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other things I work on  

  

 Some notes on Evergreen & me 

 

 Questions  

 though please interrupt when things are 
unclear! 
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Automatic formal verification 

 View artifact of interest as a mathematical system: 
 Software 

 Hardware 

 Biological system 

 Railway switching 

 ……. 

 

 Automatically prove desired properties using mathematics 
and logic 

 

 Status:  
 Active area of research in the 70s,  

 Dead in the 80s-90s,  

 Renaissance since 2000 
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Example property 

 

 

 

 

   “The parallel port device driver’s event-handling 
routine only calls KeReleaseSpinLock() when 
IRQL=PASSIVE”  
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always eventually terminates”   
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 New advances for program termination proving 

 Proving termination argument validity 

 Finding termination arguments 

 

 Conclusion 
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Proving termination 

 Traditional termination proving method originally 
proposed by the forefathers of computing 

 

 E.g. Turing, “Checking a large routine”, 1949 
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Automating the search for proofs 

 

 

 Difficulties: 

 

 Proving the inclusion                  is hard in practice (and 
undecidable in theory) 

 

 Finding an    such that                 is hard in practice (and 
undecidable in theory) 
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Automating the search for proofs 

 Transition relations must be computed 

 

 

 

 Technically, computing             is undeciable, so we must 
find a sound over-approximation using available 
techniques:  

 

 

      represents an infinite set of states, but has a compact 
expression 

 



48 

Automating the search for proofs 

 Transition relations must be computed 

 

 

 

 Technically, computing             is undeciable, so we must 
find a sound over-approximation using available 
techniques:  

 

 

      represents an infinite set of states, but has a compact 
expression 

 



49 

Automating the search for proofs 

 Transition relations must be computed 

 

 

 

 Technically, computing             is undeciable, so we must 
find a sound over-approximation using available 
techniques:  

 

 

      represents an infinite set of states, but has a compact 
expression 

 



50 

Automating the search for proofs 

 Transition relations must be computed 

 

 

 

 Technically, computing             is undeciable, so we must 
find a sound over-approximation using available 
techniques:  

 

 

      represents an infinite set of states, but has a compact 
expression 

 



51 

Automating the search for proofs 

 We use an over-approximation of the transition relation 

 

 

 

 Since               , we can prove termination by showing 

 

 

 

 Meaning: there might be unrealistic transitions that we 
have to worry about 

 R’ 
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Automating the search for proofs 

 In practice, its extremely hard to find the right 
overapproximation  

 

 Luckily: recent breakthroughs in safety proving now 
make this possible. 

 

 In fact: the checking the validity of a termination 
argument can be directly encoded as a safety property 

 

 Tools like SLAM can be used to prove validity 
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copied = 0;  

     

     

     

 

 

    if (!copied) { 

        if (*) { 

            _x = x; 

            _y = y; 

            copied = 1; 

        } 

    } else {  

        assert( f(_x,_y) > f(x,y) ); 
        exit(); 

    } 

         

         

              

             

             

              

                    

               

 

 

 

 

 

 

    (*p)-- 

} 

         

         

 

 

 

 

 

 

 

 

 

 

 

int x = *;     

int p = &x;     

while(x>0) { 

         

     

Terminator 

 

f(a,b) = a 
thus 

assert(_x > x); 
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Terminator reduction 

 

     

    if (!copied) { 

        if (*) { 

            _x = x; 

            _y = y; 

            copied = 1; 

        } 

    } else {  

        assert (f(_x,_y) > f(x,y)); 
    } 
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copied = 0;  

     

     

     

 

 

    if (!copied) { 

        if (*) { 

            _x = x; 

            _y = y; 

            copied = 1; 

        } 

    } else {  

        assert((_x>x && _y>=y) || _y>y); 

        exit(); 

    } 

         

         

              

             

             

              

                    

               

 

 

 

 

 

 

    if (*) {  

        x--;  

    } else {  

        y--; x = *;  

    } 

} 

         

         

 

 

 

 

 

 

 

 

 

 

 

int x = *;     

int y = *;     

while(x>0 && y>0) { 

         

     

Terminator 
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copied = 0;  

     

     

     

 

 

        if (!copied) { 

            if (*) { 

                _x = x; 

                _y = y; 

                copied = 1; 

            } 

        } else {  

            assert(_x>x); 

            exit(); 

        } 

         

         

              

             

             

              

                    

               

 

 

 

 

 

 

        x = x – y;   

    } 

} 

         

         

 

 

 

 

 

 

 

 

 

 

int x = *;     

int y = *;     

if (y>0) { 

    while(x>0) { 

         

     

Terminator 
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Future work 

 Previous wisdom: proving termination for industrial systems 
code is impossible 

 

 Now people are beginning to think that it’s effectively “solved”.   

 

Much left to do, including 
 Complex data structures (safety) 

 Infinite-state systems w/ bit vectors (safety) 

 Binaries (safety) 

 Non-linear systems (liveness and safety) 

 Better support for concurrent programs 

 Modern programming features (e.g. closures)  

 Scalability, performance, precision 
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Future work 

 

Termination proving is at the heart of many undecidable 
problems (e.g. Wang’s tiling problem) 

 

 Modern termination proving techniques could 
potentially be used to building working tools 

 

 Challenge: “black-box” solutions to undecidable 
problems die in the most unpredictable ways 
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Conclusion 

 Conventional wisdom about termination overturned 
 Undecidable does not mean we cannot soundly approximate a solution 

  

Terminator shows that automatic termination proving is not 
hopeless for industrial systems code 

 

 Current state-of-the-art solutions based on 
 Abstraction search for safety property verification (e.g. SLAM) 

 Farkas-based linear rank function synthesis 

 Ramsey-based Refinement-based termination proving  

 Separation Logic based data structure analysis 
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For more information 

 http://research.microsoft.com/Terminator 

 Research papers 

 Recorded technical lectures 

 Contact details 

 T2 source-code available 

 

 CACM review article 
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Career 

 

 Evergreen: 1990 – 95 

 First year: literature in fall term, then dropped out 

 Second year: Spanish literature/history, then moved to Spain 

 Third year year: physics/chemistry/math 

 Fourth year: computer science 

 Fifth year: logic 

 NOTE: no previous background in subjects.  Went to anti-dropout 
program and did NO technical things in high school 

 Honestly: only a so-so student 

 

 PhD at Oregon Graduate Institute: 1995-2005  

 Weird choice since people were making $$$ in companies  

 Failed to get into PhD program first try (should have applied 
broadly) 

 I struggled as a PhD student  
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Career 

 

Internship, Intel: 1997 

 

Sales engineer, Prover technology : 2000-2002 

 Hadn’t finished PhD.  

 Had to get job for money reasons 

 Abysmal failure  

 

Developer, Microsoft Windows OS product group: 2002-2004  

 Still not done with PhD!  

 

Researcher, Microsoft Research Cambridge (UK), 2004-2014 

 Lucky break based on networking! 

 Big chance.  

 Oh, and I had to finish PhD  

 

University professorship: 2008-Current 

 Based on fame and networks 
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Job description  

 

 Goal: innovative new ideas, impact, fame/leadership  
 

 Work on what I want:  
 Termination and temporal logic 

 Constraint solving, automated reasoning 

 Cancer research 

 Art and its use to help facilitate proof 

 Gender diversity in computer science 

 Connections to programming languages, machine learning, 
ecology, etc.  

 ………………. 
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Job description practicalities  

 

Teaching and supervising PhD students (through 
university) 

Postdocs (both at Microsoft Research and University) 

Interns 

Thinking/writing/coding 

Research visits 

Lectures 

Conference/journal reviewing 

Networking  

Leadership/supervision/management  

The search for NEW problems 
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Why Evergreen was so great for me  
 

 

 True & healthy diversity at an unprecedented level 

 All aspects, including economic/privilege diversity 

 Not a privileged person’s view of diversity  

 I understand people in a much deeper way than my 
colleagues  

 No prerequisites (or negotiable ones at least) 

 Subsidized and high quality childcare 

 Anti-competitive, pro teamwork work environment  

 Emphasis on interdisciplinary studies, and on new things 

 Generally high quality teaching 

 Freedom to fail 

 Filled with freaks & dreamers 
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