
1

Proving termination, and beyond

Byron Cook
Microsoft Research &

University College London

Talk to Byron after his talk - Lib 2612 3:15

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: A

2

Outline

 10 years work on termination

 More broadly about me, my career, jobs,
other things I work on

 Some notes on Evergreen & me

 Questions

 though please interrupt when things are
unclear!

3

Automatic formal verification

 View artifact of interest as a mathematical system:
 Software

 Hardware

 Biological system

 Railway switching

 …….

 Automatically prove desired properties using mathematics
and logic

 Status:
 Active area of research in the 70s,

 Dead in the 80s-90s,

 Renaissance since 2000

4

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

5

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

6

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

7

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

8

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

9

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

10

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

11

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

12

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

13

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

14

Example property

 “The parallel port device driver’s event-handling
routine only calls KeReleaseSpinLock() when
IRQL=PASSIVE”

15

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

16

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

17

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

18

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

19

Example property

 “The mouse device driver’s event-handling routine
always eventually terminates”

20

Formal verification

21

Formal verification

22

Formal verification

23

Outline

 Introduction

 Termination basics

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

24

Outline

 Introduction

 Termination basics

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

25

Proving termination

 Traditional termination proving method originally
proposed by the forefathers of computing

 E.g. Turing, “Checking a large routine”, 1949

26

Proving termination

 Traditional termination proving method originally
proposed by the forefathers of computing

 E.g. Turing, “Checking a large routine”, 1949

27

Proving termination

R

28

Proving termination

R

29

Proving termination

30

Proving termination

31

Proving termination

32

Proving termination

33

Proving termination

f

34

Proving termination

f

f
f

f
f

f

35

Proving termination

36

Proving termination

37

Proving termination

>
f

f R

38

Proving termination

>
f

f R

39

Proving termination

>
f

f R

40

Proving termination

41

Outline

 Introduction

 Termination basics

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

42

Outline

 Introduction

 Termination basics

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

43

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

44

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

45

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

46

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

47

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a compact
expression

48

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a compact
expression

49

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a compact
expression

50

Automating the search for proofs

 Transition relations must be computed

 Technically, computing is undeciable, so we must
find a sound over-approximation using available
techniques:

 represents an infinite set of states, but has a compact
expression

51

Automating the search for proofs

 We use an over-approximation of the transition relation

 Since , we can prove termination by showing

 Meaning: there might be unrealistic transitions that we
have to worry about

 R’

52

Automating the search for proofs

 In practice, its extremely hard to find the right
overapproximation

 Luckily: recent breakthroughs in safety proving now
make this possible.

 In fact: the checking the validity of a termination
argument can be directly encoded as a safety property

 Tools like SLAM can be used to prove validity

53

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

54

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

55

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

56

Refinement-based termination proving

57

Refinement-based termination proving

58

Refinement-based termination proving

X

59

Refinement-based termination proving

X

60

Refinement-based termination proving

f

f
X

61

Refinement-based termination proving

f

f
X

62

Refinement-based termination proving

f

f
X

63

Refinement-based termination proving

X
f

f

64

Refinement-based termination proving

X
f

f

X

65

Refinement-based termination proving

X
f

f

X

66

Refinement-based termination proving

X
f

f

g

g

X

67

Refinement-based termination proving

X
f

f

g

g

X

g

X

68

Refinement-based termination proving

X
f

f

g

g

X

69

Refinement-based termination proving

X
f

f

g

g

X

70

Refinement-based termination proving

X
f

f

g

g

X



71

copied = 0;

 if (!copied) {

 if (*) {

 _x = x;

 _y = y;

 copied = 1;

 }

 } else {

 assert(f(_x,_y) > f(x,y));
 exit();

 }

 (*p)--

}

int x = *;

int p = &x;

while(x>0) {

Terminator

f(a,b) = a
thus

assert(_x > x);

72

Terminator reduction

 if (!copied) {

 if (*) {

 _x = x;

 _y = y;

 copied = 1;

 }

 } else {

 assert (f(_x,_y) > f(x,y));
 }

73

copied = 0;

 if (!copied) {

 if (*) {

 _x = x;

 _y = y;

 copied = 1;

 }

 } else {

 assert((_x>x && _y>=y) || _y>y);

 exit();

 }

 if (*) {

 x--;

 } else {

 y--; x = *;

 }

}

int x = *;

int y = *;

while(x>0 && y>0) {

Terminator

74

copied = 0;

 if (!copied) {

 if (*) {

 _x = x;

 _y = y;

 copied = 1;

 }

 } else {

 assert(_x>x);

 exit();

 }

 x = x – y;

 }

}

int x = *;

int y = *;

if (y>0) {

 while(x>0) {

Terminator

75

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

76

Automating the search for proofs

 Difficulties:

 Proving the inclusion is hard in practice (and
undecidable in theory)

 Finding an such that is hard in practice (and
undecidable in theory)

77

Misunderstanding the halting problem

78

Misunderstanding the halting problem

Terminator

79

Misunderstanding the halting problem

80

Misunderstanding the halting problem

X

X

X
X

X

X

X

81

Misunderstanding the halting problem

82

Misunderstanding the halting problem

83

Misunderstanding the halting problem

84

Misunderstanding the halting problem

85

Misunderstanding the halting problem

86

Misunderstanding the halting problem

87

Misunderstanding the halting problem

88

Misunderstanding the halting problem

89

Misunderstanding the halting problem

90

Misunderstanding the halting problem

91

Misunderstanding the halting problem

92

Misunderstanding the halting problem

93

Misunderstanding the halting problem

94

Misunderstanding the halting problem

95

Misunderstanding the halting problem

96

Misunderstanding the halting problem

97

Misunderstanding the halting problem
Terminator

 2006

X

X

X
X

X

X

X

98

Misunderstanding the halting problem
Terminator

 2006







X

X

X
X

X

X

X







99

Misunderstanding the halting problem
Terminator

 2006







X

X

X
X

X

X

X







100

Misunderstanding the halting problem

101

Misunderstanding the halting problem

102

Misunderstanding the halting problem

103

Misunderstanding the halting problem

104

Misunderstanding the halting problem

?

105

Misunderstanding the halting problem

106

Misunderstanding the halting problem

107

Misunderstanding the halting problem

108

Misunderstanding the halting problem

109

Misunderstanding the halting problem

110

Misunderstanding the halting problem

111

Misunderstanding the halting problem

112

Misunderstanding the halting problem

113

Misunderstanding the halting problem

?

114

Outline

 Introduction

 Termination basics & history

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

115

Outline

 Introduction

 Termination basics & history

 New advances for program termination proving

 Proving termination argument validity

 Finding termination arguments

 Conclusion

116

Future work

 Previous wisdom: proving termination for industrial systems
code is impossible

 Now people are beginning to think that it’s effectively “solved”.

Much left to do, including
 Complex data structures (safety)

 Infinite-state systems w/ bit vectors (safety)

 Binaries (safety)

 Non-linear systems (liveness and safety)

 Better support for concurrent programs

 Modern programming features (e.g. closures)

 Scalability, performance, precision

117

Future work

Termination proving is at the heart of many undecidable
problems (e.g. Wang’s tiling problem)

 Modern termination proving techniques could
potentially be used to building working tools

 Challenge: “black-box” solutions to undecidable
problems die in the most unpredictable ways

118

Conclusion

 Conventional wisdom about termination overturned
 Undecidable does not mean we cannot soundly approximate a solution

Terminator shows that automatic termination proving is not
hopeless for industrial systems code

 Current state-of-the-art solutions based on
 Abstraction search for safety property verification (e.g. SLAM)

 Farkas-based linear rank function synthesis

 Ramsey-based Refinement-based termination proving

 Separation Logic based data structure analysis

119

For more information

 http://research.microsoft.com/Terminator

 Research papers

 Recorded technical lectures

 Contact details

 T2 source-code available

 CACM review article

120

Outline

 10 years work on termination

 More broadly about me, my career, jobs,
other things I work on

 Some notes on Evergreen & me

 Questions

 though please interrupt when things are
unclear!

121

Outline

 10 years work on termination

 More broadly about me, my career, jobs,
other things I work on

 Some notes on Evergreen & me

 Questions

 though please interrupt when things are
unclear!

122

Career

 Evergreen: 1990 – 95

 First year: literature in fall term, then dropped out

 Second year: Spanish literature/history, then moved to Spain

 Third year year: physics/chemistry/math

 Fourth year: computer science

 Fifth year: logic

 NOTE: no previous background in subjects. Went to anti-dropout
program and did NO technical things in high school

 Honestly: only a so-so student

 PhD at Oregon Graduate Institute: 1995-2005

 Weird choice since people were making $$$ in companies

 Failed to get into PhD program first try (should have applied
broadly)

 I struggled as a PhD student

123

Career

Internship, Intel: 1997

Sales engineer, Prover technology : 2000-2002

 Hadn’t finished PhD.

 Had to get job for money reasons

 Abysmal failure

Developer, Microsoft Windows OS product group: 2002-2004

 Still not done with PhD!

Researcher, Microsoft Research Cambridge (UK), 2004-2014

 Lucky break based on networking!

 Big chance.

 Oh, and I had to finish PhD

University professorship: 2008-Current

 Based on fame and networks

124

Job description

 Goal: innovative new ideas, impact, fame/leadership

 Work on what I want:
 Termination and temporal logic

 Constraint solving, automated reasoning

 Cancer research

 Art and its use to help facilitate proof

 Gender diversity in computer science

 Connections to programming languages, machine learning,
ecology, etc.

 ……………….

125

Job description practicalities

Teaching and supervising PhD students (through
university)

Postdocs (both at Microsoft Research and University)

Interns

Thinking/writing/coding

Research visits

Lectures

Conference/journal reviewing

Networking

Leadership/supervision/management

The search for NEW problems

126

Outline

 10 years work on termination

 More broadly about me, my career, jobs,
other things I work on

 Some notes on Evergreen & me

 Questions

 though please interrupt when things are
unclear!

127

Outline

 10 years work on termination

 More broadly about me, my career, jobs,
other things I work on

 Some notes on Evergreen & me

 Questions

 though please interrupt when things are
unclear!

128

Why Evergreen was so great for me

 True & healthy diversity at an unprecedented level

 All aspects, including economic/privilege diversity

 Not a privileged person’s view of diversity

 I understand people in a much deeper way than my
colleagues

 No prerequisites (or negotiable ones at least)

 Subsidized and high quality childcare

 Anti-competitive, pro teamwork work environment

 Emphasis on interdisciplinary studies, and on new things

 Generally high quality teaching

 Freedom to fail

 Filled with freaks & dreamers

129

Outline

 10 years work on termination

 More broadly about me, my career, jobs,
other things I work on

 Some notes on Evergreen & me

 Questions

 though please interrupt when things are
unclear!

130

Outline

 10 years work on termination

 More broadly about me, my career, jobs,
other things I work on

 Some notes on Evergreen & me

 Questions

 though please interrupt when things are
unclear!

