
5/17/2014

1

Smart database for next-generation applications

Making Databases Smarter with Optimization
April 11, 2014

MOTIVATION

Enterprise Software: what and why

You are the Supermarket Emperor

▪ A national store chain might have
▪ A couple of hundred stores

▪ Five large regional distribution centers [warehouses]

▪ Hundreds of suppliers

▪ You are a large consumer of enterprise software

▪ Databases, reporting software, OLAP, �

▪ You are a huge producer of data
▪ Point of sale, inventories, purchase orders, shipping orders,-

▪ You really want useful, actionable information
▪ How many packs of frozen fish croquettes should I ship to the Olympia Emporium on Thursday,

given that I have ordered 400 from the supplier 4 weeks ago (they will arrive to my Tacoma
distribution center on Monday), assuming that I have some idea about how many packs of

croquettes I am likely to sell there daily over the next 6 weeks?

▪ So you commission some business intelligence software
▪ - and quickly end up with

The Hairball

Transaction
DB

Data
Mining &

Stats

Optimization
Modeling

Browser App Server

BI DBBrowser
BI App
Server

UI
Planning

App Server

AJAX- JavaScript, HTML, XML
Flash – Actionscript
Silverlight - .Net languages
JavaFX – JavaFX and Java

J2EE – WebLogic, WebSphere,
JBoss, etc in Java
Microsoft - .Net languages
Netweaver – ABAP
+ Rules engine

Oracle
IBM DB2
Microsoft SQL Server
Sun MySQL
PostgreSQL

Queries & Views – SQL with DDL,
DML, etc.

Stored Procedures – PL/SQL,
TSQL, Java, C#, etc.

ETL – Many vendors &
programming models

DB’s below + Teradata, Netezza,
Vertica, etc.

Excel

Formulas: A3 = B2 – D17

Microstrategy
Business Objects
Cognos

Hyperion
RPAS

SAS
Matlab
SPSS
R

OPL
AMPL
GAMS

CPLEX
DASH
COIN-OR
‘homegrown’

Optimization
Solver

model model

C++

ETL – Many vendors &
programming models

model

solver

model

-OR-

rules

9+ Tech Stacks with 12+ different programming languages = HAIRBALL

Is there a better way? LB?

▪ Radical simplification: “one platform to rule them all”
▪ A single expressive declarative language (based on first order logic)

▪ Record keeping, querying

▪ User interfaces: logical relations between models of widgets

▪ Machine learning: the database “stores” complex objects such as nearest neighbors, probability densities, classification
functions as if they were any other data and takes care of interacting with sophisticated machine learning algorithms

▪ Optimization/mathematical programming

▪ May not do everything superbly but does everything well (enough)

▪ Investment in the underlying engine and platform
▪ Support for transactions: atomicity, consistency, isolation, durability

▪ View maintenance: changes to data are propagated to calculations (views) that depend on them

▪ Very sophisticated query optimization, non-blocking concurrency, parallelism and out of core computation

▪ On demand “platform as a service” automatically provisioning machines on the cloud

▪ Non-technical environment can be greatly simplified

▪ And if that is not good enough for the application at hand, there’s always the hairball
for someone else

▪ In the enterprise software area it’s often been quite good enough

LB

Browser
(client)

THE REST OF THIS TALK
• A Four Slide Introduction to LogiQL Databases

• A quick crash course in Mathematical Programming

• A Real-world Example of Retail Supply Chain Network

• Concluding remarks

5/17/2014

2

A FOUR SLIDE INTRODUCTION TO LOGIQL

Datalog (LogiQL)

▪ Predicates
▪ Represent relations between values:

▪ father(x,y) : x is the father of y

▪ mother(x,y) : x is the mother of y

▪ grandfather(x,y): x is the grandfather of y

▪ age[x]=y : y is the age of x

▪ Can be “given” or calculated

▪ Rules
▪ “Make it so:” predicates that are derived from other predicates

▪ granfather(x,z) <- father(x,y), father(y,z).

▪ grandfather(x,z) <- father(x,y), mother(y,z).

▪ Constraints
▪ “Must always be so:” logical statements about what must always hold of a consistent database

▪ grandfather(x,y) -> !(x = y)

Mother Jane Bill

Alice Joe

Father Joe Jane

Joe Tim

Tim Andy

Grandfather Joe Bill

Joe Andy

A B C D

time

Transaction

Rules are incrementally maintained by the database

▪ Insertion: adding a fact that Jane is Martha’s mother, results in insertion and update
to the ‘Grandfather’ predicate asserting that Joe is Martha’s Grandfather

▪ Rules are evaluated minimally – only re-computing additions / removals to predicates

▪ Atomicity, consistency, isolation and durability of transactions is automatically maintained

▪ Rules can talk about state/changes (not that important for our talk)
▪ +mother(m, y), +father(x,m)

<- +grandfather(x,y), !has_parent(y), m=“motherOf”+y.
has_parent(x) <- mother(_,x) ; father(_,x).

Mother Jane Bill

Alice Joe

Jane Martha

motherOfJill Jill

Father Joe Jane

Joe Tim

Tim Andy

Eddie motherOfJill

Grandfather Joe Bill

Joe Andy

Joe Martha

Eddie Jill

Deletion

▪ Removal of a fact describing the relation between Tim and Andy from predicate
Father, causes the database to remove the relationship between Joe and Andy in the
predicate Grandfather

Mother Jane Bill

Alice Joe

Jane Martha

Father Joe Jane

Joe Tim

Tim Andy

Grandfather Joe Bill

Joe Andy

Joe Martha

Constraints

▪ Asserting that both Tim is Joe’s father and Joe Tim’s violates the constraint that
no one can be his own grandfather: the system aborts the transaction and the
database is restored to the original state prior to the addition of the violating facts.

Mother Jane Bill

Alice Joe

Father Joe Jane

Joe Tim

Tim Andy

Tim Joe

Grandfather Joe Bill

Joe Andy

Tim Tim

Joe Joe

A B C C

time

D
MATHEMATICAL PROGRAMMING (AKA OPTIMIZATION)

5/17/2014

3

Mathematical (Linear) Programming

▪ A potter can make either plates or cups
with different profits from each ($1.07 and
$1.05 respectively). Each plate takes 0.24
hours to make and each cup 0.2 hours.
The total time available to the potter is 11
hours. How much should she make given
that she has already existing orders of 4
plates and 8 cups.

▪ Maximize value of the objective function

o(x,y) = 1.07 * x + 1.05 * y

▪ Subject to the conditions that:
▪ 0.24 * x + 0.2 * y <= 11

▪ x >= 4

▪ y >= 8

▪ x,y integer

Profit Plate 1.07

Cup 1.05

Time Plate 0.24

Cup 0.2

AvailableTime 11

Make Plate x

Cups y

Order Plate 4

Cup 8

Make Plate 5

Cups 49

TotalProfit 56.8

TotalHours 11

Mathematical (Linear) Programming

▪ You can pretty quickly get more elaborate

▪ Maximize value of the objective function

o(x,y) = 1.07 * x + 1.05 * y

▪ Subject to the conditions that:
▪ 0.24 * x + 0.2 * y <= 40

▪ x,y integer

▪ x1 + x2 + x3 + x4 + x5 = x

▪ y1 + y2 + y3 + y4 + y4 = y

▪ 0.24 * x2 + 0.2 * y2 <= 4 (dentist appointment)

Profit Plate 1.07

Cup 1.05

Time Plate 0.24

Cup 0.2

AvailableTime 11

Make (Product) (Day) (Amount)

Plate 1 x1

Cups 1 y1

- - - - - -

Order Plate 4

Cup 8

Make Plate

Cups

TotalProfit

TotalHours 40

Mathematical Programming

▪ All about maximizing (minimizing) value some function subject to constraints
▪ Discrete vs continuous (integer, binary, continuous)

▪ Forms of functions: linear, quadratic, non-linear and so on

▪ Different classes have different algorithmic difficulty

▪ Constraints are expressed as inequalities featuring variables ranging over numeric
quantities (e.g., x and y above)

▪ Objective function is an expression involving some subset of the variables

▪ Efficient and effective solvers exist for solving mixed integer (linear constraints, linear
objective, and some variables integers)

▪ Solve problems with (many many) millions of constraints and variables

▪ Usually highly specialized (commercial) software

▪ Interfaced through modeling languages
▪ How do we write families of related mathematical programming problems

▪ For example, can we generalize to multiple products (plates, cups, etc.) and write single problem that depends on input
values such as profits per product etc.

THE MAIN IDEA
LB Databases can store variables, not just values

Same Problem in LogicBlox

▪ Rules:
objective[] += profit[p] * make[p].

total_time[] += time[p] * make[p].
▪ Constraints
make[p] =v -> v >= order[p].
total_time[]=v

-> v <= available_time[].

▪ And we declare the predicate make as a
special kind of predicate

▪ The system assumes that any value that exists in
the second column of make is an unknown
(variable) which must obey the constraints

▪ The system will “fill in” the optimal values for the
variables such that the objective is function is
maximized and the constraints satisfied

Profit Plate 1.07

Cup 1.05

Time Plate 0.24

Cup 0.2

AvailableTime 11

Make Plate x=5

Cups y=49

Order Plate 4

Cup 8

max 1.07x + 1.05y
0.24x + 0.2y <= 11
x>=4
y>=8
int x,y

Solver Change some values stored in predicates

▪ The system will
▪ Automatically re-synthesize a new system of

inequalities

▪ Invoke the solver to obtain new solution values

▪ Update the predicate Make

▪ So that
▪ At the end of the transaction that changed the values in

red

▪ The original semantics is maintained: the predicate
Make still contains the optimal solution to the
constraints that maximizes the objective function

▪ Benefits
▪ Interoperation with solver 100% hidden from

programmer

▪ Support for multiple solver back ends

▪ Built-in optimization of the instance part of the platform

▪ Maintenance ensures that all rules, values etc. that
depend on the predicate Make get recalculated to
obtain consistency

Profit Plate 0.3

Cup 1.05

Time Plate 0.24

Cup 0.2

AvailableTime 42

Make Plate x=4

Cups y=164

Order Plate 4

Cup 8

max 0.3x+ 1.05y
0.24x + 0.2y <= 42
x>=4
y>=8
int x,y

5/17/2014

4

And automagically get an updated solution

▪ We can even add more facts. Suppose we
the potter can also make vases. We simply
insert the relevant facts into the database

▪ Invariant
▪ At any given time (i.e., at the end of any

transaction) the database is guaranteed to
contain a set of optimal values for the second
column of the predicate Make or, if a solution
cannot be found, the transaction is aborted, and
the database restored to its previous state

Profit Plate 0.3

Cup 1.05

Vase 6.2

Time Plate 0.24

Cup 0.2

Vase 1.0

AvailableTime 42

Make Plate x=4

Cups y=8

Vase z=39

Order Plate 4

Cup 8

Vase 2

max 0.3x+ 1.05y + 1.2z
0.24x + 0.2y + 1.0z <= 42
x>=4
y>=8
z>=2
int x,y z

RETAIL SUPPLY CHAIN NETWORK

A Real-world Example

Vendors
Regional

DCs DCs

Stores

RETAIL SUPPLY CHAIN NETWORK

Vendors
Regional

DCs DCs

Stores

FOCUS ON ONE SKU-VENDOR-STORE PATH

REPLENISHMENT SUPPLY CHAIN NETWORK

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Vendor

Servicing
DC

Store

Network

▪ Each node represents SKU-
location-time period

▪ Each arc represents
merchandise flowing:

▪ Red: demand
▪ Blue: replenishment order
▪ Black: inventory

Unit costs & prices

▪ Each unit flowing on an arc has
a cost or revenue:

▪ Red: unit price
▪ Blue: procurement,

transportation, handling
▪ Black: holding

Our objective is to find flows that

meet demand, maximize profit,

and satisfy business constraints

Days / Weeks

Modeling Network Flows

▪ What comes in must go out

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Vendor

Servicing
DC

Store

x1

y1
y2

1 2 2

d2d1 d3 d4 d5 d6

i1 i2 i3 i4 i5 i6

d1 = d2
d2 = d3+y1
d3=d4
d4=d5+y2
d5+x1=d6
i1=i2+1
i2=i3+2
i3+y1=i4+4
i4=i5+2
i5+y2=i6

4

profit =
2.50 * (1+2+4+2) – (1.05 * x1 + 0.05 * y1 + 0.05 + y2)
- 0.005(i1 + - + i6) – 0.002 * (d1 + - + d6)

5/17/2014

5

OBJECTIVE FUNCTION

� Maximize profit

▪ Revenue
▪ Units sold (forecasting, seasonality, promotions)
▪ Unit selling price (typically varies)
▪ Lost sales = (shortages – backorders) * unit selling price
▪ Transforming a portion of shortages into backorders
▪ Loss of goodwill due to shortages

▪ Cost
▪ Procurement cost = quantities bought * unit purchasing price (incorporate quantity

discounts and special vendor agreements)
▪ Transportation cost = shipped quantities * unit shipping cost (can incorporate shipping in

full containers or trailers)
▪ DC and store inventory holding cost
▪ Warehouse handling costs
▪ Capital cost
▪ Penalty costs
▪ Many more

CONSTRAINTS AND BUSINESS RULES

� Network infrastructure
▪ Vendors, DCs, cross-docks, stores
▪ Order placement dates
▪ Lead times, truck schedules

▪ Shipping multiples (pack size)
▪ Flow conservation equations
▪ Service level, safety stock
▪ Display stock

▪ Sellable, non-sellable
▪ Primary, secondary

� Inventory should not fall below
� Safety stock
� Primary and secondary display
� Soft constraints

� Prioritization in case of constrained supply
� Backorders
� Store and internet sales
� Display stock
� Safety stock

NODE SPLITTING AND ARTIFICIAL VARIABLES

T2T1 T3

DC level

IT

QT
Vendor
order

Internet
backorder

IBT

IT1 IT2

NT

Projected internet
sales

AIBT
Artificial

ANT
Artificial

ST

Ship to stores

I(T+1)

ASS(T+1)
Safety stock
artificial

Reserved from
next arrival

I(T+!) + ASS(T+1) >= SS(T+1)

NUMBER OF VARIABLES

▪ Number of inventory variables alone for a typical medium size retail
replenishment problem is huge:

▪ Active SKUs: 50,000
▪ Number of stores: 500
▪ Number of periods: 100 (assuming modeling the first 6 weeks at the daily

level and the following 420 days at the weekly level)
▪ Number of inventory variables:

50,000 * 500 * 100 = 2.5 billion variables

• In fact a lot larger (cca 20+ variables per node)

▪ Use of the cloud, parallelization, and powerful dis-aggregation
and aggregation techniques enable us to formulate and solve
very large problems

Pragmatics: the devil, the details

▪ So far, all of the above can be modeled pretty easily with modern MIP solvers

▪ We represent the structure of the network with predicates and rules
▪ Turns out to be a very convenient formalism for specifying very large set of complicated constraints

▪ Creating problem instances is a challenge
▪ Problem instances may be too large to fit into memory

▪ Luckily, we happen to have a database that can do out-of-core computation:
▪ Represent the instance itself as a set of predicates

coefficient[row,column]=v

▪ Generate lots of LogiQL code (invisible to the user) to construct it and marshal it to the solver

▪ Generate rules that rewrite the instance (decomposition, aggregation, variable elimination) to obtain smaller instances to solve

▪ Incremental update of instances
▪ If only a single order change update only a small portion of the instances and solver data structures

▪ Complex business rules are surprisingly easy to add
▪ Often just extra LogiQL constraints:

▪ “sum of all the fish ordered from the vendor during months which are marked as no fishing season should be 0”

▪ the total cubic footage ordered must be some multiple of the volume of a shipping container

▪ you should never have more than 20 tons of fish at any distribution center

▪ Computation time becomes very expensive
▪ Amazon EC2 instance with 80G of memory a lot more expensive than one with 24G and we need hundreds or

thousands of those daily

SUPPLY CHAIN NETWORK OPTIMIZATION IN PRODUCTION

Solver
Nightly

Orders, Reports, Charts

Demand forecast, price,
procurement cost, transportation

cost, holding cost, cost of capital, fill
rate, safety stock

SKUs, DCs, stores, vendors,
historical demand, DC calendar,
store calendar, ordering DCs,

initial conditions

Input data Input Parameters

Outputs

5/17/2014

6

0

5000

10000

15000

20000

25000

30000

35000

40000

4/3/12 5/3/12 6/3/12 7/3/12 8/3/12 9/3/12 10/3/12 11/3/12 12/3/12 1/3/13 2/3/13 3/3/13

Store inventory

DC inventory

Inventory in motion

Sample Results, Inventory ReductionSYSTEM-WIDE SKU INVENTORY

Conclusions

▪ Who would have thought that something as so boring sounding as “enterprise
software” could be so much fun to work on?!

▪ Fancy Booklearnin’: Do I use anything I learned along the way?
▪ Mr Kunic, my elementary school teacher: 2x=4 � x = 2

▪ Undergraduate Evergreen [Quite a lot]
▪ Judy’s Database Class: I learned about datalog [In fact, Judy’s advisor invented it]

▪ C&C I learned about 1st Order Logic, models thereof, mathematical logic and Prolog [Al Leisenring]

▪ OGI: Programming Languages, Functional Programming, Type Theory
▪ More about Logic [basis of Datalog]

▪ Much of what I do to make the Mathematical Programming work at LB is translation from one language to another

▪ Rice: Postdoc
▪ Started working on implementing dynamic programming and linear algebra numerical algorithms – came in handy with

optimization

▪ Theorem proving (Coq) : still a dream – Can we use a proof assistant to write our constraints, and actually prove safety,
coherence and convergence properties of our MP models a priori.

THANK YOU

©2014. LogicBlox. All Rights Reserved.

