rsl.'luﬂ."]'

Miberosodt Corpaoratbon

Abstract

Bugs in kerec-level device drivers cause 85% of the systom
crashis |8 the Windows XP oporating system [44]. One of
the soarees of these ervars ks the complesdiy of the Windows
driver APl ltself: programmers must master o comphex set
of rubes about how to e the drver AP s arder to creste
drivers that are good cliests of the kemed. We bhave ball
a statle analvsis eogine that finds APl wmage ervors s O
programs. The Statle Dviver Verifier ool (SDV) uses this
engine to fmd kereel APl usige erroes in A drver. SOV
Imcludhes msodels of the OF asd the enviromment of the device
driver, amd owver sty APD usage ruks. SDV i intended to
b s by driver developors “out of the box® Thus, it has
sirlegest roquirements: (1) complete sutomation with no
Imput from the user; (2) a bow rate of false errors. We discuss
the technlgues used s S0V to meet these requirensests, and
emplrical results from running 5DV o ovwer ane busdred
Windhows device drivers,

1 Introduction

Writing & robust deviee driver requires a grest deal of exper-
tise and precise usderstanding of how drivers are supposed
o interact with the operating system or kernel. Testing &
deviee driver s just as tricky. There are two maln difScaltbes
that typleally lmit the testability of deviee drivers:

Otservahbility: It is difficuls to determine when somet king
gous wrong in the mteraction between & driver and the
kerned. In the Windows operating system there are &
large mumber of kernel-deved APIs, which gives rise to
many wavs in which a driver can misuse these APk
Such errors ranedy lesd to mmedlste failares. Instesd,
the svsiom is loft in an Isconslstent state, msubtleg in
i crash or lmproper behavior at & later thme. It wouald
bz wsefial to detect the driver ermor at the polet where
the root camse of the emar happens.

Controllabllity f Coverage: Drivers that work correctly
umider pormal clrcumstances cam have subtle erooes
that appear anly under rare and exceptlonal sivaatlons.
Such cases an be hard to purposefully exercise. As &
result, traditional testing technlgues usually fall to pro-
vidie high covernge through the driver's set of execution
st s

What mikes thise problems particalarly Importast s the
fart that, at least n the Windows operating system, deviee

drivers are the defacto mechanism for dficiently adding ba-
sbe functionality imto the sperating system. In Linme, kernef
modides provide & shmblar facllity. Softwsoe for vines protos-
thom., virtual machise smulation, performance monktorisg,
amd HTTP are all typically implemsented., in , s Win-
dows kersebkevel devies qlrfmpl pat

For this reason & surprising sumber of developers across
the workl are. in effect, Windows kemnel developers. In order
fior & kernel to exeoate correctly on a machine, the developers
of the drivers and komel moduales instalbed oo thar mackie
must have all written thelr eode to ohey the kernel-beved AP
usage rules. FPurthermone, features such & il 3
power mandgement and asvnehronoss 1O drlﬂuﬁn:uum
enbanee yei complicate the Windows driver modol—malkdng
thisn & oomos souree of driver ervors.

We present & tool called 5DV thar uses statke analysis
te enbhanee both the observbility and coverage of devies
driver testing, Increased chservability s obtained by stas-
Img and chedding mles shout the proper use of kereed APL.
Increased coverage |s provided by & combinathon of two tech-
nigues: (1) & bostile modd of the deiver's execution envi-
roameest tests the driver in many stressfsl scemarios, such
s operatleg system calls continoally failing (%) an analysis
engine—eallod Seam’—hased on modd ckecking and sym-
bolle exeoation that simalates all possble behaviors of the
coile. This nnn]s*sk engine soeks to flmd all ways that & de-
vice driver can dischey aset of AP usage rules. Violat bons
that &re found by the analyss engiee are then presented as
soirog-level ervor paths through the driver code.

The Driver Abstraction Challenge. It ks SDV's goal
to check that devies drivers make proper use of the driver
APL It Is sot SDV's goal to chick thiat deviee drivers per-
fiorms amy useful fusction with respect to thelr istended fes-
tare. Our bypothesls ks that the amoust of state that nexds
tiv e tracked |o oeder to msake an accarate determinathon
about whether or not & driver obeys an AP usage ule is
relatively small comparsd to the ontire state of the driver.
The challenge Is to astomatbeally separate the rdevant state
fram the irrelevant state.

S0V astomatically ahatrects the O code of & devies
driver to & sipler form. We eall this altemative program
am abstraction of the original becasse it does not lose ervars:
amy APl usage mde wiolation that appears ln the original
ool also appears in the alstractbon. This shstraction then

"W will refer to 55w ss S0V ' ansdyeis sngims theosghout the
remainsder of the articls

Thorongh Static Analysis of Device Drivers

Thomas Ball, Ella Bounimosa, Byron Cook, Viadimir Levin, Jakob Licltenberg,
Con MeGarvey, Bolus Ondrusek, Seiram K. Rajamant, and Abdullab Ustuner

Miberosodt Corpaoratbon

Abstract

Bugs in kerec-level device drivers cause 85% of the systom
crashis |8 the Windows XP oporating system [44]. One of
the soarees of these ervars ks the complesdiy of the Windows
driver APl ltself: programmers must master o comphex set
of rules about how to wme the driver AP s order to croste
drivers that are good cliests of the kemed. We bhave ball
a statle analvsis eogine that finds APl wmage ervors s O
programs. The Statle Dviver Verifier ool (SDV) uses this
engine to fmd kereel APl usige erroes in A drver. SOV
Imcludhes msodels of the OF asd the enviromment of the device
driver, amd owver sty APD usage ruks. SDV i intended to
b msid by drl-mr developers “out of the bax® Thus, it has
siylegon 11 eranmlote on wleh

drivers are the defacto mechanism for dficiently adding ba-
sbe functionality imto the sperating system. In Linme, kernef
modides provide & shmblar facllity. Softwsoe for vines protos-
thom., virtual machise smulation, performance monktorisg,

amd HTTP are all typically implemsented., in , s Win-
dows kersebkevel devies dzgrmpl pat

For this reason & surprising her af develo

Lazy Abstraction’

Thomas A. Henzinger Ranjit Jhala Rupak Majumdar

EECS Deparimenl, Universily of Calforeia
Berkeley, CA 94720-1770, U.5.A.
[tae, jhal 3, opak }#oo o5 . borkalay. ade

Grégoire Sutra

LaBRI, UVniversilé de Bordeams 1
33405 Talkenee Cedex, France
sutTeflabri. v-ordeasx.iT

ABSTRACT

Ome approack o model chediing sflware is bsed oo ke
abalra d-checkrofine pamdigm: Budd an abslmcl mode,

Ome lmdliozal fow for model dieching a piece of code
procends Lbrowgh Lbe folowicg bop 6, 10, 28]

Step 1 (“aksimclion”) A fisile sl of pradicales is duosen,

the workl are. in effect, Windows kernel developer
fior & kernel to exeoate correctly on a machise, the
of the drivers and kemel moduales instalbed oo th
must have all written thelr eode to ohey the
usage rules. Furthermone, fentures such as
el EAlsEem et amnd mu.d:rmmul,fn it}
mhnum vt complicate the Windows driver mosd

ad_daci

SATABS: SAT-Based Predicate Abstraction
for ANSI-C*

Edmund Clarke!, Daniel Kroening?, Natasha Sharygina'-*, and Karen Yorav?

! Carnegie Mellon University, School of Computer Science

Lazy Abstraction with Interpolants

K. L. McMillan

Cadenee Berkeley Lahs

Abstract. Wedescribe i model checker for infimnite-state sequential pro-

* ETH Zuerich, Switzerland
? Carnegie Mellon University, Software Engineering Institute
* IEM, Haifn, lsracl

ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement

Andreas Podelski'™ and Andrey Rybalchenko®

; * Unbversity of Predburg
* Ecole Polytechnigue Fédrake de Lausanne
¥ Max-Planck-Instivat fr Informatik Saarbedclon

Abstract. Software model checking with abstraction refisement s
mmgmg n a pntuml approach to verify mdustrial software systems. Its

ristics e in the wiy it applies | reasouing to
deal with nhur-cum h is therefoee natural to investigate whether asd

O R RN B

Infer: An Automatic Program Verifier for
Memory Safety of C Programs

Cristiano Calcagno and Dino Distefano
Monobdics Ltd, UK

Abstract. Infer' s a new automatle program verification tool almsed
at proving nwmoey safety of C prograsns. It attempts to balld a com-

proof of the program at hand by composing proofs of its
constitucst modules (functions/procedures). Bugs are extracted from
fatbares of proof attempes. We deseribe the maln features of Infer and
some of the maln deas behind k.

1 Introduction

Model Checking C Programs Using F-SOFT

Franja Dvanéié’, llya Sklyokhier', Aarti Gupts®, Maolay K. Gomei®, Vineel Kehlon®, Chao Wang', Zijiong Yang'
“NELC Laboratories Americe, 4 Independence Way, Princeion, NI ORS40
' Depl. of Compuier Science, Wesiern Michigan Usiversity, Kalomaroo, M1 49008

resaking wenfication models, by me of approprise shstrac-
ISons, im order 0 mansge verfication complexity. The mo
imporiant o keep in mind are: soandeers, ie amy

L INTRODICTHON
Mud:lchnch:ngu in awinmatic iechnique for the verifi-

sysiem o delemmine whether o specification is tue or ke
A boief pwerview of mode] checking techmigees is provided in
Secgian IL

While model checiing of fandware designs and proloonols
haz been exiemsively shidisd, it application to soffeame ver-
ification had been Emiled io me of spedalizsd modeling
langmages to captor: progmm semantics. The capability of
direclly model checking scame code programs wrizn in
populer programming |sngmages such o5 (/Ced mnd Java, is
relatively new [2] The geneml spproach is v exiract seitabls
werification models from the gives sounce code programs. on
which back-znd model checking iechniques are applied io
perfoms vedfication. (zven the populasicy of thes: |

property proved e i indeed inae (no ke positivesl nd

¥, iE. amy propemy thal & drue can be proveed
brue ino fulse negatives). Typically, mod:hugmd shsiraciion
iechmigues may saorifice compleieness in praciice Geven if
pusmnized in principie) due o loss of predision in the shstmct
medels. Farthemmore, mudh wseful high-level information may
be loet charing the trenshition from progrmes o & ver fimtion
medel. Therefore, several softeare model checkers make a
spedal efford io exploil Bigh-level information sach s conbml
e and procedure/fisnction. boundaries, both during bremsla-
t5om 1o and during anafysis of the verification madels. Such
use af bigh-level information in back-end model checlems is
described in Section [V.

In ferms of generl absiraction techmiques, predicais ab.
wiraction has emerged o be o popaler ischnique for eximcting
vesification models From safteare |31, (41 [5], (6] Detsils
of pedicale sbeiraction and refinement, slong with moent
imprvements, are described in Section Y. Basially, predicale
phstraction is weed 10 absirect out dais, by keeping tack of
predicatns which caplure relationships between dais warnishlz=s
im the pmgram. In the sbeimc model, each predicats is
mpesenied by o Boolean varable, while the orginal data
wwishles am climinaied In this way, predicae sbetmction
allows tremslition of & gives concreie mode] v an abstrect
model, which simulates the concrete mode] bt & el y moch
smaller. Due o conservabive sbstmction, the sbsiract madel
has mamy more bebaviars thas the concrete model. Therslom,
camecines of a property on the ahstraci model pramniees
canecines on the orgingd concrele model. However, a prop-
ery shown io be false on the shsiract mode] esds farther
imvestipation. [n particuler, an ahsiract moded can oonlsin so-
called spurinuy couniereya mplies, Ul do mof oo mmespond o any
feasilde comntrmxemple in the conorete model. Such spanious

mnd the increasing costs af scflnam dﬂﬂup‘nﬂnl, wnf}mg
progyams direcily writien in these linguages is very stirative
in principle. However, there ore many challenging issues —
hamdlling af inﬂer:l'ﬂnni.ug poind duls varishles, painiers
{in O}, recandon and fesction/procedere alls,
ohject-onenied featsrs such = classes, dysamic ohjects, md
palymorphism. Different choices can be made in modeling
these feabwres in terms of scouracy, resulting in various trade-
offs. Some of these are described for C programs in Section 01

The averall focus is usually on reducing the sre of de

esiifegn of e 2005 Gz o G
£-045 1205 £ 00 & 2005 |EEE

Duign {ICGIHS)

mmples can be el | by generating a refinsment
nt'rJ'l: shsiraciicn. This process of abstraction and refinement
can be flerated until the property is sither proved conect on
tke shsiract mode] (femby gusmantsring that it is als comect
on the concede model} or dsproved (by demonsirating exis-
tence of & real counierevample on the concrete model). Such
lechmigues e similer o cowmeronanple-gaided abstraction
rgfinement [7], |8] demonstraled for hardwane designs.
We have developed 5 pmotype software model dhecking
ool called F-S0FT |9, which utilves many of fe ides
presenisd Bene. This is desoribed in defail in Section Y1 F-

COMPUTER
SOCIETY

fng, b
it

g,
s Win-

Lazy Abstraction’

Thomas A. Henzinger Ranjit Jhala Rupak Majumdar

EECS Deparimenl, Universily of Calforeia
Berkeley, CA 94720-1770, U.5.A.
[tae, jhal 3, opak }#oo o5 . borkalay. ade

Grégoire Sutra

LaBRI, Vniversilé de Bordeass 1
33405 Talknoe Cedex, Fraoce
sutTeflabri. v-ordeasx.iT

ABSTRACT

Ome approack o model chediing sflware is bsed oo ke
abalra d-checkrofine pamdigm: Budd an abslmcl mode,

Ome lmdliozal fow for model dieching a piece of code
procends Lbrowgh Lbe folowicg bop 6, 10, 28]

Step 1 (“aksimclion”) A fisile sl of pradicales is duosen,

Lazy Abstraction with Interpolants

K. L. McMillan

Cadenee Berkeley Lahs

Abstract. Wedescribe i model checker for infimnite-state sequential pro-

* Unlversity of Freiburg
* Ecole Palytechnique Pédérale de Lausanne
3 Max-Planck-Institat fr Informatik Saarbediclan

Abstract. Soft

moddl, checkh

with abst b 4 s

wgunpnnml approach to verify mdustrial software systems. Its
1k e in the wiy it applies logical reasoning to

deal with abst It s theref,

natural to

whether asd

O R R B Rl A W) Ay SO AR B EY S N IO SR L At

Infer: An Automatic Program Verifier for
Memory Safety of C Programs

Cristiano Calcagno and Dino Distefano
Monobdics Ltd, UK

Abstract. Infer' Is a new program verification toal almsed

uptmmmmnanwdc;'mmhummpumbu&inm

positional proof of the program at hand by compasing proods of its
canstituest dules (functions/procedures). Bugs are extracted from
fail of proof at We deseribe the maln features of Infer and

some of the maln tdn-.bchlnd .

1 Introduction

Model Checking C Programs Using F-SOFT

Franja Dvanéié’, llya Sklyokhier', Aarti Gupts®, Maolay K. Gomei®, Vineel Kehlon®, Chao Wang', Zijiong Yang'
“NELC Laboratories Americe, 4 Independence Way, Princeion, NI ORS40
' Depl. of Compuier Science, Wesiern Michigan Usiversity, Kalomaroo, M1 49008

Absiraci— With the success of formal werilcabion iechniques resoking verfication models, by me of approprise ahstrac-

ik and modid for bardware ons in order o0 mansge vedficaion complexity. The o
I;i'-.?:in"'_h'“ has ml g wll:l: in h?;d: b M i keep in mind ane: soundnens, ey

pr—] proved tnae is indeed inae (no Glse positivesl ond
of O programs. The ementisl spproach bs io meded the mmantics comyplefenesy, ie. wny peopeny that & drue can be proved
of O programs In Be form of fnile siabe sysiems by wsing brue (no (olss negatives). Typically, modeling and shsiracion
sullnble sbstractioms. The wse of shstractons b key, both for eckmigues may sacrifice complelesess in practice (eves if
= fnile stale sysicmm and for redwdt o000 in priscipled due to loss of predision in the shstract
3 verifiction platfsrm milleg medels. Farthermoe, much wseful high-level information may

F-501T, which provides a rangs of absiractions for mededing be loet charing the trenshition from progrmes o & ver fimtion
mnd wses cwstomizd SAT-hased and BIM-based maded model. Therefore, several soffeare model chedeers make a
. spedal efford io exploil Bigh-level information sach s conbml

fng, b
it

s Win-

Lazy Abstraction’

Thomas A. Henzinger Ranjit Jhala Rupak Majumdar

EECS Deparimenl, Universily of Calforeia
Berkeley, CA 94720-1770, U.5.A.
[tae, jhal 3, opak }#oo o5 . borkalay. ade

Grégoire Sutra

LaBRI, Vniversilé de Bordeass 1
33405 Talknoe Cedex, Fraoce
sutTeflabri. v-ordeasx.iT

ABSTRACT

Ome approack o model chediing sflware is bsed oo ke
abalra d-checkrofine pamdigm: Budd an abslmcl mode,

Ome lmdliozal fow for model dieching a piece of code
procends Lbrowgh Lbe folowicg bop 6, 10, 28]

Step 1 (“aksimclion”) A fisile sl of pradicales is duosen,

WHALE: An Interpolation-based Algorithm for
Inter-procedural Verification

Aws Albarghouthi', Arie Gurfinkel®, and Marsha Chechik'

'Department of C S U v of Toranto, Canada
*Caftware En@wlng Institute, Carnegle Melloa U y, USA

Abstract. lnmﬁmvul&nuon Cralg Isterpolaticn has proven to
beap ful tock foe comsputing and refining abstractioes. In this
p-per W PIOpCse Al Mﬂpolﬂlnn—hnd mﬂm \mﬂcuhm algorithm
for cheddng safety properties of (passibly
Our algoeithm, called Waarx, produces lmu-p«moduml pmdsd nfmy
by exploiting lsterpalation for g g Les by g

lzing under-apperocimatloas (1. e finite traces) of functioas. \\b Lenple-
mented our algoeithm n LIVM axd qxplhd ll lo verifying properties of
low-level code wrl for the p ch ge. We show that our

lenpl jon cutperf existing state-of-the-art tools

P iy L

1 Introduction

In the software verification arena, software model checking has emerged as a
powerful technique both for proving programs correct and for finding bugs. Given
a program P and a safety property @ to be verified, e.g.. an assertion in the code,
a model checker either finds an execution of P that refutes ¢ or computes an
mvariant that proves that P is correct wr.t. .

Traditionally [3], software model chockers rely on computing a Buite abe
straction of the program, e.g., & Boolean program. and using classical model
checking algorithms [8] to explore the abstract state space. Due to the over-
approximating nature of these abstractions, the found counterexamples may be
spuriows. Counterexample-guided abstraction refinement (CEGAR) techniques [7]
help detect these and refine the abstraction to elimimate them. This loop cone
umusunullrcdcmuﬂmnmﬂeuﬁmndatnpmdo!mmtnm.mdufam
of ap

More recently. a new chs of software mode] checking algorithms has emerged.

Lazy Abstraction with Interpolants

K. L. McMillan

Cadenee Berkeley Lahs

Abstract. Wedescribe i model checker for infimnite-state sequential pro-

Infer: An Automatic Program Verifier for
Memory Safety of C Programs

Cristiano Calcagno and Dino Distefano
Monobdics Ltd, UK

Abstract. Infer' Is a new e verification tool almed
uptmmgnnmorynkwdclrmuuhnmmpumbu&inm
positional proof of the program at hand by composing proofs of its
canstituest dules (functions/procedures). Bugs are extracted from
fail of proof attempes. We describe the maln features of Infer and
some of the maln deas behind k.

1 Introduction

Model Checking C Programs Using F-SOFT

Franja Dvanéié’, llya Sklyokhier', Aarti Gupts®, Maolay K. Gomei®, Vineel Kehlon®, Chao Wang', Zijiong Yang'
“NELC Laboratories Americe, 4 Independence Way, Princeion, NI ORS40
' Depl. of Compuier Science, Wesiern Michigan Usiversity, Kalomaroo, M1 49008

Absiract— WHth the sucoess of formal verifostion lechniques

resaking wenfication models, by me of approprise shstrac-
ISons, im order 0 mansge verfication complexity. The mo
imporiant o keep in mind are: soandeers, ie amy

property proved e i indeed inae (no ke positivesl nd

¥, iE. amy propemy thal & drue can be proveed
brue ino falss negaiives). Typically, modeling and shsbracion
iechmigues may saorifice compleieness in praciice Geven if
gummnized in principie) due o loss of precision in the shsimct
medels. Farthemmore, mudh wseful high-level information may
be loet charing the trenshition from progrmes o & ver fimtion
mosdel. Therefore, several soffwwre model checkers make a
spedal efford io exploil Bigh-level information sach s conbml

—

flng, b

= Win|

WHALE: An Interpolation-based Algorithm for
Inter-procedural Verification

Aws Albarghouthi', Arie Gurfinkel®, and Marsha Chechik!

'Department of C S U v of Toranto, Canada
*Caftware En@mlq Institute, Carnegle Melloa U y, USA

Abstract. lnmhmvul&m(mluupdnknhumm
beap ful tock for comsputing and refin b loes. [n this
p-pu wplnpmemwm-h-mdsoﬁm‘wﬂcuhn algorithm
for cheddng safety properties of (passibly |

Our algoeithm, called \\'mu.z, produces lmu-pmmdurnl pmds of safet
by exploiting laterpal for g Les by }
lzing undu-.ppmuunlnm (Ie llnhcuncu)dﬁmcth-s We Lenple-
mented our algoeithm in LLVM and applied it to verifying properties of
low-level code wrk for the p ker challenge. We show that our

prototype lnplementation cutperforms existing state-of-the-art tools

1 Introduction

In the software verification arena, software model checking has emerged as a
powerful technique both for proving programs correct and for finding bugs. Given
a program P and a safety property @ to be verified, e.g.. an assertion in the code,
a model checker either finds an execution of P that refutes ¢ or computes an
mvariant that proves that P is correct w.r.t. o,

Tuduuully[ﬂ] software model chockers rely on computing a Buite abe
st of the y e.g., & Bool and using classicnl model
checking nkunthuu [8] to explore the nlntnﬂ state space. Due to the overs
approximating nature of these abstractions, the found counterexamples may be
spuriois. Counterexample-guided abstraction refinement (CEGAR) techniques |7]
help detect these and refine the abstraction to climinate them. This loop cone
umnsmmlurenltmmmmpksﬁmndotnpmddmmmmdthm
of a progr

hlartmmnll).nncwdndmﬂwemndddx&mgdpﬂthmhnempd.

Predator: A Practical Tool for Checking Manipulation
of Dynamic Data Structures Using Separation Logic*

Kamil Dudka, Petr Peringer, and Tomds Vopnar

FIT. Broo Usiversity of Technology, Croch Repabilic

Abstract. Predator is a sew open source tool for verification of sequential C
programs with dynamic linked data structures. The tool is based ca separmtion
logic with inductive prodicates although it uses a graph description of heaps.
Predator currently handles vaniows forms of lists, including singly-binked as well
as doubly-linked Fists that may be circular, hicrarchically nested and that may
have vanious additional posmer linkx. Prodator s implementod as a goc plug-in
and 1 is capable of handling lists in the form they appear in real system code,
ospecially the Linux kemel, inchading a limited suppoet of pointer arithmetic.
Collaboration on lenber development of Predator is weloome,

1 Introduction

In this paper, we present a new tool called Predator for fully automatic verification of
sequential C programs with dynamic linked data structures, In particulas, Predator can
currently handle various complex kinds of singly-linked as well as doubly-linked lists
that may be circular, shared, hierarchically nested, and that can have various additional
pointers (headltail pointers, data pointers, etc.). Predator implicitly checks for absence
of generic errors, such as null dereferences, double deletion, memory leakage, etc. 1t can
also print out a symbolic representation of the shapes of the memory structures ansing in
a program. Finally, users can, of course, use Predator (o check custom propertics about
the data structures being used in their code by writing (directly in C) tester programs
exercising these structures.

Predator is based on separarton logle with higher-onrder inductive predicares. It is
inspired by the works [2,9,10] and the very influential tool called Space lnvader' (or
simply Invader). However, compared to Invader, the heap representation in Predator s
not based on lists of separation logic formulae, but rather a graph represensation of these
formulac. The algorithms handling the symbolic heap representation (in particular, the
abstraction and join operators based on detecting occurrences of heap structures that
can be described by inductive predicates) have been newly designed.

Compared to Invader that comtains a partial support of doubly-linked lists only,
Predator supports them equally well as sangly-linked lists. Predator also contains a spe-
cial support for list segmems of length O or | that are common in practice [9] and that
may cause problems to Invader (as we Hllustrate funber on),

* This work was suppaorted by the Crech Science Foundation (project POV IV0306), the Czech
Ministry of Education (projects COST OC 10009 and MSM 0021630528), and the BUT FIT
progect FIT-S: 111, An extended version of the paper is available as the technical repont (6],

- Btip:/ /www.cantlondonmassive.org/Bast London Mass ive/ Invader Hose . heel

G. Gopalakrivhnan and S, Qadeer (Ede x: CAV 2011, LNCS 6806, pp, 172375, 201 |
(&) Speinger-Verlag Berlin Headelberg 2011

e of code

s chosen,

sulisbde sbstractiom. The wse of ahsiractions b key. both for (echmigues may sacrifice

w finile siale sysiems and for redwcng ol i loss of the ahsirac
gummnized in principie) due o loss of predision in

e delats of & arihcution plstiorm catie W, Farthermmoes, much weful high-level information may

Model Checking C Programs Using F-SOFT

ic*, llya Shlyokhier , Aorti Gupis®, Maolay K. Gomi®, Vineel Kshioe®, Chao Wang', Zijiong Yang'

“NELC Laboratories Americe, 4 Independence Way, Princeion, NI ORS40

' Depl. of Compuier Science, Wesiern Michigan Usiversity, Kalomaroo, M1 49008

Absiraci— With the success of formal werilcabion iechniques resoking verfication models, by me of approprise ahstrac-

and modd checking for bardware Goos, in onder 0 mansge vedhication oomplexity. The mo
Emderest In Ing such echl- Gy g o keep in mind are: soandeers, ie amy
property proved e i indeed inae (no ke positivesl nd

chcking
of O programs. The ementisl spproach bs io meded the mmantics comyplefenesy, ie. wny peopeny that & drue can be proved

form of fnlic siaie systems by wsing e (no falss negatives). Typically, mod:hugmd shsiraciion
compleirness in practice Geven il

[
g of sbsiracions for medeling be dost dorisg the teeshition fmm programe o o verification

omstomim SAT-hasad and BIkbased mdd = moxdel. Themefore, sevenal soffenre model checkers make a

for saftware. spedal efford io exploil Bigh-level information sach s conbml

—

flng, b

Egiay

= Win|

Predator: A Practical Tool for Checking Manipulation
of Dynamic Data Structures Using Separation Logic*

Kamil Dudka, Petr Peringer, and Tomds Vopnar

FIT. Brmo Usiversity of Technology, Croch Repoblic

e of code

Abstract. Predator is a sew open source tool for verification of sequential C
programs with dynamic linked data structures. The tool is based ca separmtion |
logic with indoctive predicates although it uses a graph description of heaps. fs choses,

WHALE: An Interpolation-based Algorithm for
Inter-procedural Verification

Aws Albarghouthi', Arie Gurfinkel®, and Marsha Chechik'

'Department of C S U v of Toranto, Canada
*Caftware En@wlng Institute, Carnegle Melloa U y, USA

Abstract. lnmﬁmvul&nuon (‘xuglmnpdntonhnpmm
beap ful tock foe conspating and ig abstractioss. In this
p-per W PIOpCse Al Mﬂpolﬂlnn—hnd mﬂm \mﬂcuhm algorithm
for cheddng safety properties of (passibly
Our algoeithm, called Waarx, produces lmu-p«moduml pmdsd nfmy
by exploiting lsterpalation for g g Les by g

lzing under-apperocimatloas (1. e finite traces) of functioas. \\b Lenple-
mented our algoeithm n LIVM axd qxplhd ll lo verifying properties of
low-level code wrl for the p ch ge. We show that our
jon catperf existing state-of-the-art tools

{ennk
P iy L

1 Introduction

In the software verification arena, software model checking has emerged as a
powerful technique both for proving programs correct and for finding bugs. Given
a program P and a safety property @ to be verified, e.g.. an assertion in the code,
a model checker either finds an execution of P that refutes ¢ or computes an
mvariant that proves that P is correct wr.t. .

Traditionally [3], software model chockers rely on computing a Buite abe
straction of the program, e.g., & Boolean program. and using classical model
checking algorithms [8] to explore the abstract state space. Due to the over-
approximating nature of these abstractions, the found counterexamples may be
spuriows. Counterexample-guided abstraction refinement (CEGAR) techniques [7]
help detect these and refine the abstraction to elimimate them. This loop cone
umusunullrcdcmuﬂmnmﬂeuﬁmndatnpmdo!mmtnm.mdufam
of ap

More recently. a new chs of software mode] checking algorithms has emerged.

In this paper, we present a new tool called Predator for fully automatic verification of
ynamic linked data structures. In particular, Predator can

Predator currently handles vaniows forms of lists, including singly-binked as well
as doubly-lisked fists that may be circular, hierarchically nested and that may
have vanious additional posmer linkx. Prodator s implementod as a goc plug-in
and # is capable of handling lists in the form they appear in real system code,
ospecially the Linux kemnel, inclading a limited suppoet of pointer arithmetic.
Collaboration on fenber development of Predator is weloome

Introduction

Modular Safety Checking for Fine-Grained
Concurrency

Cristiano Caleagne®, Matthew Parkinson®, and Viktor Vafeladis®

! lmperial College, London
* University of Cambridge

Abstract. Concurrent programs are difficult to verify becanse the proof
must consider the interactions betwesn the thrends. Finesgrained cone
currency and heap allocated data structures exacerbate this problem,
beranse threads interfere more often and in richer ways., In this pas
per we provide a threadsmodular safety checker for & class of pointers
manipulating fine=grained concurrent algorithms. Our checker nses owne
ership to avoid interference whenever possible, and rely/guarantee [as.
sume/fguarantee) to deal with interference when it genuinely exists.

—

Model Checking C Programs Using F-SOFT

Franja Ivanéié’, llya Shlyokhier', Aorti Gupts®, Maolay K. Gomi®, Vineel Kshioe®, Chao Wang', Fijiong Yang 2 ~
*NEL Laboratories Amesics, 4 Independence Way, Princeion, M 08540 Predator: A Practical Tool for Checking Manipulation

Depl. of Compuier Science, Wesiern Michigan Usiversity, Kalamazoo, MI 49008
! " : ’ of Dynamic Data Structures Using Separation Logic*

Absiraci— With the success of formal werilcabion iechniques resoking verfication models, by me of approprise ahstrac-

:-Iil nfl‘:lm:‘mdﬂnq and modd checking for Bardware jions, in ooder o mansge vediication complesity. The mo Kamil Dudka, Petr Peringer, and Tomds Vojnar
estgn, (here

niquis for formal -~ [- bl =]]
programs. This pape N[_ -

of C programs. The)| @ http://sv-comp.sosy-lab.org/2013/results/index. 2 = B & X |l (& SV-COMP 2013 - 2nd Intern... {0 37§83
of O programs in =

iable shetraction] £ [omp | Previous Next |[7] Options = |

e rosrams ‘ of code
Fsdr, whh prn Results of the Competition s chomee

checking bechnigues

This web page presents the results of the 2013 2nd International Competition on Software Verification (SV-COMP'13). The benchmarks and
rules are described on the competition web site or in the competition report (reflects SV-COMP'12).

m

All Results

In every table cell for competition results, we list the points in the first row and the CPU time (rounded to two significant digits) for successful
runs in the second row. The background color is gold for the winner, silver for the second, and Brohzeonthelthird.

The entry *--" means that the competition candidate opted-out in the category.

(Competition BLAST || CPAchecker- || CPAchecker- ||CSeq 2012-10|| ESBMC | LLBMC Predator || Symbiotic Threader ||UFO 2012-|| Ultimate
candidate 271 Explicit 1.1.10 || SeqCom 1.1.10 -22 1.20 |[2012-10-23|| 2012-10- || 2012-10-21 0.92 10-22 |[2012-10-25
20
Representing Jury Vadim Stefan Léwe ||Philipp Wendler||Bernd Fischer|| Lucas Carsten Tomas Jiri Slaby Andrey Arie Matthias
Member Mutilin Cordeiro Sinz Vojnar Rybalchenko || Gurfinkel || Heizmann
Affiliation Moscow, Passau, Passau, Southampten, || Manaus, || Karlsruhe, Brno, Brno, Munich, Pittsburgh, || Freiburg,
Russia Germany Germany UK Brazil Germany || Czechia Czechia Germany USA Germany

Bit\ectors - 16 - 24 80 -75 - - - -
[32 files, max score: 60 B6s 480 s s 95s

Concurrency - 1] 0 17 - 0 - 43 - -
[32 files, max score: 49 Os Os 270s Os 570 s

ControlFlowInteger 93 143 - 90° - =27 - - 1486 -
E4 files, max score: 148 T100s 12008 17 000 5 650 s 450 s

[ControlFlowint=ger- g2 78 7B - &0 TE -28 28 - 78 =]
[MemPrecise 2500% 2835 1330 i0oms 703 E3ds 245 7as sens
J42 fies. mnax scare: 78
[ControlFlowinteg 41 B85 a3 - el - a - - B8 -
[MemSimgls 4500 E-FY 11002 300 os p-FY
[4E fies. max szare:
2340 2186 - 2233 - 0 a70 - 2 408 -
9700 s 30 000s 46 000 s Os 230s 2500 s

a model checker either finds an execution of P that refutes ¢ or computes an
mvariant that proves that P is correct wor.t. .

Traditionally [3], software model checkers rely on computing a Bnite abe
straction of the program, e.g., & Boolean program, and using classical model
checking algorithms [8] to explore the abstract state space. Due to the over
approximating nature of these abstractions, the found counterexamples may be
spuriows. Counterexample-guided abstraction refinement (CEGAR) techniques [7]
help detect these and refine the abstraction to climimate them. This loop cone
tinues until a real counterexample is found or a proof of correctness, in the form
of & program invariant, is computex.

Moare recently. a new class of software model checking algorithms has emerged.

Abstract. Concarrent programs are diffioolt to verify becanse the proof
maust consider the interactions between the threads. Finesgrained oons
currency and heap allocated data structures exacerbate this problem.
beranse threads interfere more often and in richer ways. In this pas
per we provide a threadsmodular safety checker for & class of pointers
manipulating Anesgrained concurrent algorithms. Car checker uses owns
ership to avoid interference whenever possible, and rely/guarantee [as.
sume/fguarantee) to deal with interference when it genuinely exists.

Example property

“The mouse device driver’s event-handling routine
always eventually terminates”

15

Example property

“The mouse device driver’s event-handling routine
always eventually terminates”

16

Example property

“The mouse device driver’s event-handling routine
always eventually terminates”

17

W
- p

(e~
“The mouse device driver’s event-handling routine
always eventually terminates”

18

/

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;

= £

S/ IoCancellrp() could have just been called on this IRF.

S/ What we're interested in is2 not whether IoCancellrp() was called

S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
J/ of the test-and-set macro IoSetCancelBoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
I ln2292 col41 Ch 41 | |ms| .

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;

= £

S/ IoCancellrp() could have just been called on this IRF.

S/ What we're interested in is2 not whether IoCancellrp() was called

S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
J/ of the test-and-set macro IoSetCancelBoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
I ln2292 col41 Ch 41 | |ms| .

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;

= £

S/ IoCancellrp() could have just been called on this IRF.

S/ What we're interested in is2 not whether IoCancellrp() was called

S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
J/ of the test-and-set macro IoSetCancelBoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
I ln2292 col41 Ch 41 | |ms| .

-» Introduction

- Termination basics

> New advances for program termination proving
" Proving termination argument validity
" Finding termination arguments

-=» Conclusion

23

-» Introduction

- Termination basics

> New advances for program termination proving
" Proving termination argument validity
" Finding termination arguments

-=» Conclusion

24

Proving termination

= Traditional termination proving method originally
proposed by the forefathers of computing

= E.g. Turing, “Checking a large routine”, 1949

Finally the checker has to verify that the process comes
to an end. Here again he should be assisted by the program-
mer giving a further definite assertion to be verified. This
may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops. To the pure
mathematician it is natural to_give an ordinal number. In

\ 2. = =N 1 L

25

Proving termination

- Traditional ' oroving method originally

Oroposs omputing

1949

JTOCeSS comes
~0y the program-

be verified. This
4 —rted to decrease

\ 2 . / L25 -\ 1 L

26

Proving termination

27

Proving termination

28

Provina termination

Provina termination

/,0’ Finally the checker has to verify that the process comes
to an end. Here again he should be assisted by the program-
mer giving a further definite assertion to be verified. This
may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops. To the pure
mathematician it is natural to_give an ordinal number. In

A P Y 25 =\ 1 L
J \

t)
S
Siysseeie
.\)9

Y

X

e

5

D X

.\' .‘
>

O
o e loa 008

Provina termination

Provina termination

ATXTIse
) KB 0
LA ORYD
DS s e
TS0
OSSO0
e 0 e

Provina termination

Provina termination

\/ -\ —"‘A—;'« \ /
A SN i iR
A— - .&.,) oY

\a
53'}_' >

' — e f - “Mm; e ‘:
\ R Wans . meae s
;,’ ‘Rﬁ»— g ~.::‘;f’) @)
"N ._ - S— A - e oA SN
- e _.i'»—"‘ hp e
. : s~ Sl

= ’, o7 e p ‘
e e

oy

<
. ! N N
< Nl OO
9GS Seeoa
=g e e g O O
7‘-:7‘“”" = (] . OO
e S — S,

-) ”//’ - - ‘“i}.’* 9% .
- o :"f e P~ i O oS
= > " OB ~ OV ore
- —=aanSES OO T e OO UGS
S N 2 Ol N,
A\, O

- () O
a A
A — R)
- O ‘. Ovapw 200

35

Proving termination

—

36

Proving termination

e — o NPIEV AR AW e

() "”‘ . Q70 @
GBS T O T O A

=" P~ T X =K AJ‘.&’-

‘
\ —_ g f_-f-v’ _\-AVAV.V."_-'< - -
e e el) (()) ®,
JRN =" it e
- ! U

e

_’ _— (= -~ A, -
, O8> I " oz

_— - -
— ‘ ‘;, T T W
/, > 'A -7 _adW, ‘." —

cl
A

40

-» Introduction

- Termination basics

> New advances for program termination proving
" Proving termination argument validity
" Finding termination arguments

-=» Conclusion

41

-» Introduction

- Termination basics

> New advances for program termination proving
" Proving termination argument validity
" Finding termination arguments

-=» Conclusion

42

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

43

44

230 A M Tormive [Mov. 12,

ON COMPUTABLE NUMEERE, WITH AN AFPLICATION TO
THE ENTECHEIDUNGSFROBELEM

By A, M., Tormxc.
[Hevaived 25 May, 1936 —HRaul 12 Rovesiber, 1936,

The *“computable” numbers may ke described briefly as the real
numbers whose expressions as a decimal are caleulable by finite means,
Although the subject of this paper i= ostensibly the computable aumbers,
it is almost squally easy to define and investigate computable functions
of an integral vaviable or a8 real or computable variable, computable
predientes, and so forth. The fundamental problems mvolved are,
however, the same in each case, and 1 have chosen the computable numbers
for explicit treatment ns involving the least combrons teehnique. T hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
uf the theory of functions of o real variable expressed in terma of oom-
pautable numbers. According to my definition, & number is computable
il its decimal can be written down by a machine,

In §§9. 10 I give some argumenta with the intention of showing that the
computable numbers include all nuwmbers which conld naturally be
regarded as eomputable, In particular, T show that certain lage olassas
of numbers are computable. They include, for instance, the real parts of
all algebraic nombers, the real parts of the eerns of the Bessal functions.
the numbers #, &, #tc, The computable numbers do not, however, inelude
all definable numbers, and an example 8 given of a definable number
which is not eomputable,

Although the elass of compatable numbers is so great, and in many
ways similar o the elass of real numbers, it is nevertheless enumerable,
In § & I examine certain arguments which woold seem to prove the contreary.
By the eorvect application of one of these arguments, conclusions are
reached which are superfisially similar to those of Gadelf. These resalts

1 Godal, * Ii:'hir formal unentecheidbam Sitze der Principm Mathomatics ol ver-
worslier Eysteme, 1V, MWonmlshefro Mark. Fhye., 38 (1831), 173-104,

rd in practice (and

ard in practice (and

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

45

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

46

Automating the search for proofs

= Transition relations must be computed

R=Un[U"I)xU(1))

- Technically, computing U*(I)is undeciable, so we must
find a sound over-approximation using available
techniques:

U*(I) CQ

- () represents an infinite set of states, but has a compact
expression

47

Automating the search for proofs

#% Microsoft Development Environment [design] - mouclass.

= Transition relations must be compute]e: e wer oo 1o o e

mouclass.c

for (entry = DeviceExtension->Read(ueun
entry != &DeviceExtension->Read(n

R — U m [(U* (I) % ll o entry = entry->Flink) {

irp = CONTATINING RECORD (entry, IR
stack = IoGetCurrentlIrpStackLocati
= if (=stack-»Filelbject == File(Objec
RemoveEntryList (entry):

aoldCancelRoutine = IoSetCancel

- Technically, computing U*(I)is unde| ; /v
f/ Wnhat we're interested in is

find a sound over-approximation usin R ———

S/ i= about to call) our cance

teCh n iq u eS: i ;‘i of the test-and-set macro I

g if (oldCancelRoutine) {
= i

U* (I) C Q /{ Cancel routine not cal
- r

return irp:
o }

= else {
E £

. . . S/ This IRF was just cance
- () represents an infinite set of states) /) be) caties. e casces
£

expression /¢ As0, the cancel rousia

S/ IRP's li=stEntry point t©
- £

ASS5ERT (irp-»Cancel);

InitializelistHead (&irp->»

IoCancelIrp() could have ju

48 }

Automating the search for proofs /‘ l

-» Transition relations must be com 'v‘ 4
O

©)

R=UN[U"I)xU*())]

- Technically, computing U*(I)is undeciable, so we must
find a sound over-approximation using available
techniques:

U*(I) CQ

- () represents an infinite set of states, but has a compact
expression

49

= COMpPr=teT
-
~0O, OO

R=UN[U*(I) x U*(I))]

- Technically, computing U*(I)is undeciable, so we must
find a sound over-approximation using available
techniques:

U*(I) CQ

- () represents an infinite set of states, but has a compact
expression

50

Automating the search for proofs

-> We use an over-approximation of the transition relation

R =UN[Q x Q]

- Since R C R’, we can prove termination by showing

R’QQf

= Meaning: there might be unrealistic transitions that we

have to worry about ‘ ‘
RI

51

Automating the search for proofs

= In practice, its extremely hard to find the right
overapproximation ()

= Luckily: recent breakthroughs in safety proving now
make this possible.

= In fact: the checking the validity of a termination
argument can be directly encoded as a safety property

- Tools like SLLAM can be used to prove validity

52

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

53

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

54

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

55

Refinement-based termination proving

II :=
while R ¢ T do
m := counterexample such that € Rand 7 € T
[1T:=1U{r}
if 7 is a real counterexample then
return “Doesn’t terminate”

T := 1
]

fi

T := new termination argument from II
done
return “Terminates”

56

Refinement-based termination proving

57

Refinement-based termination proving

58

Refinement-based termination proving

59

Refinement-based termination proving

60

Refinement-based termination proving

61

Refinement-based termination proving

62

Refinement-based termination proving

Refinement-based termination proving

Refinement-based termination proving

Refinement-based termination proving

Refinement-based termination proving

Refinement-based termination proving

TERMINATOR

thus
assert(x > x);

assert(f(_x, y) > f(x,y));
exit () ;

71

TERMINATOR reduction

if ('copied) {
if (*) {
X = X;

} else {
assert (f(_ x, y) > f(x,y));

72

TERMINATOR

assert((x>x && y>=y) || _y>y);
exit();

73

TERMINATOR

} else {
assert (x>x);
exit();

74

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

75

Automating the search for proofs

-> Difficulties:

= Proving the inclusion R C |> ; is hard in practice (and
undecidable in theory)

= Finding an f such that R C > ; is hard in practice (and
undecidable in theory)

76

Termination Proofs for Systems Code *

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
m;xmerd:xtperﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{12. more than 20,000 linss of:ode]'bog\atummimpmfw;zu-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software

—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usually constucted fom a sat of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) a5 a pant of the Trensresional Collaboradve
Besearch Center “Automatic Verifi cation and Amalysiz of Complex. Svs-
tems” (SFB/TR. 14 ANACS), by the German Federal Ministry of Educa-
tion and Research (BMEF) in the fameoork of the Verisoft project under
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chasanoom we s without e provided tha copiss e not made or distributed
ﬁpﬁ|amﬂmmmgmm%5%;m' and the fall cation
en the £t pam. To copy otarnisa, %o rmpublish, 1o post oo servar or to medsaibas
o lisks, reqeires pricr spects © peamission and'or a .

PLDT0S Fune 11-14, 2006, Crme, Omtaric, Camada,

Copyzight (&1 2006 ACM 1-59593-3120-4060006.. 55,00,

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

Andrey Rybalchenko
Max-Planck-Instint fir Informatik and
EFFL

rybali@mpi-sb.mpg.de and
andrey.rybalchenko@epflch

mequest packst and FdoData-»TopOdfStack is the pointer to
another serisl-based device driver). In the case where the other de-
vice drver retums a3 refurn-value that indicates success, but places
0 in PIoStatusBlock-=Information, the serial emmmera-
tiom driver will fil w increment the vabe pointed to by nActual
(line 68), possibly cansing the driver to mfinitely execure this loop
and not renen to its calling context. The consequence of this ermor
is that the computer’s seral devices could become non-responsive.
Worse yet, depending on what actions the other device driver takes,
this loop may cause repeated scquiring end relessing of kemel
mesources (memory, locks, atc) at high priority and excessive phys-
ical tus activity. This exms work stresses the operating system,
the other drivers, and the nser spplications nmning on the system,
which may canse them to crash or become non-responsive oo,

This exsmple demonsirates how a notion of termination is cen-
tral to the process of ensuring that reactive systems can always re-
act. Uniil now no swomstic femunston tool has ever been sble
o provide a capadity for large program fragments (== 20,000 Lines)
together with acourate support for programming langmge featuras
such as arbimanly nested loops, poinfers, fmcton-pointers, side-
effects, atc. In this paper we describe such a tool, called TERMINA-
TOR.

TERMINATOR s mast distinsmizhing aspect, with respact to pre-
vions methods and tools for proving program temminstion, is how it
shifts the balance between the two tasks of consirucsing and respac-
tvely checking the termination argument. The classical method is
to construct an expression defining the ramk of a state and then to
check that its value decreases i every wansition from a reachable
smate 10 & next one. The constuction of the ranking fimction is the
hard part and forms & task that needs to be applied to the whole
program. The checking part is relatively easy. In o method, the
tazk of consmucting mnking functons is the relatvely easy part;
they are constmcted on demand besed on the examinaton of only
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo constmact only
mcmmmnmmargummhnmﬂmasetofgmsso\f
possible armments, some of which may be bad zuesses. That is,
this set need not be the exact sef of the ‘right’ ranking fimctons ut
oaly a suparser. We find the same monotoniciny of the refinement
of the tenmination argument 35 with iterative absTaction refinement
for safety (the set of predicates need not be the exact set of ‘Tght’
pradicanes but only a superser).

Checkinz the temminafion argmment is the hard part of owr
method. This is because the termination s now & sat
of rankins fimctions, not 8 singls ranking fimction. With a single
ranking fimction one mmest show that the rank decreases from the
pre- to posi-state after exeouting each single Tansiton step. In owr
semng it is not suficient o look ar 3 single ransidon step. Instead,
we st consider all fiuite sequences of tramsitions. We must show
that, for every seguencs, one of the ranking fimction: decresses

77

Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
m;xmerd:xtperﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 lnss of code) 'bog\atuw:mimpm:t for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.
Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability
General Terms Relisbility, Verfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usually constucted fom a sat of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, must evenmally retam to their caller. Consider the fimction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) a5 a pant of the Trensresional Collaboradve
Besearch Center “Automatic Verifi cation and Amalysiz of Complex. Svs-
tems” (SFB/TR. 14 ANACS), by the German Federal Ministry of Educa-
tion and Research (BMEF) in the fameoork of the Verisoft project under
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chasanoom we s without e provided tha copiss e not made or distributed
ﬁpﬁ|amﬂmmmgmm%5%;m' and the fall cation
en the £t pam. To copy otarnisa, %o rmpublish, 1o post oo servar or to medsaibas
o lisks, reqeires pricr spects © peamission and'or a .

PLDT0S Fune 11-14, 2006, Crme, Omtaric, Camada,

Copyzight (&1 2006 ACM 1-59593-3120-4060006.. 55,00,

Termination Proofs for Systems Code *

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

request packst and F':I.DDa a- =Topd:

0l in PIoStatusBlock-»Informatl
tiom driver will fil w increment the v
(line 68), possibly cansing the driver
and not reneEn to it calling condext.
is that the computer’s serial devices
Worse yet, depending on what actions the other device driver takes,
this loop may cause repeated scquiring end relessing of kemel
mesources (memory, locks, atc) at high priority and excessive phys-
ical tus activity. This exms work stresses the operating system,
the other drivers, and the nser spplications nmning on the system,
which may canse them to crash or become non-responsive oo,
This exsmple demonsirates how a notion of termination is cen-
tral to the process of ensuring that reactive systems can always re-
act. Uniil now no swomstic femunston tool has ever been sble
mpmuﬂea capadity for large program ﬂspnenls[= 20,000 lines)

effects, abc. Inﬂnspaperwe desuihesmhalw],ca]ledl"fmt—
TOR.

TERMINATOR s mast distinsmizhing aspect, with respact to pre-
vions methods and tools for proving program temminstion, is how it
shifts the balance between the two tasks of consirucsing and respac-
tvely checking the termination argument. The classical method is
to construct an expression defining the ramk of a state and then to
check that its value decreases i every wansition from a reachable
smate 10 & next one. The constuction of the ranking fimction is the
hard part and forms & task that needs to be applied to the whole
program. The checking part is relatively easy. In o method, the
tazk of consmucting mnking functons is the relatvely easy part;
they are constmcted on demand besed on the examinaton of only
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo constmact only
mcmmmnmumgummhnmﬂmasetofgmsso\f
possible armments, some of which may be bad zuesses. That is,
this set need not be the exact sef of the ‘right’ ranking fimctons ut
oaly a suparser. We find the same monotoniciny of the refinement
of the tenmination argument 35 with iterative absTaction refinement
for safety (the set of predicates need not be the exact set of ‘Tght’
pradicanes but only a superser).

Checkinz the temminafion argmment is the hard part of owr
method. This is because the termination s now & sat
of rankins fimctions, not 8 singls ranking fimction. With a single
ranking fimction one mmest show that the rank decreases from the
pre- to posi-state after exeouting each single Tansiton step. In owr
semng it is not suficient o look ar 3 single ransidon step. Instead,
we st consider all fiuite sequences of tramsitions. We must show
that, for every seguencs, one of the ranking fimction: decresses

78

TERMINATOR

Termination Proofs for Systems Code *

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disdneuishing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.
Gr.rswm and Subjecr Descriprors D2 4 [Sgfhware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability
General Terms Relisbility, Verfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u:.apmuf‘lteTmnsremmnlCuanhmmwe

ton and Reseanch ('EMBI]mﬂ:eﬁ.mnckeﬂte\h‘m&pmenn.&r
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chasanoom we s without e provided tha copiss e not made or distributed
ﬁwlﬂmmmWEm“m notice and the fall cton
en the £t pam. To copy otarnisa, %o rmpublish, 1o post oo servar or to medsaibas
o lisks, reqeires pricr spects © peamission and'or a .

PLDT0S Fune 11-14, 2006, Crme, Omtaric, Camada,

Copyzight (&1 2006 ACM 1-59593-3120-4060006.. 55,00,

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

Andrey Rybalchen|
Max-Planck-Institut fir Infory
EFFL

rybali@mpi-sb.mpg.dg
andrey.rybalchenko@e

equest packst and FdoData-»TopdfStack is thy
another serial-based device driver). In the case where o
vice dover refurms A refumn-value that mdicates succesg|
0l in PIoStatusBlock-»Information, the seri
tiom driver will fil to increment the value pointed o by
(line 68), possibly cansing the driver to mfinitely execy
and oot renem to its calling confext. The consequence
is that the compuater’s serial devices could become nom
Worse yet, depending oo what actions the other device
this loop may camse repeated scquiring snd relessin
mesources (memary, locks, atc) at high priority and excy
ical tas activity. This exos work stresses the operag
the other drivers, and the nser spplications nmning on
which may canse them to crash or become non-respons|

This exsmple demonsirates how a notion of terming
ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjdeacapaun'fm'large PIOETAm ﬂspnenls(=32

-pof
effects, abc. Inthlspapern‘edesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o)
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
this sef need not be the exsct set of the ‘right’ ranking 5
only a suparser. We find the same monotoniciry of the
of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).

Checkinz the terminafion argmment is the hau.'d.
method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
we mmest consider all finite sequeances of mamsitions. W
that, for every seguencs, one of the ranking function

79

_ . - F| oz
518 |8 |F |£ |8
1 12 0 1 1K 3
2 8 0 0 1K 8
3 410 0 1 8K 26
4 1475 0 1 T5K 24
5 123202 1 11 55K 50
i) 196 1 3 K 20
7 4174 0 0 3K 23
8 210 0 11 SK 27
9 1204 0 5 oK 38
10 158 0 0 8K 21
11 13 0 0 25K 6
12 204 0 0 25K 16
13 257 1 1 T5K 26
14 5 0 0 1K 2
15 141 0 1 65K 18
16 22 0 0 15K 2
17 800 1 i) 4K 35
18 1503 1 0 65K 31
19 200 0 3 K 28
20 4009 0 2 10K 63
21 1461 1 4 16K 56
22 114762 0 5 MK 65
23 158746 2 10 35K 75

Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.

Termination Proofs for Systems Code *

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disdneuishing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Software]: Operating

Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u:.apmuf‘lteTmnsremmnlCuanhmmwe

ton and Reseanch (Ehmﬂmﬂnimwkeflte\h'un&mmm
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chisanoom we is gramed without Se provided thar copiss e not mado or distributed
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon
e the St pae. To copy ctherniae, w2 republih, 0 post oo servan or to medamibnzs

Copyright (&) 2008 ACM 1-59593-320-4+06/D00¢. .. £5.00.

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

Andrey Rybalchen|
Max-Planck-Institut fir Infory
EFFL

rybali@mpi-sb.mpg.dg
andrey.rybalchenko@e

equest packst and FdoData-»TopdfStack is thy
another serial-based device driver). In the case where o
vice dover refurms A refumn-value that mdicates succesg|
0l in PIoStatusBlock- »Information, the serid
tiom driver will fail to incremens the valne pointed to by
(line 68), possibly cansing the driver to mfinitely execy
and oot renem to its calling confext. The consequence
is that the compuater’s serial devices could become nom
Worse yet, depending oo what actions the other device
this loop may camse repeated scquiring snd relessin
mesources (memary, locks, atc) at high priority and excy
ical tas activity. This exos work stresses the operag
the other drivers, and the nser spplications nmning on
which may canse them to crash or become non-respons|

This exsmple demonsirates how a notion of terming
ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjdeacapaun'fm'large PIOETAm ﬂspnenls(=32

-pof
effects, abc. T.nthlspaperwedesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o)
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
this sef need not be the exsct set of the ‘right’ ranking 5
only a suparser. We find the same monotoniciry of the
of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).

Checkinz the terminafion argmment is the hau.'d.
method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
we mmest consider all finite sequeances of mamsitions. W
that, for every seguencs, one of the ranking function

80

§
£ . Fl oz

518 |8 |F |£ |8
1 12 0 1 1K 3

2 8 0 0 1K 8

3 410 0 1 8K 26
4 1475 0 1 T5K 24
5 123202 1 11 55K 50
i) 196 1 3 K 20
7 4174 0 0 3K 23
8 210 0 11 SK 27
9 1204 0 5 oK 38
10 158 0 0 8K 21
11 13 0 0 25K 6

12 204 0 0 25K 16
13 257 1 1 T5K 26
14 5 0 0 1K 2

15 141 0 1 65K 18
16 22 0 0 15K 2

17 800 1 i) 4K 35
18 1503 1 0 65K 31
19 200 0 3 K 28
20 4009 0 2 10K 63
21 1461 1 4 16K 56
22 114762 0 5 MK 65
23 158746 2 10 35K 75

Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.

r

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c q X
for (entry = DeviceExtension->Read(ueue.Flink; N
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRFP, Tail.Owverlay.ListEntry):
stack = IoGetCurrentlIrpStackLocation (irp):

= if (=stack-»FileCbject == File0Object) {

RemoveEntryList (entry):

oldCancelRoutine = IoSetCancelRoutine (irp, NULL) !
= £
S/ IoCancellrp() could have just been called on this IRF.
S/ What we're interested in is2 not whether IoCancellrp() was called
S/ (ie, nextIrp->Cancel iz set), but whether IoCancellrp() called (or

S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £

= if (oldCancelRoutine) {

E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.

- £
return irp:

o }

-] else {

E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.

- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):

o }

o H

} -

| v
81 I ln2292 col41 Ch 41 | |ms| .

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

82 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

83 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

84 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

85 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

86 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

87 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

88 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

89 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

90 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

91 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

92 | || Ln 2292 Col 41 ch 41

#% Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit View Debug Tools Window Help

mouclass.c
for (entry = DeviceExtension->Read(ueue.Flink;
entry !'= &DeviceExtension->Read{ueue;
= entry = entry->»>Flink) {

irp = CONTAINING RECORD (entry, IRF, Tail.Owverlay.ListEnt:
stack = IoGetCurrentlIrpStackLocation (irp):
= if (=stack-»FileCbject == File0Object) {
RemoveEntryList (entry):

aldCancelRoutine = IoSetCancelRoutine (irp, HULL) ;
= £
S/ IoCancellrp() could have just been called on this 1

S/ What we're interested in is not whether IoCancellrg
S/ (die, nextIrp->Cancel iz set), but whether IoCancell
S/ i= about to call) our cancel routine. To check that, check the result
S/ of the test-and-set macro IoSetCancelRoutine.

- £
= if (oldCancelRoutine) {
E £
/¢ Cancel routine not called for this IRP. BReturn this IRPE.
- £
return irp:
o }
= else {
E £
S/ This IRF was just cancelled and the cancel routine was (or will
S/ be) called. The cancel routine will complete thi=z IEP a= =scon as
S/ we drop the spinlock. 5o don't do anything with the IRF.
£
S/ Blso, the cancel routine will try to degueus the IRF, =o make the
S/ IRP's li=stEntry point to itself.
- £
ASS5ERT (irp-»Cancel);
InitializelistHead (&irp->Tail.0Overlay.lListEntry):
o }

93 | || Ln 2292 Col 41 ch 41

File Edit ‘Wiew Insert Formatb Tools Acktions Help

i'ﬁ.ﬂeply|ﬁReplvtn.ﬁ.l_l|.}_—aFnrﬂard|.;j __1|_&| L |£-}|._I’_"3 x | i v G TA¢|@!

You replied on 1)26/2006 12:53 AM,

From: ‘1#MWOWV Sent: Sat 12/10/2005 3:52 AM
To Byron Cook,

e

Subject: RE: Queskion about mouclass driver

Still solwving the halting problem I see. If yvou ever find spare time, vou might also want to give & go
art Hilhert Prohlem #3, i.e. the Riemann hypothesiz [(http://www.maths.ex.ac. uk/~mwmatkins/ zeta/33-a. htn)

Now Lo wour actual dquestion @)

Thi=, iz indeed fucked. The for loop should be scrapped so that the else clause can read the next
entry bhefore whacking it.

Note also that *two* processors will be wedgied, not just one: the cancel routine will wait until the
lock held by the caller i=s dropped, which will newver happen. In short, the loop won't terminate until
the user terminates the machine. ¥ou don't even get a courtesy crash.

For extra credit, notice the O(n*m) condition created by the invocation by MousecClassCleanuplOusues,
where 1 iz the number of non-FO matching objects in the heginning of the gqueues and m is the nunber of
matching ones. DO3 attack anvone?

- 4

From: Ewron Cook
Gent: Friday, Decemwber 09, 2005 6:42Z PM
To: Adrian Oney
Jubject: Question about mouclass driver

&

File Edit ‘Wiew Insert Formatb Tools Acktions Help

i'ﬁ.ﬂeply|ﬁReplvtn.ﬁ.l_l|.}_—aFnrﬂard|.;j __1|_&| L |£-}|._I’_"3 x | i v G TA¢|@!

You replied on 1)26/2006 12:53 AM,

From: ‘1#MWOWV Sent: Sat 12/10/2005 3:52 AM
To Byron Cook,

e

Subject: RE: Queskion about mouclass driver

Still solwving the halting problem I see. If yvou ever find spare time, vou might also want to give & go
art Hilhert Prohlem #3, i.e. the Riemann hypothesiz [(http://www.maths.ex.ac. uk/~mwmatkins/ zeta/33-a. htn)

Now Lo wour actual dquestion @)

Thi=, iz indeed fucked. The for loop should be scrapped so that the else clause can read the next
entry bhefore whacking it.

Note also that *two* processors will be wedgied, not just one: the cancel routine will wait until the
lock held by the caller i=s dropped, which will newver happen. In short, the loop won't terminate until
the user terminates the machine. ¥ou don't even get a courtesy crash.

For extra credit, notice the O(n*m) condition created by the invocation by MousecClassCleanuplOusues,
where 1 iz the number of non-FO matching objects in the heginning of the gqueues and m is the nunber of
matching ones. DO3 attack anvone?

- 4

From: Ewron Cook
Gent: Friday, Decemwber 09, 2005 6:42Z PM
To: Adrian Oney
Jubject: Question about mouclass driver

&

File Edit ‘Wiew Insert Formatb Tools Acktions Help

i'ﬁ.ﬂeply|ﬁReplvtn.ﬁ.l_l|.}_—aFnrﬂard|.;j __1|_&| L |£-}|._I’_"3 x | i v G TA¢|@!

You replied on 1)26/2006 12:53 AM,

From: ‘1#MWOWV Sent: Sat 12/10/2005 3:52 AM
To Byron Cook,

e

Subject: RE: Queskion about mouclass driver

Still solwving the halting problem I see. If yvou ever find spare time, vou might also want to give & go
art Hilhert Prohlem #3, i.e. the Riemann hypothesiz [(http://www.maths.ex.ac. uk/~mwmatkins/ zeta/33-a. htn)

Now Lo wour actual dquestion @)

Thi=, iz indeed fucked. The for loop should be scrapped so that the else clause can read the next
entry bhefore whacking it.

Note also that *two* processors will be wedgied, not just one: the cancel routine will wait until the
lock held by the caller i=s dropped, which will newver happen. In short, the loop won't terminate until
the user terminates the machine. ¥ou don't even get a courtesy crash.

For extra credit, notice the O(n*m) condition created by the invocation by MousecClassCleanuplOusues,
where 1 iz the number of non-FO matching objects in the heginning of the gqueues and m is the nunber of
matching ones. DO3 attack anvone?

- 4

From: Ewron Cook
Gent: Friday, Decemwber 09, 2005 6:42Z PM
To: Adrian Oney
Jubject: Question about mouclass driver

&

Termination Proofs for Systems Cod

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
u]lesﬂﬁmdﬂi:edﬁvﬂ'dism‘b:hm:ﬁmsfuumﬂu‘iﬁnﬂumup—
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng

Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u:.apmuf‘lteTmnsremmnlCuanhmmwe

ton and Reseanch (Ehmﬂmﬂnimwkeflte\h'un&mmm
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chisanoom we is gramed without Se provided thar copiss e not mado or distributed
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon
e the St pae. To copy ctherniae, w2 republih, 0 post oo servan or to medamibnzs

Copyright (&) 2008 ACM 1-59593-320-4+06/D00¢. .. £5.00.

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

another serial-based device driver). In the case w
vice dover refurns a refurn-value that mdic
0l in PIoStatusBlock-»Informatio ey
tiom driver will fil w increment the v o by
(line 68), possibly cansing the driver to Mfinitely execy
and oot renem to its calling confext. The consequence
is that the compuater’s serial devices could become nom
Worse yet, depending oo what actions the other device
this loop may camse repeated scquiring snd relessin
mesources (memary, locks, atc) at high priority and excy
ical tas activity. This exos work stresses the operag
the other drivers, and the nser spplications nmning on
which may canse them to crash or become non-respons|
This exsmple demonsirates how a notion of terming
ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjﬂeacapaun fm'largepmgmmﬁspnm(=32

mequest packet and FdoData- :-Top:l:stac:f.ti:(
d

-pof
effects, abc. T.nthlspaperwedesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o)
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
this sef need not be the exsct set of the ‘right’ ranking 5
only a suparser. We find the same monotoniciry of the
of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).

Checkinz the terminafion argmment is the hau.'d.
method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
we mmest consider all finite sequeances of mamsitions. W
that, for every seguencs, one of the ranking function

97

Sl § AR
sl |& |F |5 |¢
1 12 0 1 1K 3
2 8 0 0 1K 8
3 410 0 1 8K 26
4 1475 0 1 75K 24
3 123202 1 1 55K 50
6 196 1 3 SK 20
7 4174 0 0 SK 23
g 210 0 11 SK 27
9 1294 0 5 0K 38
10 158 0 0 8K 21
11 13 0 0 25K G
12 204 0 0 25K 16
13 257 1 1 75K 26
14 5 0 0 1K 2
15 141 0 1 65K 18
16 22 0 0 15K 2
17 800 1 & 4K 35
18 1503 1 0 6.5K 31
19 200 0 3 3K 28
20 4000 0 2 10K 63
21 1461 1 4 16K 56
22 114762 0 5 MK 65
23 158746 2 10 35K 75

Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of

which nmst be proved terninating.

Termination Proofs for Systems Cod

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Abstract

Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
mmﬂrd:xtpm:ﬁxms a path-sensitive and contexi-sensitdve pro-
zram smalysis and provides capacity for large program fragments
{1-2. more than 20,000 linss of code) together with support for pro-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenze of checking with dinary renchability aalysiz.

Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Software]: Operating

Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usully constructed from a set of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, mmst evenmslly retarn to their caller. Consider the fonction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) u:.apmuf‘lteTmnsremmnlCuanhmmwe

ton and Reseanch (Ehmﬂmﬂnimwkeflte\h'un&mmm
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chisanoom we is gramed without Se provided thar copiss e not mado or distributed
for peofi t or commercil advantgs and Sat copiss bear & notice and the fall cafon
e the St pae. To copy ctherniae, w2 republih, 0 post oo servan or to medamibnzs

Copyright (&) 2008 ACM 1-59593-320-4+06/D00¢. .. £5.00.

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

another serial-based device driver). In the case w
vice dover refurns a refurn-value that mdic
0l in PIoStatusBlock-»Informatio ey
tiom driver will fil w increment the v o by
(line 68), possibly cansing the driver to Mfinitely execy
and oot renem to its calling confext. The consequence
is that the compuater’s serial devices could become nom
Worse yet, depending oo what actions the other device
this loop may camse repeated scquiring snd relessin
mesources (memary, locks, atc) at high priority and excy
ical tas activity. This exos work stresses the operag
the other drivers, and the nser spplications nmning on
which may canse them to crash or become non-respons|
This exsmple demonsirates how a notion of terming
ral to the process of ensuring that reactive systems can
act. Uniil now no swomstic iemunston tool has evel
mplmjdeacapaun'fm'large PIOETAm ﬂspnenls(=32

mequest packet and FdoData- :-Top:l:stac:f.ti:(
d

-pof
effects, abc. T.nthlspaperwedesmbesmhalmLcaJled
TOR.

TERMINATOR s mast distinmuizhing azpect, with req
vions methods and tools for proving program ferminstiy
shifts the balance between the two tasks of consiruciing|
tvely checking the terminston argument. The classicy
to construct an expression defining the ramk of a state
check that its value decreases in every wansition from
sate 10 & next one. The constuction of the ranking fim
hard part and forms & task that needs to be applied i
progrem. The checking part is relatively easy. In o)
tazk of consmucting mnking Simctons is the relatvely
they are constmcted on demsnd besed on the examina
a few salacted paths through the prosram.

Furthermore, TERMINATOR is Dot required fo cog
ome comect termnation argument ot rather @ set of]
possible armments, some of which may be bad znesg
this sef need not be the exsct set of the ‘right’ ranking 5
only a suparser. We find the same monotoniciry of the
of the tenmination argument 25 with iterative absTaction
for safety (the set of predicates nesd not be the exact 5
pradicanes but only a superser).

Checkinz the terminafion argmment is the hau.'d.
method. This is because the terminstion srpument iy
of rankins fimctions, not 8 singls ranking fimction. W
ranking fimction one nmst show that the rank decreas
pre- o posi-state after expouting each singls Tansidon
seming it is not suficient o look at 2 single ransidon =
we mmest consider all finite sequeances of mamsitions. W
that, for every seguencs, one of the ranking function

98

3
g
Py :
& 5 fm B &
§F | &£ & & F |«
1 |12 0 1 K |3
> s 0 0 IK |8
3 |40 0 1 SK |26
4 | 1475 0 1 75K | 24
5 123200 |1 11 55K | 50
6 |19 1 3 SK |29
7 | 4174 0 0 SK |23
g | 210 0 11 SK |27
9 | 1204 0 5 6K |38
10 | 158 0 0 SK |21
11 |13 0 0 25K | 6
12 | 204 0 0 25K | 16
13 | 257 1 1 75K | 26
14 |5 0 0 K |2
15 | 141 0 1 65K | 18
16 | 2 0 0 15K |2
17 | 800 1 6 4K |35
18 | 1503 1 0 65K | 31
19 | 200 0 3 3K |28
20 | 4000 0 2 10K | 63
21 | 1461 1 4 16K | 356
2 14762 |0 5 MK | 65
23 | 158746 | 2 10 K |75

Figure 12, Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SOV,
Each device driver exports from 5 to 10 dispatch routines, all of
which nmst be proved terninating.

Termination Proofs for Systems Cod
Byron Cook Andreas Podelski
Microsoft Research Max-Planck-Instimt far Tnformarik
bycooki@microsoft.com podelski@mpi-sb.mpg.de
0
2 8 0 0 1K 8
Abstract st packet and FdoData-»TopOLSkack i
Program termination is cenrsl to the process of ensuring that sys- mother cerial based dmiﬂead;l;).%:mcmcnt]:(3 410 0 1 SK 26
tems code can always react. We dascribe a new progrem terming- vace driver remims 3 renmn-vaiue that mdic R - n
tion prover that performs 8 path-sensitive and conbedt-sensitive pro- 0 m PIoStatusBlock-=Informat o =T 4 1475 0 1 15K 24
zram smalysis and provides capacity for large program fragments “Wm‘““ﬂﬁl}mm‘.““ - o by
{i.2. more than 20,000 Lines of cods) together with support for pro- (e 66, possibly cousing the driver to Mfmitely sxecd | o 123200 | 1 11 55K | s0
sramming lanmage feanirss such as arbiranly nested loops, point- gndmtrenlnmm_calhpgm.mumseqme
ers, fimction-pointers, side-effects, etc. We also present expesimen- s that the compurer's serial devices could become nony
tal results on device driver dispatch routines from the Windows op- woroe Vet depending an what sctions the other device 6 196 - 3 SK 29
emating system. The most disdneuishing aspect of our tool is bow mslmpm\mmﬁﬁmdxﬁmmgmdﬁdm
it shifts the balance barween the too tasks of construcring and re- Tesources (memary, locks, etc) at high priority - 7 4174 0 0 3K 23
spectively checking the termination arsment. Checking becomes &&ﬁ; EE m?:saer“::ﬁcﬁ the upe;:ll:
e e e e e e o b s e | 8| 210 0 11 Sk |27
Cogories and Subjecs 3 204 |0 5 6K |38
Systems—TF eliability
G:;urm.i Terms R]:I}.mhu.h 58 0 0 8K 21
Eeywords Pr:n%r‘;‘n;:l;t 3 0 0 25K 6
1. Imtroduction 04 0 0 25K 16
o e e 57 1 1 75K | 26
ponents that we expect w
funcions mexpeciedly dd 0 0 1K 2
0 DON-TESPONSTVS Systams|
ample. st evennally red
in Figure 1 which is callg 41] 1 65K | 18
the Windows serial smume
serial-based device driver] 2 0 0 15K 2
kemel roufine ToCallny
e seconi and i i foo ! 6 R s
saarch Famdation (DFG) o -
Research Cemter “Aistoruatic 503 1 0 65K | 31
S
vt 01 15 C38. iy 09 0 3 3K |28
J000 0 2 10K 63
o e s e o 461 1 4 16K | 356
for peofi t or comsercil adantg
e e 14762 | 0 5 MK | 65
PLIT05 Tuma 11-14, 3006, Onf
Copyight (@ 2006 ACM 1-59%9 38746 2 10 35K 75
Results of experiments using an mtegration of TERMI-
h the Windows Static Driver Verifier[21] product (SDV)
dard 23 Windows OS device drivers used to test SDV.
2 driver exports from 5 to 10 dispatch routines, all of
99 be proved terminating.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Abstract
Program fermuination is central to the process of ensurng that sys-
teme code can always react. We describe 3 new program temins-
tion prover that perfiorms a path-sensitive and contest-sensifive pro-
zram smalysis and provides capacity for large program fragments
{12. more than 20,000 linss of:ode]'bog\ahummimpmfw;tu-
Zramming language features such as arbitrarily nested loops, point-
erz, fimcnon-poimters, side-effecs, atc. We also present experiman-
tal results om device dover dispatch routines from the Windows op-
emating system. The most disd ing aspect of our tool is bow
it shifts the balance between the two tasks of consrucnng and re-
specively checking the temmination armument Checking becomes
the hard step. In this paper we show how we solve the cormespond-
ing challenge of checking with Sinary reachability anafysis.
Categories and Subject Deseriptors D2 4 [Sqfware]: Software
—Program Verificadon; D45 [Sofhware]: Operatdng
Systems—TF eliability

General Terms Felisbility, Venfication

Esywords Program rermination model checking, program verifi-
cation, formal venification

1. Imtroduction

Feactive systems (& 2 operating systems, wel servers, mail servars,
database engines, etc) are usually constucted fom a sat of com-
ponents that we expect will always temminate Cases where these
funcions mexpeciedly do not refum to their calling conbext lesds
0 non-responsive systems. Device drver dispatch routines, for ex-
ample, must evenmally retam to their caller. Consider the fimction
in Figure 1 which is called from several dispatch routines within
the Windows serial ermmeration device driver. This code calls ather
serizl-based device dnvers by passing I'O request packets via the
kemel routine ToCallDriver (line 50, pIrp is a pointer to the

* The s=cond and third author were supported i pant by the Gemuan R
saarch Fomdation (DFG) a5 a pant of the Trensresional Collaboradve
Besearch Center “Automatic Verifi cation and Amalysiz of Complex. Svs-
tems” (SFB/TR. 14 ANACS), by the German Federal Ministry of Educa-
tion and Research (BMEF) in the fameoork of the Verisoft project under
grant (11 IS C38.

Pumaission to moke digital or hand copiss of all or part of this work for parsonal or
chasanoom we s witout Se thae o mot o or distributed
ﬁpﬁlumﬂmmmpmmm novticn and the £l caon
en the £t pam. To copy otarnisa, %o rmpublish, 1o post oo servar or to medsaibas
o lisks, reqeires pricr spects © peamission and'or a .

PLDT0S Fune 11-14, 2006, Crme, Omtaric, Camada,

Copyzight (&1 2006 ACM 1-59593-3120-4060006.. 55,00,

mequest packst and FdoData- »Top
another serial-based device driver). In o
vice dover refurms a refun-value that i
0 in PIoStatusBlock-=Informa
tiom driver will fil w increment the valy
(line 68), possibly cansing the drver to
and not reneEn o its calling congext. Th
is that the computer’s serial devices con
Worse yet, depending on what actions
this loop may cause repeated scquirg
resoumces (memary, locks, atc) at high
ical tas activity. This exms work stre]
the other drivers, and the nser spplicat
which may canse them to crash or becod
This example demonsirates how a oy
tral to the process of ensuring thar reacy
act. Uniil now no suomstic femunstg
1o provide a capadty for large program
together with acourate support for prog
such as arbimanly nested loops, point
effects, etc. In this paper we describe s
TOR.
TERMINATOR s most distinnizhing|
vions methods and tools for proving prof
shifts the balance between the two tasks
thvely checking the terminaton argmme]
to construct an expression defining the
check that its value decreases i every
=tate 1o 3 nent one. The consmaction of]
hard part and forms a task that needs
progrem. The checking part is relativel
tazk of consmucting manking fnctons
they are constmcted on demsnd based
a few salacted paths through the progra)
Furthermore, TERMINATOR is not
of¢ COMTect termnation argument bt
possible arpments, some of which m
this sat nead not be the exact sefof the
only a suparser. We find the same mon)
of the tenmination argument 25 with iter]
for safety (the set of predicates nesd nd
lxedlcmeshmmhrsmpuselj

of rankins fimctions, not 8 singls ranky
ranking fimction one mmst show that
pre- o posi-state after exsouting each
semng it is not suficient to look ar 3 sin
we st consider all fiuite sequances gff
that, for every seguencs, one of the r

100

Automatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft Research
? Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

1 Introduction

Consider the code fragment in Fig. 1, which comes from the source code of a
Windows device drver. Does this loop guarantee termination? It's supposed to:
failure of this loop to terminate would have catastrophic effects on the stahility
and responsiveness of the computer. Why wonld it be a problem if this loop didn't
terminate? First of all, the deviee that this code is managing would cesse to
function. Secondly, due to the fact that this code exeentes at kernel-level priority,
non-termination would cause it to starve other threads running on the system.
Note that we cannot simply kill the thread, as it can be holding kernel locks and
modifying kemel-level dats-structures—foreibly killing the thread would leave
the operating system in an inconsistent state. Furthermore, if the loop hangs,
the machine might not actually crash * Instead, the thread will likely just hang
until the user resets the machine. This means that the bug cannot be diagnosed
using post-crash analysis tools.

This example highlights the importance of termination in systems level code:
in order to improve the responsiveness and stability of the operating system it
is vital that we can sutomatically check the termination of loops like this one.
In this case, in order to prove the termination of the loop, we need to show the
following conditions:

1. DeviceExrtension->Readfuens.Flink is & pointer to & cirenlar list of ele-
ments (via the Flink field).

3 Although hanging kernel-threads can trigger other bugs within the operating system.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Variance Analyses From Invariance Analyses

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jib@microsoft.com arlemidics gmul_ac.uk bycook@microsoft.com

Dimo Distefano Peter O"Heamn

Crueen Mary, University of London
ddino@des.qmul.ac.uk

Abstract

An Ivanance asserion for a program lecation £ is 2 statement that
always bolds at f during execurtion of the program. Program mmwari-
ance analyses infer imariance assertions that can be usefiil when
trying te prove safery properdes. We nse the term varimce arser-
fion to mean a satement that holds between any smte at £ and any
previows sate that was alse at ¢. This paper is concemed with the
development of analyses for variance assertions and ther applica-
tion fo proving emunaton and lvensss properties. We describe
a method of consmucting program vanance analyses fom mwar-
ance analyses. If we change the underlying invariance analysis, we
et a different variance analysis. We describe several applicadons
of the method mchiding variance amalyses using linear arithmetic
and shape amalysts. Using experimental results we demonstrate that
thess varance apalyses give mse to a new breed of termunafion
provers which are competitive with and sometimes better than to-
day’s stafte-of-the-arm tenmination provers.

Cotegories and Subject Descripiors D24 [Sothware Ensineer-
ing]: Sofrware Program Verification; F.3.1 [Logicr and Meanings
af Programs]: Specifying and Verifying and Feasoning about Pro-
ERms

General Terms \erification, Beliability, Lansoages
Eeywords Formal Venification, Sofware Model Chedldng, Pro-
eram Analysis, Livenass, Termination

1. Imtroduction

An imvarignoe analysis takes in a program as ingut and infers a set
of possibly disjunciive Svanance assertions (oo, imariants) that
is mdexed by program locations. Each location ¢ in the program
has an imvaniant that always belds during any execution at £. These
iovariants can serve many purposes. They might be used directly
to prove safety properties of programs. Or they might be used in-
directly, for exampls, to 2id the construction of abstract TAnsition
relations during symbolic seftware model checking [29]. Ifa de-
sired safety property is not directly provable from a given imvariant,

Crueen Mary, University of London
oheami@dcs gmul_ac uk

the user {or algorithm calling the invariance analysis) might try to
refine the abstraction. For example, if the el is based on abstract
interpretation they may choose to improve the absraction by delay-
ing the widening operation [1£], using dymamic partitioning [33],
emploving a different abstract domain, etc

The amm of this paper is to develop an analnguus sat of tols
for program termination and livensss: we inroduce a class of ols
called variance gnaiyzer which infer asserdons, called vaviance
azzertions, that hold bemwesn amy state at a locarion ¢ and amy
previous state that was also at location £. Mot that a single variance
aszention may itself be a disjunction. We presant a gensric method
of consmucing varance analyses fom owarance analyses. For

each mvaniance analysis, we can construct what we call its mduced

variance iy

This paper also ntraduces a condition on vanance asseTtons
called the iocal rermmamon predicars. In this work, we show bow
the variance assertons inferred durins our analysis can be wsed to
establish local ermination predicates. If this predicate can be es-
tablished for each vanance assemion inferred for a program. whale
Droeram termmarion bas been proved: the comecmess of this step
relies on a result from [37] on digunctively weil unded over-
approximarions. Analozously to iovariance anatysis, even if the in-
duced vanance analysis fails to prove whole program remminaden
it cam still produce usefol mformation. If the predicate can be estab-
lished onty for some subset of the vanance assertions, this indaces
a different liveness property that holds of the program. Morsgver,
the mformation inferred can be used by other termination provers
basad on disfunctive well-foundedness. such as TermimaToR [14].
If the underlying invariance amalysis is based on absiract mierpre-
tation, the user or alzorthm could use the same abstraction refine-
ment techniques that are available for imarance anabyses.

In fhis paper we ihstate the utility of our approach with three
induced vanance analyses. We comnstmact a vanance amalysis for
arithmetic prozrams based on the Octazon abstmact domain [34].
The memem]fsls used as imput to wralgumtmnmmpnsed
afa standard analysis based on Octazon. and a post-analysis phase
that recovers soms disjumctive i gives ris= to a fast
and yet surprisingly acourate termination prover. We similariy con-
strct an induced variance anakysis bassd on the domain of Polyhe-
dra [23]. Finally, we show that an indnced variance analysis based
on the separation domain [24] is an Improvemsnt on a fermination
prover that was recently described in tha literatore [3]. These thres

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft Research
? Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

I Introduction

[Consider the code fragment in Fig. 1, which comes from the source code of a
Vindows deviee driver. Does this loop guarantee termination? It's supposed to:
ailure of this loop to terminate would have catastrophie effects on the stability
hnd responsiveness of the computer. Why would it be a problerm if this loop didn't
erminate? First of all, the deviee that this code s managing would cesse to
unction. Secondly, due to the fact that this code exeentes at kernel-level priority,
won-termination would cause it to starve other thresds running on the system.
Vote that we cannot simply kill the thread, as it ean be holding kernel locks and
modifving kemel-level dats-structures—foreibly killing the thread would leave
he operating system in an inconsistent state. Furthemmore, if the loop hangs,
he machine might not actually crash.? Instesd, the thread will likely just hang
mtil the user resets the machine. This means that the bug cannot be diagnosed
wsing post-crash analysis tools.

This example highlights the importance of termination in systems level code:
n order to improve the responsiveness and stability of the operating system it
s vital that we can automatically check the termination of loops like this one.
n this case, in order to prove the termination of the loop, we need to show the
ollowing conditions:

1. DeviceExrtension->Readfuens.Flink is & pointer to & cirenlar list of ele-
ments (via the Flink field).

4 Although hanging kernel-threads can trigger other bugs within the operating system.

Termination Proofs for Systems Code *

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Andreas Podelski Andre|

Niax-Planck-Instint fir Informank Niam-Planck-Ty
podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Variance Analyses From Invariance Analyses

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com
. N N . it iy o
Proving Termination by Divergence” J;baim
v delay-
Inz [33].
Domagoj Babi¢, Alan J. Hu, Zvonimir Rakamaric Byron Cook of tols
Department of Computer Science, University of British Columbia Microsoft Research of tools
{babic,ajh,zrakamar}@cs.ubc.ca bycook@microsoft.com m:‘
[Fariance
method
Abstract while (x < v) | I.:ﬁl::;
X = pow(x,3) - 2+pow(x,2) - X + 2; :
We describe a simple and efficient algorithm for proving } beartens
the termination of a class of loops with nonlinear assign- } o bow
o N N _ wed o
Jinenrs to mrmbfei:. }?:? method is bas_ea‘an divergence resa“ This paper outlines a new proof procedure for cases of this Aoy
ing for each variable in the cone-of-influence of the loop’s sort. Using combination techniques described in [1] and [2], b whale
termination condition. The analysis allows us to automati- our intention for this proposed procedure is fo be combined s step
cally prove the termination of loops that cannot be handled with the existing termination analysis fechniques—making bd aver-
using previous techniques. The paper closes with experi- future termination provers a little less temperamental [f the in-
me:m[results using short examples drawn from industrial The proposed technique is based on divergence testing; iy
coae. the transition system of each program variable is indepen- induces
dently examined for divergence to plus- or minus-infinity. JeT=0VET
The approach is limited to loops containing only polyno-]E‘U\I'iﬁ
1 Introduction s [14]

From the very beginnings of the formal analysis of soft-
ware [12, 14], the task of formally verifying the correctness
of a program has been decomposed into the tasks of prov-
ing correctness jf the program terminates, and separately
proving termination. Deciding termination. in general. is
obviously undecidable, but thanks to considerable research
progress over the vears (e.g.. [9. 20, 5. 23, 3, 6. 13, 4. 16.
18,21, 8, 7]). a variety of techniques and heuristics can now
automatically prove termination of many loops that occur in
practice.

muial update expressions with finite degree, allowmg ighly
efficient computation of certain regions that guarantee di-
vergence. Like all automated termination provers, the tech-
nique can't handle all loops. However. it is very fast, it
is sound, and it can prove termination in cases that previ-
ously could not be handled or could be handled only by a
much more expensive analysis. Our hope is that. in prac-
tice, this restricted analysis (and some extensions) will han-
dle the termination of the majority of loops in which a non-
linear analysis is required. In our investigations, we have
found that this simple type of nonlinear loop appears in in-
dustrial numerical computations and nonlinear digital fil-

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft Research
? Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

I Introduction

[Consider the code fragment in Fig. 1, which comes from the source code of a
Vindows deviee driver. Does this loop guarantee termination? It's supposed to:
ailure of this loop to terminate would have catastrophie effects on the stability
hnd responsiveness of the computer. Why would it be a problerm if this loop didn't
erminate? First of all, the deviee that this code s managing would cesse to
unction. Secondly, due to the fact that this code exeentes at kernel-level priority,
won-termination would cause it to starve other thresds running on the system.
Vote that we cannot simply kill the thread, as it ean be holding kernel locks and
modifving kemel-level dats-structures—foreibly killing the thread would leave
he operating system in an inconsistent state. Furthemmore, if the loop hangs,
he machine might not actually crash.? Instead, the thread will likely just hang
mtil the user resets the machine. This means that the bug cannot be diagnosed
wsing post-crash analysis tools.

This example highlights the importance of termination in systems level code:
n order to improve the responsiveness and stability of the operating system it
s vital that we can automatically check the termination of loops like this one.
n this case, in order to prove the termination of the loop, we need to show the
ollowing conditions:

1. DeviceExrtension->Readfuens.Flink is & pointer to & cirenlar list of ele-
ments (via the Flink field).

4 Although hanging kernel-threads can trigger other bugs within the operating system.

Termination Proofs for Systems Code *

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Andreas Podelski Andre|

Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Josh Berdine

Microsoft Research
Jb@microsoft.com

Variance Analyses From Invariance Analyses

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft. Research
? Queen Mary, University of London

Aziem Chawdhary Byron Cook
Cueen Mary, Universzity of London Mirrosoft Ressarch B) - o
aziemidcs. gmulac uk bycook@mi F1.com Abstract. We describe a new program termination analysis designed to

handle imperative programs whose termination depends on the mutation

Proving Termination by Divergence®

of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

[ht try to
:bﬂfl:;_[I Introduction

Inz [33],

Consder the pode frarment in Fie 1 which comes from the source code of &

Domagoj Babi¢, Alan J. Hu,
Department of Computer Science, Un
{babic,ajh,zrakamar}

Abstract

We describe a simple and efficient algorithm for
the termination of a class of loops with nonlinea
ments to variables. The method is based on divergd
ing for each variable in the cone-of-influence of t
termination condition. The analysis allows us fo
cally prove the termination of loops that cannot b
using previous techniques. The paper closes witl
mental results using short examples drawn from il
code.

1 Introduction

From the very beginnings of the formal analysi|
ware [12, 14], the task of formally verifying the col
of a program has been decomposed into the tasks
ing correctness if the program terminates, and s
proving termination. Deciding termination. in g
obviously undecidable, but thanks to considerablel
progress over the years (e.g.. [9, 20, 5. 23, 3, 6. |
18, 21. 8, 7]). a variety of techniques and heuristic
automatically prove termination of many loops tha
practice.

Proving Thread Termination

Byron Cook
Microsoft Research
bycook@microsoft.com

Abstract

Concurrent programs are often designed such that certain fune-
tions executing within crtical threads must terminate. Examples
of such cases can be found in operating systems, web servers, e-
mail clients, etc. Unforimately, no known automatic program ter-
mination prover supports a practical method of proving the termi-
nation of threads. In this paper we describe such a procedure. The
procedure’s scalability is achieved through the use of environment
models that abstract away the surrounding threads. The procedure’s
accuracy is due to a novel method of incrementally constructing
environment abstractions. Our method finds the conditions that a
thread requires of its t in order to establish terminati

Andreas Podelski
University of Freiburg
podelski@mpi-sb.mpg.de

antee termination? It's supposed to:
catastrophic effects on the stahbility
nld it be a problem if this loop didn't
s code s managing would cesse to
Fode executes at kernel-level priority,
her threads running on the system.
az it can be holding kernel locks and
leaibly killing the thread would leave
te. Furthermore, if the loop hangs,
bead, the thread will likely just hang
15 that the bug cannot be diagnosed

Andrey Rybalchenko
EPFL and MPI
rybal@mpi-sh.mpg.de
of termination in systems level code:
stability of the operating system it
e termination of loops like this one.
on of the loop, we need to show the

KehcquireSpinLock (&Ext-»Spinlock, &irgl);

do { s & pointer to & cireular list of ele-
irp = DequeusReadByFileObject (Ext, FileObject);
if (irp)
irp->IoStatus.Status = STATUS CANCELLED;
irp-s>IoStatus.Information = 0;

[pther bugs within the operating system.
InsertTaillList (&listHead,LinkPtr(irp});
}
} while {irp != NULL)};

KeReleaseSpinLock (&Ext-»SpinLock, irgl);

by looking at the conditions necessary to prove that certain paths
through the thread represent well-founded relations if executed in
isolation of the other threads. The paper gives a description of ex-
perimental results using an implementation of our procedure on
Windows device drivers, and a description of a previously unknown
bug found with the tool.

Crntarmnitar mwd Cruhiant Thoememntaee T3 3 A4 [Cafummal ©nfierara

Figure 1. Code fragment from a keyboard device driver whose ter-
mination partially depends on the correct behavior of other threads
from the drver.

;_:le. is a d?mon_s,t[ati_cm f:lf_this prﬂ})_lep_.l. This,_ _lao_p. u.'_hich_cqmes

Josh Berdine

Microsoft Research
Jb@microsoft.com

Termination

Proving Termination by Divergence®

C

yais designed to
on the mutation
tract interpretation
ations which, if each is
n give an abstract interpreta-
‘which tracks the depths of pisces
two techniques to produwce an an-
dfumw that the analysis is able to prove
racted from Windows device drivers that

t be proved terminating before by other means; we also discuss
ly unknown bug found with the analysis.

nnaider the rode frarment in Fie 1 which comes from the source code of a

Domagoj Babi¢, Alan J. Hu,
Department of Computer Science, Un
{babic,ajh,zrakamar}

Abstract

We describe a simple and efficient algorithm for
the termination of a class of loops with nonlinea
ments to variables. The method is based on divergd
ing for each variable in the cone-of-influence of t
termination condition. The analysis allows us fo
cally prove the termination of loops that cannot b
using previous techniques. The paper closes witl
mental results using short examples drawn from il
code.

1 Introduction

From the very beginnings of the formal analysi|
ware [12, 14], the task of formally verifying the col
of a program has been decomposed into the tasks
ing correctness if the program terminates, and s
proving termination. Deciding termination. in g
obviously undecidable, but thanks to considerablel
progress over the years (e.g.. [9, 20, 5. 23, 3, 6. |
18, 21. 8, 7]). a variety of techniques and heuristic
automatically prove termination of many loops tha
practice.

Proving Thread Termination

Byron Cook
Microsoft Research
bycook@microsoft.com

Abstract

Concurrent programs are often designed such that certain fune-
tions executing within crtical threads must terminate. Examples
of such cases can be found in operating systems, web servers, e-
mail clients, etc. Unforimately, no known automatic program ter-
mination prover supports a practical method of proving the termi-
nation of threads. In this paper we describe such a procedure. The
procedure’s scalability is achieved through the use of environment
models that abstract away the surrounding threads. The procedure’s
accuracy is due to a novel method of incrementally constructing
environment abstractions. Our method finds the conditions that a
thread - P o

Andreas Podelski
University of Freiburg
podelski@mpi-sb.mpg.de

Andrey Rybalchenko
EPFL and MPI
rybal@mpi-sh.mpg.de

KeAcguireSpinLock (&Ext -»SpinLock, &irgl);
do {
irp = DegueusReadByFileObject (Ext, FileObject);
if (irp)
irp-=IoStatus.Status = STATUS CANCELLED;
irp-s>IoStatus.Information = 0;
InsertTaillList (&listHead,LinkPtr(irp});
} while {irp != NULL)};

KeReleaseSpinLock (&Ext-»SpinLock, irgl);

0 ofits t in order to ter

by looking at the conditions necessary to prove that certain paths
through the thread represent well-founded relations if executed in
isolation of the other threads. The paper gives a description of ex-
perimental results using an implementation of our procedure on
Windows device drivers, and a description of a previously unknown
bug found with the tool.

Crntarmnitar mwd Cruhiant Thoememntaee T3 3 A4 [Cafummal ©nfierara

Figure 1. Code fragment from a keyboard device driver whose ter-
mination partially depends on the correct behavior of other threads
from the drver.

;_:le. is a d?mon_s,t[ati_cm f:lf_this prﬂ})_lep_l. This,_ _lao_p. u.'_hich_cqmes

antee termination? It's supposed to:
catastrophic effects on the stahbility
nld it be a problem if this loop didn't
s code s managing would cesse to
Fode executes at kernel-level priority,
her threads running on the system.
az it can be holding kernel locks and
leaibly killing the thread would leave
te. Furthermore, if the loop hangs,
bead, the thread will likely just hang
15 that the bug cannot be diagnosed

of termination in systems level code:
stability of the operating system it
e termination of loops like this one.
on of the loop, we need to show the

s & pointer to & cireular list of ele-

[pther bugs within the operating system.

Terminatio]

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Josh Berdine

Microsoft Research
Jb@microsoft.com

Variance Anal

Proving Terminatig

Domagoj Babi¢, Alan J. Hu,
Department of Computer Science, Un
{babic,ajh,zrakamar}

Abstract

We describe a simple and efficient algorithm for
the termination of a class of loops with nonlinea
ments to variables. The method is based on divergd
ing for each variable in the cone-of-influence of t
termination condition. The analysis allows us fo
cally prove the termination of loops that cannot b
using previous techniques. The paper closes witl
mental results using short examples drawn from il
code.

1 Introduction

From the very beginnings of the formal analysi|
ware [12, 14], the task of formally verifying the col
of a program has been decomposed into the tasks
ing correctness if the program terminates, and s
proving termination. Deciding termination. in g
obviously undecidable, but thanks to considerablel
progress over the years (e.g.. [9, 20, 5. 23, 3, 6. |
18, 21. 8, 7]). a variety of techniques and heuristic
automatically prove termination of many loops tha
practice.

=L = R = = B = e - B =T =T = =T = O R

W
o
-
=
=
[
o
@

2 Send in the Terminator

AMICROSDFTTOOL LOOKS FORPROGRAMS THATFREEZEUP BY GARY STIX

lan Turing, the mathemartician whae
Awag among the founders of computer

science, showed in 1936 thatitis im-
possible to devse analgorithm to prove that
any given program will always run to com-
pleton. The essence of his argument was
thatsuch an algorithm can abwrays teip upif
itanalyzes iselfand finds thatitis unableto
stop. “Ttkads toa bgical paradea,” remarks
David Schmidt, professar of computer sci-
ence arKansas Stare University. Ona prag-
matic level, the inability to “erminate,” as
itis called in computerese, is familiartcany
user of the Windows operating system whe
hasclicked a monse buttonand then stared
indefinite by at the hourglass icon indic aring
that the program is looping endlessly
through the same ines of code.

The curment version of Micresoft’s oper-
ating systermn, known as XP, is momr stable
than previous ones. But mamifacturers of
printers, MP3 players and other device s srill
write fanlty “deiver™ software that lets the
peripheral interact with the operating system.
Sa X P users have not lost familiarity with
trozen howgbisses, The rescarch armof Mi-
crosoft has rie d recently to addie ss the long-
simmering frugranon by focusing on tods
tocheck drivers for the absence of bugs.

Microsaft Besearch hasyet to contmadict
Turing, but it has started presenting papers
at conferences on a ol called Terminator
that tries to prove that a deiver will finish
what it 15 doing. Computer scientists had
never sieceeded until now in constructing a
practical automated verifier for termination
of large programs becanse of the ghost of
Turing, asserts Byron Cock, a theorerical
computer scientist at Microsoft Researchs
labaratary inCambridge, England, wha led
the projct. “Turing proved that the prab-
lem was undecidable, and in some senss,
thatscared people off” hesays,

Blending several previous techniques for
automated program analysis, Terminator
creates a finite re presentation of the infinite
number of states that a driver could accupy
while execuring a program. It then amemprs
1o derive a logical argument that shows that
the sofrarare will finish its task. It does this

WOWW. B CIE M. Com

by comhbining multiple “ranking functions,”
which mea sire how far a device driver has
progressed through the loopsin a program,
sequences of irstroe tions that rerun
until a specified condition is met.
Terminator begins with an 1tial,
rather weak a rgument that it e fine s
repeatedly based on informarion
learned from previous failed at-
tempts at creating a proof (a suffi-
ciently strong argument). The pro-
cedure may consume hours on a
powerful computer until, if evers-
thinggoes according to plan, a proof
emerges that shows that no execu-
tion pathway inthe dover will cavse
the dreaded hourglassing.
Terminater, which has been op-
erating for only nine months and
has yet to be distributed to outside
developersof Windowsdevice driv-
ers, has turned up a few ermina-

ALAH TURING created amathematical proof
that expla nsthe uncertainty of any computer
o bugs in drivers for the soon-to- program ever completing a task.

be-rekased Vista version of Win-
dows whik trying to come up witha proof.
Cook predicts that Terminator may eventu-
ally find proofs for 99.9 percent of commer-
cial programs that finish exeaiting. {Of
course, some programs are designed to run
forever.) Turing, however, can still rest in
peace. “There will always be an input to
Terminator that you can't prove will termi-
nate,” Cook savs, “Butifvou canmake Ter-
minator work for any program in the real
woarld, then it doesn't really matter.”

Patrick Consatof the Ecale Marmale Su-
perieure in Paris, a pioneer inmathemarcal
program analysis, notes thar Terminatee
should work fora limitedsetof welldefined
applicatiors. *I doubt, for example, that
Terminator is able to handle mathematical-
by hard termination problems™—thoss for
floating-point numbers o programs that
run at the same time. Cook does not dis-
agree, saying that he plans to develop termi-
nation proof methods for such programs.
Finding a way to ensure that more complex
programs donot freezeis such a difficult
challenge, however, that Cook thinks it
could consume the restaf his career.

DY EICUT 20N E ©CIERTIEIT ARETIC AR IR

\Worldwide, s oftware bugs cost
billlons of dollars In 1088 &8 every
year, which explaing a trend
ARG companiss for sutomat ed
programv erlfication. (n 2005

Mie ros oft released an automared
bug-cane ing progr am, Sl e
Driver Yerlfier,that checks the
Bource code frdevice drivers
ags rtamahemalca modal o
determine whetheritdeviates
from Ius ex pected behavior.

STAtic ver IFiars In ok for
programminge rmor s that caus e a
ProgramTostap ITs execution. &
device driver, forinstance s hould
nevarinte ractwith program B
before lthas donesowith
program A, or lowillsImply ce 458
oparailon. Terminator, Mier moft's
late st Tool, |00k For mistakes
that may lead a program to
EOMTINUE TURRInGForayar|nan
#ndles 8 loop, the reby preventing
ITfrom FInIs hing the)ob &t hand.

SCIEMTIFIC AMERICAH 37

rograms with

pter W. O'Hearn'2

falysis designed to
E on the mutation
et interpretation
which, if esch is
[stract interpreta-
| depths of pisces
P produce an an-
s i= able to prove
frice drivers that
5; we also discuss

h the source code of a
htion? It's supposed to:
effects on the stability
bilern if this loop didn't
naging would cesse to
at kernel-level priority,
hanning on the system.
plding kernel locks and
lhe thread would leave
ore, if the loop hangs,
hed will likely just hang
lr cannot be diagnosed

in systermns level code:
he operating system it

of loops like this one.
b, we need to show the

b & cirenlar Bst of ele-

in the operating system.

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Fiesearch Max-Planck-Instinat fitr Informank Niam-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de
rybaliEn
andrey.ryl
Mutomatic termination proofs for programs with
shape-shifting heaps
s N) . . Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2
Variance Analyses From Invariance Analyses
! Microsoft. Research
? Queen Mary, University of London
Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Research Mary. University of Londa Mirrosoft Ressarch
Queen Y. ey o = S Abstract. We describe a new program termination analysis designed to
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com N L o I N
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.
. N N . ht iy to
Proving Termination by Divergence® absmact .
v dalay- I Introduction
Inz [33].
Conader the prde frarment in Fie 1 whieh comes from the source code of a

Domagoj Babi¢, Alan J. Hu, P — I
- antee termination? It's supposed to:
Department of Compl_.lter_ Science, Uny catastrophic effects on the stahbility
{bablc,a]h,zmkamar} nld it be a problem if this loop didn't

s code s managing would cesse to
Fode executes at kernel-level priority,
Abstract Pl‘OVing 'I'hread Tel‘millati()]l th threads running on the system.
az it can be holding kernel locks and

ibly killing the thread Id leave
We describe a simple and efficient algorithm fo frabdy kilhng the thread would leave

= i ° . te. Furthermore, if the loop hangs,
the a‘emmar{on of a class of fOfJ_pS with nan_?mea Byron Cook Andreas Podelski Andrey Rybalchenko lead, the thread will likely just hang
ments to variables. The method is based on diverg Microsoft Research University of Freiburg EPFL and MPI 15 that the bug cannot be diagnosed
ine_for each variahle in the rone-nfinfl 2 nf i hvecook@microsoft com podelski@mpi-sh mpa de rybal@mpi-sh.mpg.de
fe of termination in systems level code:
cal stability of the operating system it
1] e termination of loops like this one.
e on of the loop, we need to show the
<o {&Ext->Spinlock, &irgl);

s & pointer to & cireular list of ele-
adByFileObject (Ext, FileObject);

1
Proving Conditional Termination -5tatus = STATUS_CANCELLED; lather bugs within the operating system.

-Information = 0;
t (&listHead,LinkPtr(irpl);

W Byron Cook!, Sumit Gulwani!, Tal Lev-Ami®*,

off Andrey Rybalchenko®**, and Mooly Sagiv? [OLL)

;t:- ! Microsoft Research {sExt->Spinlock, irall;

oy Ie]n A\:;I;:I_Lém_};ml} ent from a keyboard device driver whose ter-

pr : - pnds on the correct behavior of other threads

1

an

prj Ahbstract. We describe a method for synthesizing reasonable underap- o of this problem. This loop, which comes

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

Variance Analyses From Invariance Analyses
! Microsoft Research
? Queen Mary, University of London

Joch Berdine Aziem Chawdhary Byron Cook
Microsoft Besearch Cueen Mary, Universzity of London Mirrosoft Ressarch . .) L N
b@Emi fr com aziem@des gmul ac.uk bycook@mi F1.com Abstract. We describe a new program termination analysis designed to

handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

. s . iy o

Proving Termination by Divergence” J;b;im .
v dalay- I Introduction
Inz [33].

. . Consder the pode frarment in Fie 1 which comes from the source code of &
Domagoj Babi¢, Alan J. Hu, cetian? It's .
> antee termination? It's supposed to:

Department of Computer Science, Un catastrophic effeets on the stability

{babic,ajh,zmkamar} nld it be a problem if this loop didn't
s code s managing would cesse to
Fode executes at kernel-level priority,

. o 3 - i 3 her threads running on the system.
Abstract Proving Thread Termination T R
leaibly killing the thread would leave

We describe a simple and efficient algorithm for

the termination of a class of fOfJ_pS with nan_?:’nea Byron Cook Andreas Podelski Andrey Rybalchenko :Llhl;:-:t:;?::?“:ﬂ ;'H:' dﬁﬂaffﬁ}
ments to variables. The method is based on diverg Microsoft Research University of Freiburg EPFL and MPI 15 that the bug cannot be diagnosed
ine_for each variahle in the rone-nfinfl 2 nf i hvecook@microsoft com podelski@mpi-sh mpa de rybal@mpi-sh.mpg.de

fe of termination in systems level code:
cal stability of the operating system it
1] e termination of loops like this one.
e on of the loop, we need to show the
cof

{&Ext--Spinlock, &irgl);

s & pointer to & cireular list of ele-
adByFileObject (Ext, FileObject);

1
Proving Conditional Termination -Status - STATUS_CANCELLED; lother bugs within the operating system.
t (&listHead,LinkPtr(irpl);
W Byron Cook!, Sumit Gulwani!, Tal Lev-Ami®*,

JULL) ;

(&Ext-»Spinlock, irgl);

ent from a keyboard device driver whose ter-
pnds on the correct behavior of other threads

Proving That Non-Blocking Algorithms Don’t Block

I f:lf_this prﬂ})_lep_.l. This,_ _lao_p. u.'_hich_cqmes

Termination Proofs for Systems Code *

Byron Cook
Microsoft Fiesearch
bycooki@microsoft.com

Andreas Podelski
Maw-Planck-Instimr fitr Informaril
podelski@mpi-sb.mpg.de

Andre
Meax-Planck-Ty

rybaliEn
andrey.ryl

Variance Analyses From Invariance Analyses

Josh Berdine

Microsoft Research
Jb@microsoft.com

Aziem Chawdhary
Cueen Mary, Universzity of London
arlemidios.gmul_ac.uk

Byron Cook
Mirrosoft Ressarch
bycook@miorosoft.com

in

Department of Computer Science, Un

We describe a simple and efficient algorithm for
the termination of a class of loops with nonlinea
ments to variables. The method is based on divergd
> far each variahle in the cone-of-infl 2 of 1

Proving Termination by Divergence®

it try to
abstract
y delay-
Inz [33].

I Introduction

Congder the pode freerment in Fie 1

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

! Microsoft. Research
? Queen Mary, University of London

Abstract. We describe a new program termination analysis designed to
handle imperative programs whose termination depends on the mutation
of the program’s heap. We first describe how an abstract interpretation
can be used to construct a finite number of relations which, if each is
well-founded, implies termination. We then give an abstract interpreta-
tion based on separation logic formuls which tracks the depths of pieces
of heaps. Finally, we combine these two techniques to produce an ag-
tomatic termination prover. We show that the analysis is able to prove
the termination of loops extracted from Windows deviee drivers that
eould not be proved terminating before by other means; we also discuss
a previously unknown bug found with the analysis.

which comes from the source code of a

Domagoj Babi¢, Alan J. Hu,

{babic,ajh,zrakamar}

Abstract

Byron Cook
Microsoft Research

bycook@microsoft com

Andreas Podelski

University of Freiburg

nodelskighmpi-sh mpg de

e
(=
5|
my
cof

Proving Conditional Termination

Byron Cook!, Sumit Gulwani!, Tal Lev-Ami®*,

Proving That Non-Blocking Algorithms Don’t Block

Proving Thread Termination

Andrey Rybalchenko
EPFL and MPI
rybal@mpi-sh.mpg.de

{&Ext--Spinlock, &irgl);

adByFileObject {Ext, FileObject);

antee termination? It's supposed to:
catastrophic effects on the stahbility
nld it be a problem if this loop didn't
s code s managing would cesse to
Fode executes at kernel-level priority,
her threads running on the system.
az it can be holding kernel locks and
leaibly killing the thread would leave
te. Furthermore, if the loop hangs,
bead, the thread will likely just hang
15 that the bug cannot be diagnosed

of termination in systems level code:
stability of the operating system it
e termination of loops like this one.
on of the loop, we need to show the

s & pointer to & cireular list of ele-

.Status = STATUS_CANCELLED;
-Information = 0;

t (&listHead,LinkPtr(irpl);
JULL) ;

(&Ext-»Spinlock, irgl);

ent from a keyboard device driver whosq
pnds on the correct behavior of other thy

I f:lf_this prﬂ})_lep_.l. This,_ _lao_p. v.'_hic:h_ct

Summarization For Termination: No Return!

Byron Cook - Andreas Podelski -

Rybalchenko

Andrey

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|

Microsoft Ressarch Niax-Planck-Instint fir Informank Niam-Planck-Ty
bycooki@microsoft. com podelski@@mpi-sb.mpg.de

rybaliEn

andrey.ryl

Variance Analyses From Invariance Analyses

! Microsoft Research

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

Josh Berdine Arziem Chawdhary Byron Cook
Microsoft Research Cueen Mary, Universzity of London Mirrosoft Ressarch
Jb@microsoft.com arlemidios.gmul_ac.uk bycook@miorosoft.com
Proving Termination by Divergence®
Domagoj Babi¢, Alan J. Hu,
Department of Computer Science, Un
{babic,ajh,zrakamar}
Abstract Proving Thread Ter]
We describe a simple and efficient algorithm for
the termination of a class of loops with nonlinea Byron Cook Andreas Podelski
ments to variables. The method is based on divergd Microsoft Research University of Freiburg
inefor each variahle in the rone-0f-infl 2 0f 1 bycook@microsoft com podelski@mpi-sh moa d
te
caj
5|
md
coj
1 . y . . .
Proving Conditional Termination
W

Byron Cook!, Sumit Gulwani!, Tal Lev-Ami®*,

Proving That Non-Blocking Algorithms Don’t Block

Proving That Programs Eventually Do Something Good

Byron Cook

Microsoft Research
by cook®@microsoft.com

Andrey Rybalchenko

EPFL and MPI-Saarbricken
rybal@mpi-sb mpg de

Abstract

Inrecent years we have seen great progress made in the area of au-
tomatic source-level static analysis tools. However, most of today’s
program verification teols are limited to properties that guarantee
the absence of bad events (safety properfies). Until now no for-
mal software analysis tool has provided fully automatic support for
proving properties that ensure that good events eventually happen
(Irveness properties). In this paper we present such a tool, which
handles liveness properties of large systems written in C. Lneness
properties are described in an extension of the specification lan-
guage used in the SDV system. We have used the tool to automat-
ically prove critical liveness properties of Windows device drivers
and found several previously unknown liveness bugs

Caregories and Subject Descriptors D24 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Venfying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages

Keywords Formal Venfication, Software Maodel Checking, Live-
ness, Termination

1. Introduction

As computer systems become ubiquitous, expectations of system
dependability are nising. To address the need for improved software
quality, practitioners are now b ing to use static analysis and
automatic formal verification tools. However, most of software
verification tools are curmrently limited to safery properties [2, 3]
(see Section 3 for discussion). No software analysis tool offers
fully automatic scalable support for the remaining set of properties:
liveness properties.

Consider Static Drver Verifier (SDV) [5, 26] as an example.

Alexey Gotsman
University of Cambridge
Alexey.Gotsman@cl.cam.ac.uk

Andreas Podelsk:
University of Freiburg
podelski@informatik uni-freiburg.de

Moshe Y. Vards

Rice University
vardi@cs.rice_edu

Windows kemel APIs that acquire resources and APIs that release
Tesources. For example:

A device driver should never call KeReleaseSpinlock
unless it has already called KeAcquireSpinlock.

This 15 a safety property for the reason that any counterexample
to the property will be a finite execution I.h.rough the device dmver
code. We can think of safety properties as guaranteeing that speci-
fied bad events will not happen (i.e. calling KeReleaseSpinlock
before calling KeAcquireSpinlock). Note that SDV cannot check
the equally important related liveness property:

If a driver calls KeAcquireSpinlock then if must eventu-
ally make a call to KeReleasaSpinlock.

A counterexample to this property may not be fimte—thus making
it a liveness property. More precisely. a counterexample to the prop-
erty is a program trace in which KeAcquireSpinlockis called but
it is not followed by a call to KeReleaseSpinlock. This trace may
be finite (reaching termination) or infinite. We can think of liveness
properties as ensuring that certain good things will eventually hap-
pen (i.e. that KeReleaseSpinlock will eventually be called in the
case that a call to KeAcquireSpinleck occurs).

Liveness properties are much harder to prove than safety prop-
erties. Consider, for example, a sequence of calls to functions:
“£(); g(); h0;7 Itis easy to prove that the fimction £ is al-
ways called before h: in this case we need only to look at the struc-
ture of the control-flow graph It is much harder to prove that b is
eventually called after £: we first have to prove the termination of
g- In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness 1s as important as safety. As one co-author leamed
while spending two years with the Windows kernel team:

. Form.al \'erl.ﬁcatmn experts have been taught to thu]l. only 1.11

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

Deql

e ded
the termi
ments fo |
ine_for o
e
cal
15|
md
col
1
w

Temporal property veritication
as a program analysis task

Byron Cook!, Eric Koskinen?, and Moshe Vardi®

! Microsoft Research and Queen Mary University of London
2 University of Cambridge
* Rice University

Abstract. We describe a reduction from temporal property verification
to a program analysis problem. We produce an encoding which, with
the use of recursion and nondeterminism, enables off-the-shelf program
analysis tooks to naturally perform the reasoning necessary for proving
temporal properties (e.g. backtracking, eventuality checking, tree coun-
terexamples for branching-time properties, abstraction refinement, ate.).
Using examples drawn from the PostgreSQL database server, Apache
web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

‘We describe a method of proving temporal properties of (possibly infinite-state)
transition systems. We ohserve that, with subtle use of recursion and nondeter-
minism, temporal reasoning can be encoded as a program analysis problem. All
of the tasks necessary for ressoning about temporal properties |e.g. abstraction
search, backtracking, eventuality checking, tree counterexamples for branching-
time, ete) are then naturally performed by off-the-shelf program analysis tools.
Using known safety analysis tools (e.g. [2, |) together with techniques
for discovering termination arguments (e, q | 6, 1’] we can implement tem-
poral logic provers whase power is effectively limited only by the power of the
underlying tools.

Based on our method, we have developed a prototype tool for proving tem-
poral properties of C programs and applied it to problems from the PostgreSQL
database server, the Apache web server, and the Windows 08 kernel. Our tech-
nique leads to speedups by orders of magnitude for the universal fragment of
CTL (VCTL). Similar performance improvements result when proving LTL with

our technique in combination with a recently described iterative symbaolic deter-
minization procedure [15].

Limitations. While in prineiple our technique works for all classes of transi-
tion systems, our approach is currently geared to support only sequential non-
recursive infinite-state programs as its input. Furthermore, we currently only
support the universal fragments of temporal logics (i.e. YOTL rather than CTL).

! Microsoft Research

Mutomatic termination proofs for programs with
shape-shifting heaps

Josh Berdine?, Byron Cook®, Dino Distefano®, and Peter W. O'Hearn -2

Proving That Non-Blocking Algorithms Don’t Block

Proving That Programs Eventually Do Something Good

Byron Cook
Microsoft Research
by cook®@microsoft.com

Andrey Rybalchenko

EPFL and MPI-Saarbricken
rybal@mpi-sb mpg de

Abstract

Inrecent years we have seen great progress made in the area of au-
tomatic source-level static analysis tools. However, most of today’s
program verification teols are limited to properties that guarantee
the absence of bad events (safety properfies). Until now no for-
mal software analysis tool has provided fully automatic support for
proving properties that ensure that good events eventually happen
(Irveness properties). In this paper we present such a tool, which
handles liveness properties of large systems written in C. LIVED.ESS
properties are described in an extension of the specification lan-
guage used in the SDV system. We have used the tool to automat-
ically prove critical liveness properties of Windows device drivers
and found several previously unknown liveness bugs

Caregories and Subject Descriptors D24 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Venfying and Reasoning about Pro-
grams

General Terms Verification, Reliability, Languages

Keywords Formal Venfication, Software Maodel Checking, Live-
ness, Termination

1. Introduction

As computer systems become ubiquitous, expectations of system
dependability are nising. To address the need for improved software
quality, practitioners are now t ing to use static analysis and
automatic formal verification tools. However, most of software
verification tools are curmrently limited to safery properties [2, 3]
(see Section 3 for discussion). No software analysis tool offers
fully automatic scalable support for the remaining set of properties:
liveness properties.

Consider Static Drver Verifier (SDV) [5, 26] as an example.

Alexey Gotsman
University of Cambridge
Alexey.Gotsman@cl.cam.ac.uk

Andreas Podelsk:
University of Freiburg
podelski@informatik uni-freiburg.de

Moshe Y. Vards

Rice University
vardi@cs.rice_edu

Windows kemel APIs that acquire resources and APIs that release
Tesources. For example:

A device driver should never call KeReleaseSpinlock
unless it has already called KeAcquireSpinlock.

This 15 a safety property for the reason that any counterexample
to the property will be a finite execution Lh.rough the device dmver
code. We can think of safety properties as guaranteeing that speci-
fied bad events will not happen (i.e. calling KeReleaseSpinlock
before calling KeAcquireSpinlock). Note that SDV cannot check
the equally important related liveness property:

If a driver calls KeAcquireSpinlock then if must eventu-
ally make a call to KeReleasaSpinlock.

A counterexample to this property may not be fimte—thus making
it a liveness property. More precisely. a counterexample to the prop-
erty is a program trace in which KeAcquireSpinlockis called but
it is not followed by a call to KeReleaseSpinlock. This trace may
be finite (reaching termination) or infinite. We can think of liveness
properties as ensuring that certain good things will eventually hap-
pen (i.e. that KeReleaseSpinlock will eventually be called in the
case that a call to KeAcquireSpinleck occurs).

Liveness properties are much harder to prove than safety prop-
erties. Consider, for example, a sequence of calls to functions:
“£(); g(); h0;7 Itis easy to prove that the fimction £ is al-
ways called before h: in this case we need only to look at the struc-
ture of the control-flow graph It is much harder to prove that b is
eventually called after £: we first have to prove the termination of
g- In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness 1s as important as safety. As one co-author leamed
while spending two years with the Windows kernel team:

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Ressarch Maw-Planck-Instimr fitr Informaril Miax-Planck-Ty
bycooki@microsoft.com podelski@mpi-sb.mpg.de

Temporal property veritication
as a program analysis task

Byron Cook!, Eric Koskinen?, and Moshe Vardi®

! Microsoft Research and Queen Mary University of London
2 University of Cambridge
* Rice University

Abstract. We describe a reduction from temporal property verification
to a program analysis problem. We produce an encoding which, with

Making Prophecies with Decision Predicates

Byron Cook Eric Koskinen
Microsoft Research & Unfversity of Cambridgs
Crueen Mary, University of London ejk30@cam ac.uk
bycook@microsoft.com

Abstract

We describe a new algorithm for proving temporal properties ex-
pressed in LTL of infinite-state programs. Our approach takes ad-
vantage of the fact that LTL properties can often be proved more
efficiently using techniques usually associated with the branching-
time logic CTL than they can with native LTL algorithms. The
caveat is that, in cersin instances, nondeterminizm in the sys-
tem'’s wansition relation can cause CTL methods to report coun-
terexamples that are spurous with respect to the original ITL
formula. To address this problem we describe an algorithm that,
as it atempts to apply CTL proof methods, finds and then re-

cousing [3, 32, 4] b Proparties expressed in CTL without fair-
mess can be proved in a purely syntax-directed manner nsing state-
based reasoning techniques, whereas LTL requires desper resson-
ing sbout whole sets of races and the subtle relationships betwean
families of them.

In this paper we aim to make an LTL prover for infinite-state
programs with performance closer to what one wonld expect from
2 CTL prover. We use the observation that ¥ CTL without faimess
«can be a usefl abstraction of LTL. The problem with this strategy
is that the pieces don't always fit together: there are cases when,
«due to some instances of nondsterminizm in the ransition system,

the use of recursion and nondeterminism, enables off-the-shelf program moves]md: nond inism via sn smalysis on m YCTL alone is not powerful enough to prove an LTL property. ki
analysis tooks to naturally perform the reasoning necessary for proving tentially s counterenamples. Problematic i 1;: In these cases our LTL prover warks around the problem using

temporal properties (e.g. backtracking, eventuality checking, tree coun- is characterized using decisiom predicates, and removed using a something we call decision predicates, which are used to character- jre
terexamples for branching-time properties, abstraction refinement, etc.). partial, symbolic determinization procedure which inroduces new ize and ereat such instances of nondeterminism. A decision predi- eiburg.de

Using examples drawn from the PostgreSQL database server, Apache
web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

prophecy vanables to predict the future outcome of these choices.
We demonstrate—using examples taken from the PostgreSQL
database server, Apache web server, and Windows OS5 kemel—
that our method can yield enommous performance improvements
in comparson to known teols, allowing us to sutomatically prove
properties of programs where we could not prove them before.

Cartegories and Subject Descriprors D.2.4 [Software Engineer-

«cate is represented as a pair of first-order logic formulae (a, k),
where the formmla a defines the decision predicate’s presupposi-
tiom (L¢ when the decision is made), and b characterizes the binary
«hoice made when this presupposition holds. Any transition from
state s 1o state 5 in the system that meets the constraint af) sl s")
is distinguished by the decision predicate (o, b) from afs)a-b(a").

‘We use decision predicates as the basis of a partial symbelic
«determinization procedure: for each predicate we inroduce a new

DE‘P ‘We describe a method of proving temporal properties of (possibly infinite-state) mgl: Suﬁgﬁﬁ:ﬂ BH:ﬁs'c[‘g::_hM‘; dm‘ikmg i$£ mmmb;: [F] 1o _FI_Ed;Cw:_j:fIf;T;Tﬁiofm ::;.E\‘l;m'lm".
iom sveterns. We ohs rith = . ness proofs; v, D4 rating Systems]: Raliability v detarizizin, proph -
Ln.m.bllmn systems. We Ol.JM:‘l'\T.‘ that, with subtle use of recursion and nondeter- ‘w‘.‘:: jon- F3.1 [Logics arad.\:foﬂm"ﬂ;:gof" |- Specify- ables, we find that CTL proof mathods succeed, thus allowing us
minism, temporal reasoning can .hc.‘ encoded as a program eu.ml}'sls problem. .J\II inz and Verifying and Ressoning sbout Programs: F.3.2 [Logics to prove LTL properties with CTL proof techniques in cases whese
of the tasks necessary for reasoning about temporal properties (e.g. abstraction and Meanings of Programs]: Semantics of Programming Languages— this swategy would have previously failed. To synthesize the deci- s that release
search, backtracking, eventuality checking, tree counterexamples for branching- Program analysis sion predicates we employ a form of symbolic execution on spuri-
time, ete.) are then naturally performed by off-the-shelf program analysis tools ous ¥CIL = ples ogether with an application of Farkas® i
1e, ele.) are Y B o e program analyses ools. General Terms Verification, Theory, Relisbiliry lemma [23]. pinlock
Using known safety analysis tools (e.g. [2,5,8, 24, 32|) together with techniques With our new spprosch we can sutomatically prove propertes)
N for discovering termination arguments (e.g. [3,6, 17]), we can implement tem- Keywords Linear tamporal logic, formal verification, remmination, of infinite-state programs in minmes or seconds which were in-

e des poral logic provers whase power is effectively limited only by the power of the progran analysis, model checking tractsble using existing tools. Examples include code fragments fmterexample
the termi; underlying tacls. drawn from the PostzreSQL dstabase server, the Apache web device driver
ments to Based on our method, we have developed a prototype tool for proving tem- 1. Introduction server, and the W s 05 kemel. 15‘%9:1?;{;;
ine for e poral properties of C programs and applied it to problems from the PostgreSQL The commen wisdom amongst users and developers of tools that Limitations. In practice, the applicability and perfonmance of our camfol check
te database server, the Apache web server, and the Windows 08 kernel. Our tech- W‘fol%mg%ﬂ[;‘;?l?ems of “‘m&?ﬁﬁoﬁ: :hPKlﬁca' ﬁdmﬂ;': i %Epmwm‘t'z:;‘jﬂ“m “Q‘L}‘Di Eh‘;““"éiﬂsl_m:

ique leads to = s by orders of itude for th iversal F i of tdom logic is more inmuitive 8 At prop- predicates when given an al Tepresenianion of a spaciic pom
cq ;‘.‘,‘]’,'I" .‘;‘fli’[°;.'xf;d"]’“ [-‘ oreiers o magmiuee for . ”_:”“” . m[‘“,?f;m_.c;’ erties expressed in the universal fragment of CTL (VCTL) with- in a spurious counterexample. The predicate synthesis mechanism Lt eventu
s STL (Y : -]-_ IMIAT PErformance IMprovements resu l_“’ en proving L4L wit] out faimess constraints are often easier to prove than their ITL implemanted in our tool is applicable primarily to infinite-stats pro-
our technique in combination with a recently described iterative symbaolic deter- grams over arithmetic variables with commands that only comtain
me minization procedure [13]. linear arithmetic. However, no matter which pradicate selection Hhus making
ol mechanizm is used, cur predicate-based determinization strategy is & to the prop-
Limitations. While in principle our technique works for all classes of transi- Pammission 13 maks digiml or havd copies of o1 o part of this work for penicnal o :z::i;mbem\i:dmi insHls.nces whem“;.hel S}ﬁﬁiﬁ:ﬁ&w‘i& Fis called but
tion systems, our approach is currently geared to support only sequential non- ;:';r:‘“’ md:‘ e ,mm";“b?rf : r_um Lot mest the consTaints siven sbove. OUT technique is also based fhis trace may
1 recursive infinite-state programs as its input. Furthermore, we currently only on o Erst pags. To copy otharwisa, in ropublish, b post on sarvers ar fo redistrh i _ _) hk of liveness
support the universal fragments of temporal logics [i.e. VOTL rather than CTL). o List, requives priar speciic parmisaion and or 2 . ! Aadi and Lamport [3] male this point using the terminology of “refine- Entl.lil].l}t hap-
POPL'II, Jamuary 26-28, 2011, Anstin, Texs, TSA ment mappings” and “wrace equivalence” mstead of phrasing it in the con- called in the
Copyright © 11 ACA 575-1-4703-0250-01 101... $10.00 text of temporal logics.
safety prop-
W fto functions:
ktion £ is al-
k at the struc-
T Erapr T o mraer roprove that hois

T TSI T ST S T I T

quality, pr

s are now | ing to use mhc analysis and
automatic formal verification tools. However, most of software
verification tools are curmrently limited to safery properties [2, 3]
(see Section 3 for discussion). No software analysis tool offers

aenmll‘. called after f we first have to prove the termination of
g- In fact, in many cases, we must prove several safety properties in
order to prove a single liveness property. Unfortunately, to practi-
tioners liveness 1s as important as safety. As one co-author leamed

fully automatic scalable support for the remaining set of properties: while spending two years with the Windows kernel team:
liveness properties.
Consider Static Drver Verifier (SDV) [5, 26] as an example.

Proving That Non-Blocking Algorithms Don’t Block

. Furm.al \'erl.ﬁcatmn experts have been taughl to think only in

Termination Proofs for Systems Code *

Byron Cook Andreas Podelski Andre|
Microsoft Fiesearch Max-Planck-Instinat fitr Informank Niam-Planck-Ty
bycooki@micresoft.com podelskifmpi-sb.mpg.de

Deql

We ded

the termi
ments fo |

in,

= fr o

e

(=
5|
my
cof

Temporal
as a pro

Byron Cook!, B

! Microsoft Research|
ERT;

Abstract. We describe a

to & program analysis prof
the use of recursion and n
analysis tooks to naturally
temporal properties (e.q. H
terexamples for branching-
Using examples drawn frof
web server, and Windows

bility of our work.

1 Introduction

‘We describe a method of provig
transition systems. We ohserve
minism, temporal reasoning cas
of the tasks necessary for reasol
search, hacktracking, eventuali
time, ete) are then naturally pf
Using known safety analysis to
for discovering termination arg
poral logic provers whase powe
underlying tools.

Based on our method, we h
poral properties of C programs
datahase server, the Apache wel
nique leads to speedups by or
CTL (VCTL). Similar performa)
our technique in combination wj
minization procedure [15].

Limitations. While in prineip]
tion systems, our approach is

recursive infinite-state progran|
support the universal fragments)

Proving That Non-Blocking |

Proving stahilization for biological systems

Byron Cook?, Jasmin Fisher!, Elzbieta Krepska!, and Nir Piterman?

! Microsoft Research
* Queen Mary, University of London
3 VU University Amsterdam
* Imperial College London

Abstract. We describe an efficient procedure for proving stabilization
of biological systems modeled as qualitative networks. For sealability, our
procedure uses modular proof techniques, where state-space exploration
is applied only locally to small pieces of the system rather than the en-
tire system as & whole. Our procedure exploits the observation that, in
practice, the form of modular proofs required can be restricted to a very
limited set. Using our new procedure, we have solved a number of chal-
lenging published examples, including & 3D model of the mammalian
epidermis, & model of metabolic networks operating in type-2 diabetes,
and a model of fate determination of vulval precursor cells in the C. ele-
gans worm. Our results show many orders of magnitude speedup in cases
where previous stabilzation proving techniques were known to succeed,
and new results in cases where tools had previously failed.

1 Introduction

Biologists are increasingly turning to techniques from computer science in their
quest to understand and predict the behavior of complex biological svstems [2-4].
In particular, the application of formal verification tools to models of biological
processes is gaining impetus among biologists, In some cases known formal veri-
fication techniques work well (e.g. [5-7]). Unfortunately in other cases—such as
proving stabilization [8]—we find that existing abstractions and heuristics are
not effective.

In this paper we address the open challenge to find scalable algorithms for
proving stabilization of hiological systems. In computer science terms, we are
trving to prove a liveness property similar to termination of large parallel sys-
tems. The sizes of these systems forces us to use some form of modular reasoning.
Unfortunately, hecause stahilization is a liveness property, we must be careful
when using the more powerful cyclic modular proof rules (e.q. [9,10]), as they are
formally only sound in the context of safety [11]. Furthermore, we find that the
complex temporal interactions between the modules are crucial to the stabiliza-
tion of the system as a whole; meaning that we cannot use scalable techniques
that simply ahstract away the interactions altogother.

In this paper we show that in practice non-circular modular proofs can be
found using local livenoss lemmas of a limited form:

[FG(p1) n....AFG(ps)] = FG(a)

beision Predicates

Eric Koskinen
Unfversity of Cambridgs
ejk30@cam ac.uk

[3. 32, #4] b Proparties expressed in CTL without fair-
h be proved in a purely syntax-directed mannsr nsing state-
asoning techniques, whereas LTL requires desper reason-
Jit whole sets of races and the subtle relationships betwean
of them.
Jis paper we zim to make an LTL prover for infinite-state
hs with performance closer to what one wonld expect from
prover. We use the observation that ¥ICTL without fairness
nsefil abstraction of LTL. The problem with this strategy
lhe pieces don't always fit together: there are cases when,
ome instances of nondsterminism in the Tansition system,
Hlone is not powerful enough to prove an LTL property.
lese cases our LTL prover works around the problem using
Ing we call decision prediceares, which are used to character-
reat such instances of nondeterminism. A decision predi-
kepresented as a par of first-order logic formulae (a,b),
he formmlas o defines the decision predicate’s presupposi-
when the decision is made), and b characterizes the binary
made when this presupposition holds. Any transition from
state &° in the system that meets the constraint af) abi{s")
pwished by the decision predicate (o, b) from af s }a-b(s").
hse decision predicates as the basis of a partial symbolic
pization procedure: for each predicate we inwoduce a new
Iy varizble [3] to predict the future outcome of the decision.
brtially determinizing with respect to these prophecy vari-
fe find that CTL proof methods succeed, thus allowing us
LTL properties with CTL proof techniques in cases whezre
tegy would have previously failed. To synthesize the deci-
[dicates we employ a form of symbolic execution on spuri-
'L counterexamples together with an application of Farkas”
[23].
our new approach we can autcmatically prove properties
te-state programs in minmtes or seconds which were in-
E using existing tools. Examples include code fragments
From the PostzreSQL database server, the Apache web
pnd the Windows 05 kernel.

pons. In practice, the applicability and performance of our
|u= is dependent on the heuristic nsed to choose new decision
les when given an abstract representation of a specific point
Irious counterexample. The predicate synthesis mechanism
pated in our tool is applicable primanily to infinits-state pro-

ver arithmetic variables with commands that only comtain
rithmetic. However, no matter which predicate selection
fizm is used, our predicate-based determinization strategy is
[hus, unsound spproximations to predicate synthesis conld
ity be used in instances whare the systems considersd do
bt the constoraints given sbove. Our technique is also basad

pnid Lamport [3] make this poimt using the terminelogy of “r=fine-
ppings” and “wace equivalence” instead of phrasing it in the con-
feperal logics.

eiburg de

5 that release
pinlock

jmterexample
device driver
hg that speci-
seSpinlock
cannot check

kf eveniu-

[hus making
e to the prop-
Fis called but
[his trace may
hk of liveness
lentually hap-

called in the

safety prop-
fto functions:
kction £ is al-
k at the struc-

o ToTToT T

hmple. e TR

» Formal verification experts have been taught to think onl
ST L o

Erapr o mrraerroprove that bois

is and eventually called after £: we first have to prove the termination of

frware g- In fact, in many cases, we must prove several safety properties in

[2. 3] order to prove a single liveness property. Unfortunately, to practi-
offers tioners liveness 1s as important as safety. As one co-author leamed
erties: while spending two years with the Windows kernel team:

Termination Proofs for Systems Code *

y Name
'l s :'- ! < o A e ’\v
) f } Pu.l 0| & 3 - ;
f L) , N -—
- i J ' 7 Target Function
> var . var{name) insert
avg {
m|: | A variable, where name is the name of
X the varable
max
const e
e
Pl i
Inputs \\
. . L\
(var(Pu.1R1))*(2/3) + (var(Pu.1R2))*(1/3) Ny
v
-ty ‘ - -
/’ P >,
7 [
@ }
¥ : \ | “‘
. . [
\ . |
»
! 1\ y
\ i)
\ o
N o "< F
N ‘)
R\t ¢

= \ ; - Model4

Byron Cook - Andreas Podelski - Andrey
Ryhalchenko
Proving That Non-Blocking

ITEOT TN IO ¢ I TOCIT

SCS TATIRTITE TCTATTOTS TO TOTESCT
| | program states. One of the atlrJ

-» Introduction

-» Termination basics & history

> New advances for program termination proving
" Proving termination argument validity
" Finding termination arguments

-=» Conclusion

114

-» Introduction

-» Termination basics & history

> New advances for program termination proving
" Proving termination argument validity
" Finding termination arguments

-=» Conclusion

115

=> Previous wisdom: proving termination for industrial systems

code is impossible

- Now people are beginning to think that it’s effectively “solved”.

=> Much left to do, including

116

Complex data structures (safety)
Infinite-state systems w/ bit vectors (safety)
Binaries (safety)

Non-linear systems (liveness and safety)
Better support for concurrent programs
Modern programming features (e.g. closures)

Scalability, performance, precision

- Termination proving is at the heart of many undecidable
problems (e.g. Wang’s tiling problem)

= Modern termination proving techniques could
potentially be used to building working tools

= Challenge: “black-box” solutions to undecidable
problems die in the most unpredictable ways

117

Conclusion

- Conventional wisdom about termination overturned

= Undecidable does not mean we cannot soundly approximate a solution

- TERMINATOR shows that automatic termination proving is not
hopeless for industrial systems code

- Current state-of-the-art solutions based on

= Abstraction search for safety property verification (e.g. SLAM)
= Farkas-based linear rank function synthesis

= Ramsey-based Refinement-based termination proving

= Separation Logic based data structure analysis

118

For more information

- http://research.microsoft.com/TERMINATOR

= Research papers

= Recorded technical lectures
= Contact details

= T2 source-code available

- CACM review article

119

review articles

DO1:10.1145/1941487.1041508

In contrast to popular belief, proving
termination is not always impossible.

| BY BYRON COOK, ANDREAS PODELSKI,
AND ANDREY RYBALCHENKO

Proving
Program
Termination

THE PROGRAM TERMINATION problem, also known
as the uniform halting problem, can be defined as
follows:
Using only a finite amount of time, determine
whether a given program will always finish running
or could execute forever.

This problem rose to prominence before the
invention of the modern computer, in the era of
Hilbert's Entscheidungsproblem:® the challenge to
formalize all of mathematics and use algorithmic
means to determine the validity of all statements.
In hopes of either solving Hilbert's challenge, or
showing it impossible, logicians began to search
for possible instances of undecidable problems.
Turing’s proof** of termination’s undecidability is
the most famous of those findings."

The termination problem is structured as an infinite

s

In English: *decision problem.”
There is a minor controversyasto whether or not Turing proved the unde cidabiliy in®. Technically
he did nex, but termination's is an easy of the resuk that is proved. A
simple proof can befound in Strachey

B8 COMMUNICATIONS OF THEACM © MAY 2011 © ¥OL.54 | ND.§

set of quer solve the problem
we would need to invent a method ea-
pable of accurately answering either
“terminates” or “doesn't terminate”
when given any program drawn from
this set. Turing’s result tells us that
any tool that attempts to solve this
problem will fail to retum a correct
answer on at least one of the inputs.
No number of extra proo
terabytes of storage nor new soph
cated algorithms will lead to the devel-
opment of a true oracle for program
termination.

Unfortunately, many have drawn
too strong of a conclusion about the
prospects of automatic program ter-
mination proving and falsely believe
we are always unsble to prove termi-
nation, rather than more benign con-
sequence that we are unable to always
prove termination. Phrases like “but
that's like the termination problem”
are often used toend discussions that
mightotherwise have led toviable par-
tial solutions for real but undecidable
problems. While we cannot ignore
termination's undecidability, if we
develop a slightly modified problem
statement we can build useful tools.
In our new problem statement we will
still require that a termination prow
ing tool always return answers that
arecorrect, but we will not ne cessarily
require an answer. If the termination
provercannot prove or disprove termi-
nation, it should return “unknown.”

Using only a finite amount of time,
determine whether a given program
will always finish running or could
execute forever, or return the answer
“unknown.”

key insights

m For decades, the same method was used
or proving termination. It has never been
‘applied successhully to large programs.

W A deep theorem in mathematical logic,
based on Ramsey's theorem, holds the
key 0.3 new method.

s nor

m The new method can scale ta large
programs because it sllows for the
modular construction of termination

-> 10 years work on termination

-> More broadly about me, my career, jobs,
other things | work on

- Some notes on Evergreen & me

- Questions

" though please interrupt when things are
unclear!

120

-> 10 years work on termination

-> More broadly about me, my career, jobs,
other things | work on

- Some notes on Evergreen & me

- Questions

" though please interrupt when things are
unclear!

121

Career

-» Evergreen: 1990 — 95

First year: literature in fall term, then dropped out

Second year: Spanish literature/history, then moved to Spain
Third year year: physics/chemistry/math

Fourth year: computer science

Fifth year: logic

NOTE: no previous background in subjects. Went to anti-dropout
program and did NO technical things in high school

Honestly: only a so-so student

> PhD at Oregon Graduate Institute: 1995-2005

122

Weird choice since people were making $SS in companies

Failed to get into PhD program first try (should have applied
broadly)

| struggled as a PhD student

Career

= Internship, Intel: 1997

-> Sales engineer, Prover technology : 2000-2002
= Hadn’t finished PhD.
= Had to get job for money reasons
= Abysmal failure

-> Developer, Microsoft Windows OS product group: 2002-2004
= Still not done with PhD!

-> Researcher, Microsoft Research Cambridge (UK), 2004-2014
= Lucky break based on networking!

= Big chance.
= Oh, and | had to finish PhD

=> University professorship: 2008-Current
= Based on fame and networks

123

Job description

124

-» Goal: innovative new ideas, impact, fame/leadership

- Work on what | want:

Termination and temporal logic
Constraint solving, automated reasoning
Cancer research

Art and its use to help facilitate proof
Gender diversity in computer science

Connections to programming languages, machine learning,
ecology, etc.

Job description practicalities

-» Teaching and supervising PhD students (through
university)

-» Postdocs (both at Microsoft Research and University)
= Interns

- Thinking/writing/coding

-» Research visits

- Lectures

- Conference/journal reviewing

-> Networking

- Leadership/supervision/management

-> The search for NEW problems

125

-> 10 years work on termination

-> More broadly about me, my career, jobs,
other things | work on

- Some notes on Evergreen & me

- Questions

" though please interrupt when things are
unclear!

126

-> 10 years work on termination

-> More broadly about me, my career, jobs,
other things | work on

- Some notes on Evergreen & me

- Questions

" though please interrupt when things are
unclear!

127

Why Evergreen was so great for me

> True & healthy diversity at an unprecedented level
= All aspects, including economic/privilege diversity
= Not a privileged person’s view of diversity

= | understand people in a much deeper way than my
colleagues

> No prerequisites (or negotiable ones at least)

=» Subsidized and high quality childcare

=> Anti-competitive, pro teamwork work environment

<> Emphasis on interdisciplinary studies, and on new things
> Generally high quality teaching

=> Freedom to fail

= Filled with freaks & dreamers

128

-> 10 years work on termination

-> More broadly about me, my career, jobs,
other things | work on

- Some notes on Evergreen & me

- Questions

" though please interrupt when things are
unclear!

129

-> 10 years work on termination

-> More broadly about me, my career, jobs,
other things | work on

- Some notes on Evergreen & me

- Questions

" though please interrupt when things are
unclear!

130

