The 1979 Plan and Evaluation for the Organic Farm at the Evergreen State College
To The Reader:

This 1979 Farm Plan and Evaluation is the result of a year long research effort aimed at collecting data to analyze the progress of the TESC Organic Farm and its academic programs since the last evaluation in 1974; as well as to formulate policies for the future use of the Farm. The As You Sow program saw the need for an update of the previous Farm plan and began the research for this project in the winter of 1979. Questionnaires were formulated and distributed at this time to all those with past involvement at the Farm and its programs, as well as to the Evergreen and Olympia communities as a whole. In addition, indepth interviews were conducted with those people who had been most involved in the history and workings of the Farm.

During spring quarter the information was collected and the analysis process begun. Those of us within the As You Sow program reviewed the first draft of the Farm plan and made proposals which we thought would benefit future programs and the Farm itself. The final compilation and analysis of all the data and writing of the plan was done during the summer as a separate research project of a few students. Thus the following pages of this text, and the proposals made within, are the result of information and opinions collected through various means from all those interested in contributing to the formation of a master plan for the Organic Farm.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 1. Statement of Purpose</td>
<td>4</td>
</tr>
<tr>
<td>2 History of the Farm</td>
<td>5</td>
</tr>
<tr>
<td>3 Decision Making/Policy Statement</td>
<td>8</td>
</tr>
<tr>
<td>4 Description of The Evergreen State College Organic Farm, including main garden, greenhouses, farmhouse, and community garden space</td>
<td>9</td>
</tr>
<tr>
<td>5 Academic Involvement at the Farm</td>
<td>19</td>
</tr>
<tr>
<td>6 1979-1981 Biennium Recommendations</td>
<td>22</td>
</tr>
<tr>
<td>7 1981-1983 Biennium Recommendations</td>
<td>23</td>
</tr>
<tr>
<td>Appendix A. Caretaker Policy</td>
<td>24</td>
</tr>
<tr>
<td>B. Farm Tools and Equipment</td>
<td>28</td>
</tr>
<tr>
<td>C. Policy on Sale of Produce</td>
<td>29</td>
</tr>
<tr>
<td>D. Record Keeping Systems</td>
<td>30</td>
</tr>
<tr>
<td>E. Maintenance Schedule; daily, weekly, bi-weekly</td>
<td>36</td>
</tr>
<tr>
<td>F. Calendar/Monthly Maintenance</td>
<td>37</td>
</tr>
<tr>
<td>G. Budget</td>
<td>40</td>
</tr>
<tr>
<td>H. Map of Organic Farm</td>
<td>43</td>
</tr>
<tr>
<td>I. Soil Survey Maps</td>
<td>44</td>
</tr>
<tr>
<td>J. Caretakers' Letter to Lynn Gardner, Barbara Smith, and Dave Wallbom</td>
<td>46</td>
</tr>
<tr>
<td>K Academic Program Descriptions 1975-1979</td>
<td>48</td>
</tr>
<tr>
<td>L. TESC Organic Farm Land Use Questionnaire</td>
<td>66</td>
</tr>
<tr>
<td>M. Site Improvements Organic Farmhouse Project</td>
<td>73</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Our heartfelt thanks go to all of those people who have in any way helped give or gather the information needed to make this plan and evaluation come into existence. The Evergreen faculty, staff, and students (especially fellow As You Sow-ers), as well as many friends in the community, have been unselfish in the number of hours that they have spent helping us update the history of the Farm, assess its present situation, and make proposals for desirable changes in the future.

Were we to try to account for all of the individuals who have worked with us at one time or another over these past few months, we would certainly forget to mention someone's name in the process. Rather than risk that possibility, we chose to express in general our sincere appreciation to everyone involved. We are indeed grateful to all of you, and we hope that you will stay in close contact with the Organic Farm as it grows and changes in the years to come.

Written by May Wright, Sharon Newell, Carl Fawcett, and Chip Patullo with assistance from Carolyn Dobbs and Fred Stone.

Special thanks to Donna McMaster for the typing of these pages.

August 29, 1979
Chapter 1

STATEMENT OF PURPOSE

Since the last Farm Plan and Evaluation was written in the Spring of 1974, Evergreen's Organic Farm and Garden has witnessed much growth and improvement. The Farm is now established as one of the few learning resource areas in the country where small scale organic agriculture can be studied and researched on an experiential basis. It provided the opportunity to look in depth into such areas as soil science, plant physiology, pest identification and management, land use studies, building projects and other agricultural related subjects. In the future the farm has the potential to enlarge its learning base to encompass such areas as forestry (woodlot management), alternative farm technology and more in depth research projects.

With the completion of the new farmhouse, the realm of activity at the farm will expand to include recreational as well as academic usage. This expansion will enable the farm to become an important community resource center for lectures, workshops and entertainment, in addition to its established role as a successful example of small-scale agriculture. This policy plan aims at providing guidelines for the management of the farm with these new developments in mind, as well as providing some direction for the future use of the farm. The Organic Farm is primarily a learning resource area where new ideas and skills can be developed especially in the area of small scale farming. It is the purpose of this plan to ensure that this identity remains the central focus of the Farm, as well as to provide avenues for compatible multiple usage.
Chapter 2

HISTORY

The history has been compiled and condensed from previous reports and interviews with persons involved with the farm.

1971

In the fall of 1971 a group of students in the Environmental Design Program discovered that the Lewis Road Farm was Evergreen State College property and that it was available for use by interested students. A study group was formed which met weekly to determine guidelines for the management of the farm. A general consensus of guidelines came from these meetings.

1) The Farm was to be a college project involving everyone at Evergreen and not just one coordinated studies program.

2) The Farm would attempt to involve community help as much as possible.

3) The Farm was to be run in strict accordance with ecological principles: It was to be an organic farm.

4) The Farm was to be governed by a general consensus of the entire group. There would be room for individual projects of any compatible sort, but the entire operation would not be run by any one person.

5) The Farm was to be completely run on human and animal power. No gasoline or electrical machines were to be used at the farm. The last point was hotly debated at all of the meetings. Although it was finally agreed upon, it was eventually thrown out due to the large size of the farm.

1972

The farm planning group formulated a proposal which was well-received by the TESC Board of Trustees. Money was allocated to the farm and restoration began. The farmhouse was renovated and Jimmy Kagan and Frida Habbick moved in during the summer. The garden was started and much of the crop was donated to the community. A pregnant Guernsey cow was given to the farm. She gave birth in July. Stumps were removed from the main garden and a chicken coop was built. The well was certified and irrigation pipes were laid. Eight hundred and fifty dollars was allocated by the Services and Activities Board for the coming year.

1973

Planning occurred during the winter and the bio-dynamic gardening method was selected. A perennial flower garden was also planned near Lewis Rd. A group contract was organized in the spring. Faculty was Carolyn Dobbs. The farm also acquired 12 laying hens in the spring. The farmhouse was remodeled with funding from the Services and Activities Board. The construction of a low cost glass greenhouse was begun. A hive of bees was purchased and a rooster acquired. The new caretakers took over in October.
1974

The program, "Matter of Survival," along with the Friends of the Farm, started plans for a new farmhouse. Originally, a log cabin was planned but the plan changed so the logs were milled to get more lumber. A second bee hive was added during the year. In the spring students under contract with Pris Bowerman with assistance from Carolyn Dobbs did the first farm plan. Marc Ross was the caretaker at this time.

1975

A building permit for the new farmhouse was secured and the foundation construction started in the spring. From the spring to the fall Neils Skov led the Good Earth I Program. Land was cleared to the north of the house and garden and orchard was planted there. Blueberries were donated to the farm from the Eberhart Blueberry farm and they were planted just west of the garden.

1976

Two new caretakers began in the fall, David Yates and Micheal Barron. The garden had declined prior to this fall. The framing of the new farmhouse was started. For some reason, the orchard was turned under in the spring and was planted in rye in the fall to prepare it for the community gardens. The cow was also sold in the spring and the pasture was given to community gardens.

1977

Back to the Land was the program from winter through summer in 1977. Bob Filmer was the faculty. (See appendix K.)

The small glass greenhouse was falling apart and was replaced by the present plastic greenhouse. This was accomplished by the Back to the Land Program. Raspberries were planted next to the greenhouse. Claudia McCarthy and Rachael Nathanson started as caretakers in the winter. Roofing and framing of the farmhouse was a continuing project. Funding for tools and two work study positions were acquired this year due to the efforts of David Yates. The formal bed system was laid out with the central herb garden and biodynamic French intensive beds radiating from it.

1978

The solar greenhouse began in the winter under a group contract with Jake Romero as faculty. A row of apple trees was planted in the main garden. They were budded and grafted during the spring.

In the summer of 1978, Organic Gardening was a group contract at the farm. (See appendix K.) Carolyn Dobbs and Kaye V. Ladd as faculty led the contract through a practical look at organic gardening. Workshops on a variety of topics, book seminars, and observation through field journals rounded out the practical work in the garden.
Daniel Tolfree started as a caretaker during the winter and carried over into the fall. David Yates, Claudia and Rachael left after the summer. Three new people, Grant Logg, Sara Obern, and Miles Sherts began in the fall. Somehow the work study positions were lost at this time.

1979

As You Sow started in the winter and continued through the summer. It dealt with the practical aspects of gardening, as well as studying the politics of land use planning and the economics of a small farm. (See appendix K.)

A third hive was added to the farm. One hen emerged from the wood in the springtime with 15 chicks. They are all doing well and will be full grown in the fall. The hens were moved from their spot on the hill and a new chicken house was built near the garden. The solar greenhouse is nearing completion and should be completed in the fall by a group contract studying the greenhouse. The plastic greenhouse was recovered this winter. There is now a small geodesic greenhouse (6' 8" radius) built during the program to help with future winter gardening. A solar food dryer was also completed during the summer, and the farm acquired a cider press.
Chapter 3

DECISION MAKING

Policy Statement: There are three policies which should form a basis for Farm decisions in the future. (These policies were formulated in the 1974 Farm Plan and still represent the basis upon which the Farm is managed. These three policies have been slightly expanded so as to suit the present and future needs of the Farm.)

1. Most important is that the Farm always be an organic farm used to improve and experiment with organic methods of food production, biological pest control, companion planting, mulching and related areas during all phases of development.

2. We consider it very important that the Farm continue to be open to use and input by varied groups and programs from Evergreen and the surrounding community, and that it not develop into an inflexible institution, or its use be dominated by one group or concern. However, we do suggest that the agricultural programs be given priority for use because of their maintenance of, and direct learning from, the garden.

3. Equally important is a policy for live-in student caretakers to be an integral part of Farm operation. (See caretaker policy, Appendix A.)

Decision Making Body: The decision making body for the Farm should be comprised of those most closely involved with the Farm effort each year, as well as the departments funding the operation and expansion of the Farm. More specifically, this committee should include at least one representative from each of the following:

- faculty of current farm program
- students from current agricultural program and other programs based at the Farm
- current caretakers
- Office of Facilities
- Services and Activities Board

This representative group would provide a fair and responsible decision making body composed of those who are the most knowledgeable about the Farm and its operation. This "Farm Board" would preferably meet at least once a month to discuss and make decisions on all issues involving the management of the Farm and its facilities. The Board should seriously consider the recommendations made in this 1979 Farm Plan in any decision making process, as well as keep an open mind to future opportunities for the Farm.
Chapter 4

THE EVERGREEN STATE COLLEGE'S ORGANIC GARDEN

The TESC Organic Farm and Garden has been cultivated to varying degrees by academic programs and caretakers in the past eight years. The present garden area under cultivation is approximately two acres. The garden encompasses many types of cultivation, such as field crops, herb garden, intensively cultivated raised beds for vegetables and berries, a plastic greenhouse and a solar greenhouse. (For more details on how the garden is organized, refer to the garden map, pg. 44.)

An important aspect of the Farm and Garden is the collection of observations and data obtained from the cultivation of plants. In this way the Farm and Garden functions as a learning resource for present and future students as well as for those outside of the Evergreen community. The recording systems are composed of a resource notebook, financial log and caretaker log and were implemented in 1979. (Refer to page 30 for a detailed description of these systems.)

I. Garden Perimeter: The following are recommendations concerning changes in the size and character of the perimeter of the garden.

A.(1.) The garden should remain at its present size until conditions are such that expansion is needed. Limiting the size of the garden will help prevent the area from over extending its workforce (caretakers and students in the academic programs), and will ensure that the garden is adequately maintained.

(2.) Conditions that would make expansion of the garden possible:
 a. The extent of involvement the program/programs will have at the Farm and Garden.
 b. The number of students enrolled in the Farm's academic programs.
 c. A large demand for the area set aside for experimental plots.
 d. If long range benefits of expansion into the fields far outweigh the short term demand.

B. The small fields outside the intensive garden area should remain in field crops. The fields provide the opportunity to study the cultivation of field crops and also contribute to the diversity of the garden.

C. Recommend topping and thinning the trees to the south of the garden which would result in more sunlight reaching the garden. Presently the shade caused by the trees inhibits a large part of the garden from obtaining afternoon sunlight.

D. Promote the cultivation of flowers throughout the garden to provide diversity in color to the garden. More importantly, certain flowers (marigolds and nasturtiums, for example) can serve as effective pest deterrents. Suggested locations for the flowers are: end of the rows, around the fence and around buildings.

E. Planning should be done by the caretakers and the academic programs based at the Farm. Specific recommendations are:
(1.) At the time of ordering seeds, plan the organization of the garden.
(2.) Develop a schedule for when the beds need to be prepared and planted.
(3.) Prior to making any major change in the garden’s structure or organization, consider and evaluate the long term effects to the garden.

(For planning the preparation and planting of the garden, refer to the Annual Schedule of the Farm for suggested calendar deadlines—pg.37.)

F. Designate several composting stations throughout the garden perimeter. The criteria for the location being:
(1.) Centrally located to the intensive garden area.
(2.) Along the north and east sides of the plastic greenhouse (outside) which would provide warmth to the greenhouse in cold weather.
(3.) Along the NE fence line of the garden and the adjacent upper eastern gate of the garden.

II. Herb Garden: The herb garden was organized and planted in its present format back in 1977. To maintain its beautiful design and annual growth, we suggest the following recommendations:

A. To be maintained and yearly revised to ensure that the varieties continue to be present in the garden as well as allowing room for new herbs to be planted.

B. Starts from the herb garden could be used throughout the intensively gardened beds for companion plants and for sale to the community. (It is important that the original sources for these starts do not become depleted beyond their growing capacity.)

C. At least one workshop should be given for the community on the culinary, medicinal, and agricultural uses of herbs.

III. The Intensive Garden Area: The Intensive Garden area makes a large portion of the central garden area. Recommendations for its use are as follows:

A. Continue the double digging and raised bed technique (French Intensive) or some derivation of it. This method has proved to be a good approach to growing a lot of vegetables in a concentrated area. Other methods of intensive gardening should be experimented with to help perfect this practice. (An explanation of this method can be found in the book How to Grow More Vegetables, than You Thought Possible, by John Jeavons.)

B. The paths between these raised beds could be planted with clover to provide uniformity to the garden and for its soil building characteristic.

C. Cultivation of flowers at the ends of these raised beds should be encouraged so as to provide diversity of color in the garden and help in the management of pests.
D. Signs should be placed in the north end of the beds providing the workers and the visitors to the garden with information of the bed's number, date of planting, and what is being cultivated.

E. Post information (near the main entrance to the garden) explaining the various planting techniques being used, as well as a map visually portraying the layout of the garden.

IV. Fertilization of the Soil and Biological Pest Control: The results of the questionnaire (see Appendix-question no.12) revealed an overwhelming community support for the Organic Farm's policy of not using chemical fertilizers, pesticides or herbicides. (For details on the results of the composting practices of 1979 refer to Appendix E and to the composting section in the 1979 Farm Resource Notebook.)

A. To continue the use of effective alternatives to chemical fertilizers in providing nutrients to the garden and to document the effectiveness of these alternatives. (Refer to the Annual Schedule p. 37 for suggested dates on when to prepare compost for future bed preparation. Also check the soil survey conducted in the spring quarter, 1979, at the Farm.)

B. Expound the research and practice of using biological methods to control pests in the garden. This organic approach to controlling pests needs to be recorded and analyzed before it can gain acceptance, outside the Farm, as a viable and healthy approach to pest management.

C. Continue experimenting and recording observations on the various nutrient sources such as: manure and herbal teas, cover crops, different composting methods, etc.

V. Research: The research aspect of the farm was encouraged and supported by the community in all the general areas listed in the questionnaire. These areas encompassed: organic farming, forestry, land use, field biology, livestock and alternative farm technology. The only areas not obtaining a fifty percent margin of support were forestry, field biology and livestock. (Refer to Appendix L for details of these responses-question five #8.)

In the spring of 1979 an area in the eastern part of the garden was divided into plots for student originated experiments. These plots were the responsibility of the student in addition to the other work and research conducted in the rest of the garden.

Recommendations:

A. Continue the research started and plan a format for long term research to be conducted at the Farm. This research will prove invaluable because the years of data will provide dependable results. Suggestions for areas of research which could be implemented or developed:
1. Experiment and compare the different methods of intensive gardening.
2. Compare the cultivation of vegetables in traditional plowed rows to that of intensive raised beds.
3. Comparison of the different (biological) nutrient sources as to their effectiveness in meeting plants' needs.
4. Companion planting.
5. Biological pest control.

B. Establish communication with the U.S. Agricultural Experimental Station in Puyallup. The station could be a good source of information on traditional farming experiments to compare with Evergreen's Organic Farm and Garden data.

C. Develop and implement long term research with the solar and plastic greenhouses as well as other forms of alternative farm technology (i.e. wind power).

VI. The Garden as a Community Outreach Center: Throughout the Farm's history, it has served as an example of alternative agriculture to the community as well as an information source on organic methods. Community members have also made use of the community garden space to grow food of their own. People from the community have attended workshops held at the Farm and Garden on such topics as tree pruning, spinning wool, companion planting, etc; as well as assist in teaching them. To maintain this exchange of ideas within the community and to encourage the growth of this communication, we have developed a list of recommendations to accomplish this goal:

A. To help visitors become acquainted with the Farm, the following steps should be taken:
 1. Near the main entrance of the garden, post an explanation and rationale of the gardening methods being used.
 2. Prepare a handout on various methods of organic gardening plus references to books for further studies by the visitor.
 3. Label beds with: a number, what is growing in them, the particular method being used and why, and the rotation schedule.
 4. Post a map of the garden at the main entrance.
 5. Label any experimental area with a brief explanation of the experiment.
 6. Have a guest book near the main entrance of the garden to be signed by visitors to the garden. This would provide a record of the number of visitors, where they are coming from and ideas they might have, and a mailing list for pertinent material about the garden.

B. Have an open house of the Farm and Garden in late summer when the harvest is in its peak.

C. Participate in the Thurston County Fair with an information booth and entries in the vegetable competitions.

D. Workshops should be publicized to the community and sponsored by the academic programs and caretakers involved with the Farm and Garden. Suggested areas
to be covered by the workshops are:
1. Usage of herbs
2. Intensive methods of vegetable cultivation
3. Tree pruning
4. Bee keeping
5. Building and using greenhouses (also coldframes)
6. Intensive methods of vegetable cultivation
7. Companion planting
8. Biological pest control
9. Other
GREENHOUSES

The purpose of the greenhouses is to extend the growing season and to help with an early start in the spring planting. The plastic greenhouse is being maintained for an inexpensive comparison to the solar greenhouse, and should continue to exist.

Plastic Greenhouse: It was constructed in 1977 during the Back to the Land program. All totalled there are 300 square feet of raised bed space, 110 ft² of bench space for starts, and 280 cubic feet of water in a 5 ft. radius aquaculture tank within the 21' x 34' greenhouse. The aquaculture tank serves as heat storage as well as in its fish raising capacity. The plastic exterior was replaced in the winter of 1979 at a cost of $65 for 100 ft x 20 ft roll of plastic. Ten carp and two goldfish are presently being raised in the aquaculture tank.

In the spring, starts of cucumbers, herbs, brassicas, melons, squashes, tomatoes, and lettuce were raised and later transplanted to beds in the garden. In addition, some root crops, peas, cucumbers and the banana tree were begun in the spring and remained in the greenhouse. Summer growing has focused on raising cucumbers, tomatoes, melons, and peppers; with the benches being used for starts of fall and winter brassicas. Fall will see the harvest of the last tomatoes, cucumbers, peppers, and melons with the gradual shift to winter brassicas and greens such as lettuce and spinach. Marginal brassicas and fragile greens will be grown in the winter in the beds with the preparation of starts for the spring. Compost should be started in the fall and winter to insure an adequate supply for the spring plantings. Building compost piles in the greenhouse would also provide an additional heat source for the structure.

Recommendations

1. Maintain temperature and yield records for comparison with outside crops.
2. Start compost in fall and winter for early plantings and starts.
3. Research best plant use for the available space.
4. Feed fish.
5. Water and care for plants.

Solar Greenhouse: The Evergreen State College solar greenhouse is a student designed and built project begun during the winter of 1978. It is nearing completion in the summer of 1979. The entire structure is 32' long and 30' wide comprising 960 ft². The greenhouse is 18' wide with 544 ft² available for planting beds and walkways. The 352 ft² work area is separated from the greenhouse by an insulated wall. The cost is estimated at $5000. The greenhouse is designed to provide a net gain of solar energy from March through November keeping it 20°F above the ambient temperatures. In the winter it is designed for 2 day storage of one sunny day. See appendix for more details.

There are several options for the completion of the back room of the greenhouse. Installation of tables and a sink will make the area useful for a soil science lab,
experimentation, canning and drying produce, and construction of flats.

Recommendations

1. Maintain temperature and yield records for comparison with outside plants.

2. Thought and research should be given to the best plants for optimum space utilization.

3. Watering and feeding schedules must be continued.

4. Start compost in the fall and winter for early starts and heat generation.

5. Utilize completely, space over rock storage and add hanging plants.
The new farmhouse at the The Evergreen State College Organic Farm is due to be completed in October of 1979. At that time, for security and maintenance reasons, at least two caretakers will take up residence in the house. Caretakers will assume the responsibility of maintaining the house (supplies and repair work to be provided by Facilities), coordinating activities that will make use of the house and/or garden, and maintaining the organic garden and solar greenhouses.

The space that will be available for academic or public use in the new farmhouse, is considerably larger than in the old house. In general, this means that the entire farm facility can be put to much better, more frequent, and diversified use. For this reason, it is necessary to list in descending order, who will receive priority in using the public area of the house:

1) Academic programs directly involved in the farm.
2) Unrelated academic programs.
3) On-campus activities (scheduled lectures, recreation, etc.)
4) Off-campus activities, community events.

All groups will be asked to take the responsibility of cleaning up the area that they used/occupied before leaving, so as not to burden the caretakers with the additional work.

A large, well equipped kitchen will be available as part of the facility. Flatware and dishes will be provided for serving as many as 60 people.

Space will be set aside in the house for a small reference library pertaining to organic gardening methods and related areas of study. These books are to be for reference use only, and under no circumstances should they leave the farm property or be loaned out. People wanting to borrow such materials will find duplicate copies available in the main library.

The new farmhouse is to be heated by three wood stoves. In addition to burning the refuse lumber from the construction site and the farm, some other source of acceptable wood will have to be found in order to have enough fuel to keep the house comfortable. It is possible that in the future, a source of wood could be acquired through a woodlot management program which could research and then selectively cut the woods surrounding the farm. Students working on the landscape designs for the farmhouse, have several sites in mind for easily accessible wood sheds.

We strongly suggest that automobiles have limited access to the garden and new farmhouse. With parking space available in such abundance on campus, it hardly seems feasible to propose that a new lot be put in for the farm. This is especially true considering that the walk from the main campus through the woods to the farm is really quite short and beautiful. Perhaps a separate lighted cement path could be installed between the lab buildings and the farmhouse, which would enable bicyclers and handicapped people to reach the farm much more easily. Other options to limit access are:

1. (Previous page, first paragraph- for further information concerning the responsibilities of the caretakers, look to page 24, for the caretaker policy.)
1) Install a gate, allowing only delivery vehicles and cars of handicapped people to have access to the road to the new farmhouse.

2) If it is deemed necessary to have parking space available in the immediate vicinity of the farm, it would be preferable to put a lot in the field due north and adjacent to the farm. Motor vehicles in the area of the garden present a very real problem, in that their exhaust fumes would contaminate the garden with heavy metals.

Handicap ramps have been installed in the new farmhouse facility, to provide easy access.

Any individuals or groups who wish to use the farmhouse facility at a specific time, are asked to consult the caretakers and/or the Facilities office (Lab II, 1254) in advance to reserve the space.
Community garden space will be available for use in early March of each year. People interested in using this space will be asked to sign up in advance, so that the caretakers can divide up the plots and assign them according to priority. The Organic Farm, being experimental, but also being a state supported institution, automatically becomes an example of alternative agricultural practices. Visitors should realize that the community garden and main garden are valuable academic and experiential resources and that the high level of student participation reflects this fact. Assignment to community garden plots will be made according to the following list. In descending order, priority will be given to:

1. Students and faculty who have previously worked in the community garden, and have proven themselves to be serious and responsible gardeners. These same people will be asked to organize the regular meetings of the community gardeners.
2. Students presently living on campus.
3. Students living off-campus.
4. Faculty.
5. People outside the Evergreen community who have shown considerable interest and commitment.

Community gardeners will be charged a minimum of $5.00 each year, for use of the space, the maximum charge being $10.00 for a large family sized plot. This fee is to also cover the use of tools, hoses, and other necessary equipment. If agreed upon, this money could also buy the bulk materials that the community gardeners would have to supply in order to build their own compost pile. The caretakers have offered to give workshops on composting in the early spring, to assist community gardeners who are unfamiliar with these methods. Since community gardeners will be required to use compost (or some other organic fertilizer) so as not to deplete the soil of necessary nutrients, the pooling of these funds would seem to be quite desirable.

The assigned plots are to be dug and ready for planting, on or before April 1st, of each spring. If community gardeners fail to prepare their plots by such a date, then the privilege will be revoked and the plot reassigned to someone else. Likewise, everyone using the community garden space (except those who plan on having a winter garden) will be asked to clear and clean up their plots by October 1st, of each year. At this time, the caretakers of the Organic Farm will plant a cover crop for the winter, in order to prepare the soil in the community garden for the following spring.
Chapter 5

ACADEMIC INVOLVEMENT AT THE FARM

I. A. Role of the Agricultural Program at the Organic Farm: From the time that the Farm was first utilized as an educational resource of Evergreen State College, up until the present, the major focus of study has centered on alternative agriculture. The theme of these agricultural studies is as follows: "The theory and practice of small scale farming with particular emphasis on understanding the scientific basis of organic and ecological methods and the place of small farms in the present social order." (Taken from Agricultural Studies at Evergreen, Feb. 1978. Robert Knapp—refer to appendix for a copy of this report.) Agricultural studies have been offered in the form of Coordinated Studies or Group Contracts to serve as introductory courses in alternative agriculture. Students have been required to have a basic knowledge of the natural sciences prior to taking any one of these courses.

The Farm serves as a "field laboratory" where students can apply the knowledge of plant science, pest management and farming techniques learned in lectures and workshops. A major part of the knowledge gained is generated during the process of planning and growing the garden; "learning by doing." For example, when problems arise such as soil nutrient deficiencies, pest damage or outbreaks of disease, students are stimulated to search for solutions and expand their knowledge beyond classroom learning.

A closely related activity, for which the Farm is vital, is research by Evergreen students and faculty. Valuable information has been generated by research at the Farm over past years such as the study on cultural methods of controlling a serious pest of the Cole family, the cabbage root fly. The potential exists for much additional research on improving methods of growing plants organically under the climate and soil conditions of the northwest.

A third way in which the Farm is closely tied to the agricultural programs is in community outreach. Methods of organic gardening learned at the Farm are made available to area residents through workshops, radio programs, open houses, a booth at the Thurston County Fair, field trips to area farms and talks to interested groups such as Tilth, Abundant Life Seed Foundation, Pike Street Market Association and others. Faculty also assist with courses on small farming arranged by the Cooperative Extension Service. The Organic Farm could not function without the input of the students in the agricultural programs. They supply ideas and labor which enables the Farm to run efficiently and effectively.

2. Specific Responsibilities and Objectives of the Agricultural Programs in Using the Farm:

1. Planning, growing and maintaining the main garden and greenhouses in cooperation with the caretakers (see specifics of these responsibilities under caretaker policy section) in a way consistent with the overall Farm policies (organic methods and care and improvement of the soil). This involves a time commitment on the part of students in the agricultural program of one to two days per week (8-10 hours).

2. Use of the Farm for field courses and workshops on such topics as: soil science, plant identification, land use planning, organic gardening methods, composting, mulching, pest management, horticulture and orchard growing.

3. Planning, coordinating and carrying out research on ecologically sound gardening methods. Research is needed on various methods of tilling, composting, and mulching as well as on pest management.
4. Community outreach is an important responsibility of the faculty and students at the Farm.

II. Long Range Goals for Agricultural Studies (taken from Agricultural Studies at Evergreen, Feb. 1978)
in order of importance:

A. To educate and train practitioners of an appropriate agriculture, people who will be: responsible stewards of the land; productive and successful farmers; investigators who will continue to develop an appropriate agricultural science; and effectively progressive members of their communities.

B. To discover and promote an ecologically adapted agriculture for this special region—West Slope Cascadia.

C. To study the biological dynamics of the transition from chemical farming to organic farming and the connections between soil management practices, plant nutrition and human health.

D. To apply academic talents to aid small scale farmers and homesteaders.

(The implementation of these goals is dependent upon an expansion of present resources in terms of faculty and facilities.)

III. Future Academic Program Possibilities: (This list was obtained from the questionnaire formulated by the As You Sow program and distributed to students, faculty and community members in the spring of 1979. See appendix for a copy of this questionnaire.)
The following are the subjects which people wished to see included in studies based at the Organic Farm. Listed in order of popularity:

A. Organic Farming - 79%
B. Alternative Farm Technology - 78%
C. Organic Gardening - 68%
D. Land Use Planning - 50%
E. Field Biology - 49%
F. Forestry (woodlot management) - 46%
G. Livestock (care and maintenance) - 41%
H. Other (Nutrition, Landscape Architecture) - 14%

note: The above percentages do not total 100% because the questionnaire allowed for more than one choice.)

In addition to these suggested topics, there have also been requests for more advanced undergraduate studies in the agricultural sciences besides the basic introductory courses. This would enable interested students to pursue agricultural studies as their major field of study and would also serve to strengthen the agricultural program as a whole. The possibility of more indepth agricultural studies is dependent upon the number of students interested and the availability of adequate faculty and facilities. For the present, Individual Contracts and internships (for example, the caretakership position) are other avenues to obtain more advanced knowledge in the study of agriculture.
IV. **Individual Contract Proposal:** The successful operation of the Organic Farm (especially the garden) involves a cooperative effort on the part of caretakers and the current academic program based at the Farm. The completion of responsibilities necessary to maintain the Garden, as listed in the Caretaker Policy section of this plan, depends largely on the work of the agricultural programs. This set-up has thus far been successful, however, during the fall quarter, when there is no agricultural program being offered, it is difficult for the caretakers to adequately maintain the Farm and Garden. Because of this situation, there is a need for additional help during this time period. This help could be obtained by extending the agricultural program to run a full year (4 qtrs.) or through Individual Contracts with the principal Farm faculty member. Internships or work-study positions are other possibilities if sufficient funds are available. It is the recommendation of this planning committee to offer Individual Contract openings for fall quarter. Thus, the Farm could provide more learning opportunities while securing the necessary help it needs to function effectively.

V. **Proposal for a Permanent Faculty Position:** Presently the faculty related to the Farm program consists of one faculty member whose principal expertise is in agriculture science and who is the main organizer of activity at the Farm and will teach in the Farm program approximately two years out of every three. In addition, half a dozen other faculty of varying backgrounds will teach in the Farm program on a rotating basis perhaps one year out of every three. The other faculty should be willing to commit themselves to covering Farm teaching needs through a definite (though modifiable) rotation schedule.

As a result of responses from the questionnaire (Spring 1979, see Appendix) this planning committee recommends that a permanent faculty position be made available within the first biennium of this plan (July, 1979 - July, 1981). This would provide more stability and legitimacy to agricultural studies at Evergreen which in the past have been lacking.

VI. **Academic Funding:** See Appendix.
Chapter 6

RECOMMENDATIONS FOR THE FIRST BIENNIAL

In the next two years, the Organic Farm should be improved and developed within the present physical boundaries. During this period of time, no more land is to be put under cultivation.

Recommended projects are:

1. Completion of solar greenhouse. For specifics, see plan for garden, page 14.

2. Build a new house and yard for the chickens, in the area of the barn. In this location, disturbances in the coop would be heard at the farmhouse.

3. Remove or relocate woodsheds. Scrap lumber, which is to be burned in the wood stoves in the new farmhouse, should be stacked and stored in close proximity. Storage for reusable lumber should be placed so as not to create an obvious eyesore.

4. A systematic and easily cross-referenced method of keeping permanent records at the farm, should be put into effect.

5. Selectively cut or top trees 100 feet into the woods along the southern edge of the garden. This would allow more sunlight to reach the garden during the winter.

6. Remove the old rabbit hutch, which are no longer in use.

7. Remodel one side of the garage for office space. Records, books, and other resource materials are in bad need of a permanent, central location.

8. Replace plastic and do all necessary repairs on plastic greenhouse.

9. Maintain the 3 swarms of bees, and their hives.

10. Put in a cement pathway running from behind the Lab building to the new farmhouse. This would encourage people to park in the main parking lot on campus, and take advantage of the wonderful walk through the woods. Also, bicyclers would have easier access to the farm, which would in turn alleviate the problem of bicyclers damaging the existing path.

11. Have the administration assign a permanent faculty member to the farm and related academic programs. Hired faculty should have extensive background in the appropriate academic areas. Previous experience in teaching organic agriculture should also be a requirement for the position.
Chapter 7

RECOMMENDATIONS FOR SECOND BIENNIIUM

By this time, the projects listed in the previous biennium should be completed, and the farm should have reached a level of academic and environmental stability. If this is not the case, then decision making and organizational policies for the farm should be carefully reevaluated and clarified. Other projects to be considered at this time are:

1. Evaluate the first biennium and review or rewrite the projected accomplishments for the next two year cycle.

2. Expand Community Garden space if necessary.

3. Increase community outreach and public relations work by scheduling workshops that would be geared to fit the needs of the community. Advertise such events in advance.

4. Write an update of the Master Plan for The Evergreen State College Organic Farm and Garden.

5. Review effectiveness of present caretaker policy.

6. Review faculty assigned to the alternative agriculture program at the Organic Farm.
APPENDIX A

CARETAKER POLICY

I. Purpose. The purpose of this writing is to clarify the need for, and the role of, caretakers at the Organic Farm and Garden. The Farm, as an agricultural, academic and recreational resource, is both a valuable and integral part of the Evergreen community. In order to adequately meet the demands on this resource, some form of caretakership is required to serve in the areas of maintenance, coordination, security and as an informational resource. Thus the suggestions put forth in this policy proposal aim to clarify the role of the caretaker as well as emphasize the importance this position holds in maintaining the organic farm as a multiple-use resource.

II. Job Responsibilities. (All of the caretakers will work cooperatively to complete the designated responsibilities, however, each caretaker will have primary responsibility for one specific area as divided below.)

A New Farmhouse.

1. Assisting Facilities (Lab II, 1254) in coordinating the scheduling of activities to take place at the new farmhouse or anywhere on the farm property. (Priority should be given to the farm program utilizing the garden and farmhouse for class work and meetings.)

2. Responsible for maintaining the public areas of the new farmhouse in an orderly and clean fashion at all times. This includes any preparations which might be necessary prior to a group's activity as well as any cleaning necessary as a result of an activity. (Individual groups utilizing the farmhouse shall clean up any mess created from their use and therefore the caretakers' responsibility is to make sure that this is carried through, not to serve as a "maid.")

3. Maintenance of the living quarters such that no damage is incurred beyond the realm of normal usage.

4. To serve as a security for the farmhouse and the property contained within against vandalism and other such damages.

5. Record keeping of all activities held at the new farmhouse in terms of date and type of use to serve as a scheduling aide and for future reference. To also maintain an inventory of all property contained in the house in terms of amount and physical condition, as well as a record of financial spending. (These records are to be kept separate from the garden log.)
6. Responsible for working in conjunction with the other caretakers in proposing an annual budget to submit to S & A Board for approval, as well as a plan for how this money is to be spent in the course of the year.

7. Must be a member of the proposed farm board and attend all meetings to discuss and make recommendations concerning the management of the farm as a whole.

B. Garden.

1. Maintenance.
 a. Planning garden design.
 b. Order seeds.
 c. Preparing beds and fields and maintaining them.
 d. Planting and transplanting starts.
 e. Obtaining fertilizer materials.
 f. Compost building and application.
 g. Weeding.
 h. Watering.
 i. Animal care--feeding and maintaining their living structures.
 j. Maintaining paths.
 k. Constructing and maintaining fences.
 l. Mulching.
 m. Monitoring and managing garden pests.
 n. Daily recording of weather station data.
 o. Harvesting.
 p. Storage of food (putting food up).
 q. Preparing and transporting food for market sale.
 r. Guided tours of farm.

(These responsibilities of maintaining the garden will be fulfilled in conjunction with the farm programs. Refer to section on program responsibilities. Extent of these responsibilities will fluctuate according to the degree of academic involvement in the garden. These will be the sole responsibility of the caretakers during quarter breaks and when a farm program is not in session in the fall.)

2. Coordination and presentation of workshops and outreach projects on various aspects of farming and gardening to the community at large. (To be done in conjunction with the farm program.)

3. Coordination of academic programs in their usage of the farm.

4. Serve as an information source for farm activities and garden practices (in planting techniques, soil preparation, compost building, etc.).

5. Upkeep of extensive log of all garden activities (planting times, annual growth, weather conditions, soil and pest management, aca-
ademic activities, etc.) on a daily basis and to make this information understandable and available to all those interested, in a readable format complete with indexes and cross-references. This information should be compiled with past records so as to see the progression in the growth of the farm and to provide a written record on alternative agricultural practices. Caretakers are responsible for seeing that academic programs record their garden activities in this log.

6. Responsible for labeling or numbering beds in the garden as to what has been planted and how; and to draw up a map of the garden to be placed at the entrance to the main garden for the benefit of visitors to the farm. (To be done in conjunction with the academic programs.)

7. Coordination of the marketing of produce both at school and in the community. (To seek possible buyers of produce, i.e., farmers market, food co-op, restaurants, etc.)

8. To also be a member of the Farm Board in helping to make recommendations concerning the farm.

9. To draw up a daily schedule of chores for the garden.

C. Greenhouses and other structures.

1. Responsible for supervising the completion of the solar greenhouse.

2. Responsible for cleaning, organizing and general upkeep of the physical structures other than the new farmhouse (plastic and solar greenhouses, garage, barn and chicken house) and any repairs necessary for their proper functioning.

3. To maintain records on budget spending as well as assist in formulating the budget proposal.

4. Coordination and assignment of community garden plots.

5. Interior maintenance of greenhouses.
 a. Watering.
 b. Weeding.
 c. Composting.
 d. Bed preparation and maintenance.
 e. Aquaculture tank maintenance.
 f. Planting.
 g. Mulching.
 h. Planning design of beds in cooperation with farm program.
 i. Monitoring and managing pests.
 j. Harvesting.
 k. Preparing starts for sale and planting.
6. Record keeping of both greenhouses (temperature readings, observations, planting times, etc.).

7. Inventory of tools on a quarterly basis (number of losses and damage estimations).

8. To assist in drawing up a daily schedule of chores.

9. To be an active member of the Farm Board.

III. Duration of Responsibility. To insure that a caretaker obtains a firm understanding of the workings of the Farm it would be advantageous for him/her to serve in this position for a period of one year. This would enable the caretaker to observe the Farm as it moves through seasonal cycles as well as experience the management of the garden in the absence of, and in conjunction with, an academic Farm program. However, the caretakership should not extend past the one year period so as to allow as many individuals as possible to learn and practice farm management on a first hand basis. To guarantee a responsible and efficient management of the farm it would be advisable to have the caretakership conducted on a rotating basis. The two or more caretakers would come into their term at different times during the year so as to insure that new caretakers will have at least one experienced caretaker with which to work. The type of rotation could follow various formats such as the schedule proposed in the 1974 Farm Plan or any other similar rotation.

IV. Rent. Caretakers will live rent free in exchange for satisfactorily carrying out their responsibilities.

V. Selection. The caretakership is to be a paid position whose job description will include the responsibilities listed above. To insure that the position adheres to a job format and to also make use of this position as a practical learning opportunity, it would be advisable to make this job available to Evergreen students on an internship basis. Student caretakers would be better equipped to work closely with the academic programs because of their familiarity with the Evergreen community. Selection priority should be given to those students who have previously been involved with one of the agricultural programs offered at Evergreen. This position could also be offered on a work study basis to conform to the job format. Another option would be to advertise the caretakership to the community at large as a paid staff position. Caretakers should be chosen by those most actively involved with the farm effort each year. The committee should be composed of representatives from students in the agricultural programs, past caretakers (and present, if it is to be a rotating position), farm program faculty, as well as individual departments funding the farm (namely S & A, Facilities and Academic Departments). Caretakers will be selected according to their interest and ability to live on and manage a farm (specifically ability to fulfill responsibilities listed under Job Responsibilities), their past agricultural experience (either practical or academic) and their willingness to work cooperatively and effectively with other people.
APPENDIX B

FARM TOOLS AND EQUIPMENT

All tools and equipment in use at The Evergreen State College Organic Farm are owned and registered in the state of Washington. The tools, which are kept in stock in the garage, are to be used primarily by caretakers and academic programs to maintain and upgrade the college's Organic Farm and Garden. It is understood that the tools and equipment will be made available to the people involved in the community garden*, but with priority of use being given to farm related programs. None of the tools are to be loaned out at any time.

Replacing tools that have been lost or damaged has now become quite expensive. In order to help the caretakers keep better track of the equipment, it seems practical at this point in time to suggest that they take inventory of the tools in use at the farm at the end of every quarter. This would facilitate the quick replacement of lost items. Since hand tools at the farm are under constant and heavy use, it would be helpful if the new pieces could be of a better quality, i.e., industrial grade, which would hold up longer. In any event, all tools should be cleaned, dried, and returned to their proper place in the tool shed immediately following their use.

*See page 12 for more about community garden.
The sale of produce from the Organic Farm will be authorized as long as the sales activity is a result of and is incidental to the academic program. Sales that do occur will be in accordance with the general policies of the Organic Farm and the educational objectives of The Evergreen State College. An effort will be made to balance the sales of produce to private parties with donations or sales at cost to public, non-profit organizations.

Sales will be handled under the aegis of the college bookstore with all funds being deposited in a bookstore account. Adequate fiscal records will be kept by both the caretakers of the Organic Farm and by the Bookstore.

Sales of produce from the Organic Farm should not compete with local farmers. The Business Manager of The Evergreen State College will be kept informed and consulted about any sales activity of the Organic Farm. This policy was approved by the Deans and by Ken Winkley, the Business Manager of The Evergreen State College, August, 1979.
APPENDIX D

RECORD KEEPING SYSTEMS

In previous years, caretakers and faculty at the farm have placed little emphasis on detailed and accurate record keeping for the farm and garden. At one time a daily/weekly log was kept by the caretakers; however its usefulness is limited because of the lack of cross-indexing of the entries. During As You Sow's (1978-1979) involvement at the farm, two systems were implemented to improve the record keeping process. These systems are divided into two areas: one for the financial records of the farm as a whole, and one for recording observations and results of the farm and garden operations.

These two systems, Financial Log and Resource Notebook, can serve as educational tools as well as reference guides. The Financial Log provides students with a practical introduction to bookkeeping techniques as well as an accurate account of the Farm's financial status. The Resource Notebook provides students with the opportunity to strengthen their writing and observational skills by making daily recordings of work carried out at the farm and garden. These records also provide a detailed history of the farm and its operations for comparative studies and future reference. And by reviewing the Resource Notebook of previous years, the students can obtain an introduction to: seasonal activities of the farm and garden, the previous treatment of the garden and its crops, requirements of the plants cultivated, and learn from previous years' mistakes.

I. Financial Log. The system of keeping the financial records of the farm are similar to an itemized check book. The records encompass the expenditures of the farm and garden and the money received through produce and starts sales. (Refer to page 29 for the policy guidelines for selling produce.) A running total is kept on budget and spending in each designated category.

II. Resource Notebook. The recording of the observations and results in the Resource Notebook is broken up into two major parts: one is for recording comments on specific crops in the garden, and the other for comments on the preparation of the beds.* The first is arranged alphabetically while the latter is in a numerical order.

*Beds--the growing areas (row) of the garden, usually straight, 2-3 feet wide and raised a foot high above the paths along each side.
1. The cultivated crop section provides a page for continual observations on the crop: growth and development, care, diseases and treatment, and quantity and quality of harvest.

2. The bed preparation section encompasses: a listing of the crops cultivated the last two years and the present, methodologies of digging the beds, nutrients added, type and timing of planting, and reasons particular techniques were used.

3. Other areas recorded in the Resource Notebook are:

 a. Observations of the greenhouses.
 b. Summaries of caretakers' seasonal (daily/weekly) routines.
 c. Repairs to the farm's structures and necessary maintenance.
 d. Poultry and bee hive care.

All the observations noted in the Resource Notebook are cross-referenced in two ways:

 a. By mentioning the other pages concerned.
 b. By referring to the garden's map in the front of the Resource Notebook which labels each bed and indicates the crop cultivated.

Recommendations for the Resource Notebook system:

 a. A new Resource Notebook should be started every year beginning each September. This would provide access to data on a seasonal basis.
 b. The past Resource Notebooks should be kept on a specific bookshelf and not be removed from the farm. These records should be located near the garden for easy access and usage. Listed below are options for locations of the shelves.

 1. Remodel part of the garage for an office and records library.
 2. Fix a place in the rear of the solar greenhouse.
 3. To be a part of the new farmhouse's resource book library.
 c. The faculty involved with the farm and the caretakers should assume the responsibility of seeing that the observations and data from the farm should involve recording information in the Resource Notebook.
 d. In addition to the Resource Notebook, caretakers should keep a daily log with entries of general observations of the farm and garden, along with developments and problems that occur with the farm, and Administration and the academic program involved with the farm.
Crop's Name

Information about crop

Year/Season

Companion plants?

Cross-referencing - to bed/beds crop is planted in: (bed # and their p. #)

How much area in the beds/fields were planted in this crop?

When and where was the seed sprouted? Why?, any special treatment of the seed or sprout?

Diseases, treatment and results

Deficiencies observed and treatment

Experimenting? If so, what? (Refer to beds for detail)
Weekly/biweekly concise observations (Record: date, time of day, growth rate, environmental conditions, how is it growing, what is being done to it, and quality and quantity of fruit at harvest)

Date
BED #

Location

Cross-referencing (Record the crops and corresponding page #)
Crops cultivated in __ -
Crops cultivated in __ -
Crops cultivated in __ -
Crops proposed/cultivated now () -

Suggestions for next year -

PREPARATION of BEDS

Tilled-dug when? __________, WHICH METHOD? __________

Nutrients added (quantity and substance/s; if a specific recipe name it and refer to the page # that you list the contents or references)

Reasons why the bed was prepared this way:

PLANTING

What was planted and the date (note if started in greenhouse and when)?

How the crop/crops were planted? (rows, depth, distance apart, companion plants, and any special care)

Sources and reasoning behind using this method in planting. (why?) Is this method different from previous years?

Experimenting? If so what is it?

Any deficiency in crops observed? and treatment.

Disease and treatment - see crop page

Results at harvest (condition of crop/crops, quantity, time and length of harvest, and problems that occur) see crop pages too.

ADDITIONAL COMMENTS (feel free to add a page)

Preparation for winter or for next spring and summer (date and work done)
APPENDIX E

Daily--Weekly--Bi-Weekly

1. Record temperature and humidity inside both greenhouses and outside (daily).
2. Check tools (inventory) (bi-weekly).
3. Pick up food wastes from dorms, Mods, ASH and the co-op (weekly). This also includes making the compost the same day to avoid having the scraps attract insects and breed diseases.
4. Watering in the greenhouses in the summer and outside when needed.
5. Composting is the gardener's way of helping plants grow. It is very important to add compost at planting and mid way in the plants' life cycle. So along with making compost weekly, adding compost should happen along with mulch.
6. Keep records of farm expenditures and journal of plant growth and farm activities.
7. When planting designate which rows or areas or individual plants are to be saved for seed.
8. Review budget bi-weekly.
9. Post current internships on bulletin board along with other local farm happenings.
10. Talk to visitors.
11. Coordinate work on farm and garden (daily).
12. Check fences (bi-weekly)
13. Check chickens for excessive molting, virus or diseases (monthly).
14. Feed chickens (daily).
15. Check bees (weekly).
16. Feed and milk goat (daily).
17. Continue community outreach.
APPENDIX F

CALENDAR FOR FARM AND GARDEN

JANUARY
1. Order seeds for spring.
2. Make detailed map of garden rotations and where specific plants will go—always referring to past maps and general plan and notebook for seed varieties.
3. Plant early peas.
5. Continue winter repairs.

FEBRUARY
1. Plant early potatoes, onions, peas, and fava beans.
2. Turn cover crop when ground begins to dry.
3. Make connections with Coop to sell vegetables.
4. Plant flats of brassica in greenhouses to sell and plant.
5. Pruning.
6. Make trellis for blackberries and raspberries.
7. Coordinate community garden meeting.

MARCH
1. The major part of the garden soil will be ready to work and plant to all spring vegetables and greens.
2. Begin selling starts on campus.
3. Have workshops on composting and pruning.
4. Plant field crops (sunflower, oats, barley, peanuts, potatoes).
5. Continue successive planting in flats of brassicas.
6. Have Open House first week of spring quarter.
7. Transplant herbs into pots to sell.

APRIL
1. Continue successive planting of vegetables and flowers.
2. Add compost and water with herbal tea water to plants started in March.
3. Sell produce on campus.
4. Transplant herbs to pot to sell.
5. Refer to daily and weekly chores.

MAY
1. Make new budget proposal.
2. Continue successive planting.
3. Prepare ideas for Lakefair Parade.
4. Start records of harvest.
5. Continue successive planting.
JUNE

1. Prepare for County Fair exhibit.
2. Lakefair parade.
3. Continue successive planting.
4. Begin planning and planting of fall crops and winter brassicas.

JULY

1. Prepare for Open House.
2. County Fair.
3. Continue successive planting and transplanting.
4. As crops are harvested prepare beds (compost-mulch) for next crop or cover.
5. Continue to sell at Farmers Market.
7. Begin drying and canning food for winter.

AUGUST

1. Continue transplanting brassicas and successive planting.
2. As crops are harvested prepare beds (compost-mulch) for the next crop or cover.
3. Continue collecting seed (vetch, clover, vegetables).
4. Harvest grain.
5. Continue drying, canning and pickling food for winter (beans, squash, herbs).
6. Harvest garlic (if not already).
7. Prepare cold frames.
8. Chickens can be moved to specific areas after harvest to scratch and clear the ground for cover crop to be planted in September-October.
9. Write article for Orientation issue of the Cooper Point Journal.
10. Workshop on fall and winter gardening.
11. Order winter rye and other cover crops.

SEPTEMBER

1. Begin planting garlic.
2. Begin cover crop planting (rye, clover, vetch, fava beans).
3. Continue harvest (corn, cabbage, broccoli, beans, apples, carrots, beets, turnips, etc.)
4. Start or continue planning for next academic year.
5. Plant fall crops of lettuce, spinach, radish, etc.
6. Collect seeds (peas and lettuce, both self pollinating).
7. Continue transplanting.
8. Recheck with community gardeners to see who will have a winter garden.
9. Plant herbs for winter use in greenhouses (parsley, basil, wintergreen).
10. Rhubarb roots and comfrey can be divided and planted.
11. Plant fruit trees.
12. Make sure root cellar is in good condition.
13. Plan Open House for October (beginning of school).
14. Transplant herbs into pot to keep in greenhouse.
OCTOBER

1. Continue harvest and putting food away for winter.
2. Community garden cleared and turned and planted to winter cover crop.
3. Continue to collect seeds.
4. Plant garlic September 15–October 15.
5. Plant in places where cold frames are to be used onions, spinach, etc.
6. Plant potatoes for winter keepers.
7. Beware of frost.
8. Continue successive planting.
10. Trade seeds with Abundant Life Seed.

NOVEMBER

1. Tree and shrub pruning can be done during dormant period.
2. Onions can be sown and will germinate in early spring.
3. Gather bean and bean poles and store in barn.
4. Collect string and store.

DECEMBER

1. Plan workshops.
2. Do complete tool repair and cleanup and order new tools.
APPENDIX G

THE ORGANIC FARM: S & A BUDGET

<table>
<thead>
<tr>
<th>Subobjects</th>
<th>1976-77 Requested/Received</th>
<th>1977-78 Requested/Received</th>
<th>1978-79 Request/Receive</th>
<th>1979-80 Request/Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse $</td>
<td>/1200 475/475</td>
<td>300/250</td>
<td>607/315</td>
<td></td>
</tr>
<tr>
<td>Tools</td>
<td>/400 550/350</td>
<td>700/500</td>
<td>500/275</td>
<td></td>
</tr>
<tr>
<td>Building Supplies</td>
<td>/425 550/500</td>
<td>800/472</td>
<td>500/260</td>
<td></td>
</tr>
<tr>
<td>Books</td>
<td>/100 275/200</td>
<td>100/75</td>
<td>200/200</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>100/100</td>
<td>50/50</td>
<td>25/25</td>
<td></td>
</tr>
<tr>
<td>Grounds</td>
<td>275/ -</td>
<td>50/ 50</td>
<td>100/ -</td>
<td></td>
</tr>
<tr>
<td>Fence</td>
<td>50/ 50</td>
<td>50/ 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goods & Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeds, Rock powders & manure</td>
<td></td>
<td>200/200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchard</td>
<td>75/ 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycling program</td>
<td>50/ -</td>
<td>50/ 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>1200/ -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2475</td>
<td>1675</td>
<td>1397</td>
<td>1375</td>
</tr>
</tbody>
</table>
ORGANIC FARM EXPENDITURES SUMMARY, 1978-79

Budget #1745 - Field Facilities

Chicken feed
Sugar for bees
Staples
Wire
Saw blades
Hand mill
Fertilizer
Twine
Dolomite
Soil Builder
Sand
Pot dishes
Hand drill
Crock
Lock, hinges, hasp
Paint
Primer
Seeds
Miscellaneous Supplies

TOTAL: $325.00
AS YOU SOW: PROGRAM BUDGET

July 1, 1978 - June 30, 1979

<table>
<thead>
<tr>
<th>Category</th>
<th>Budgeted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office supplies</td>
<td>$34.06</td>
</tr>
<tr>
<td>Laboratory, research instruction, media</td>
<td>112.25</td>
</tr>
<tr>
<td>Photographic & graphic supplies</td>
<td>61.42</td>
</tr>
<tr>
<td>Agricultural supplies</td>
<td>24.46</td>
</tr>
<tr>
<td>Books & pamphlets</td>
<td>7.93</td>
</tr>
<tr>
<td>Campus stores (films, tapes, paper)</td>
<td>67.29</td>
</tr>
<tr>
<td>Miscellaneous (mostly agricultural supplies)</td>
<td>193.29</td>
</tr>
<tr>
<td>Office equipment maintenance</td>
<td>12.00</td>
</tr>
<tr>
<td>Printing & reproduction</td>
<td>136.56</td>
</tr>
<tr>
<td>Honorariums</td>
<td>38.00</td>
</tr>
<tr>
<td>Travel/motor pool</td>
<td>101.28</td>
</tr>
<tr>
<td>Total:</td>
<td>$788.54</td>
</tr>
</tbody>
</table>

Total Budgeted: $800.00
THE EVERGREEN STATE COLLEGE ORGANIC FARM AND GARDEN

CONIFER WOODS

TRAIL TO CAMPUS

FARMHOUSE

COMMUNITY GARDEN

COMM. GARDEN

BARN

COMMUNITY GARDEN

PLASTIC GREENHOUSE

MAIN GARDEN

DOUBLE DUG GARDEN

TOOLSHED

SOLAR G.H.

BEES

POULTRY YARD

OLDFIELD

LEWIS ROAD

NORTH

100 ft.

Surveyed by Fred Stone and 'As You Sow' students, Spring Quarter, 1979

Drawn by Fred Stone Dec. 1979
SURFACE SOIL TEXTURAL CLASSES IN THE MAIN GARDEN, T.E.S.C. ORGANIC FARM

Determined in the field by feel by Jonathan Aragorn, Greg Skowronek and Mark Olson
Spring Quarter, 1979

Due to the high amount of variation in the garden, these classes should be considered as approximations only.

Drawn by Fred Stone, Jan. 1980

50 ft.
APPROXIMATE SUBSOIL TEXTURAL CLASSES: MAIN GARDEN, T.E.S.C. ORGANIC FARM

Determined in the field by feel by Jonathan Aragorn, Greg Skowronek and Mark Olson

Spring Quarter, 1979

Drawn by Fred Stone, Jan. 1980

50 ft.

North
Results of soil samples sent to Washington State University soil lab. Soil samples were taken during the second week of March, 1979. Each sample was a composite for the area from the top 8 inches.

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>pH</th>
<th>% Organic Matter</th>
<th>ppm. P</th>
<th>ppm. K</th>
<th>meq/100gmeq</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Strawberry bed,</td>
<td>6.5</td>
<td>5.3</td>
<td>5.4</td>
<td>400</td>
<td>6.00</td>
<td>sandy loam</td>
</tr>
<tr>
<td>2. Hillside; oats</td>
<td>5.7</td>
<td>5.7</td>
<td>3.0</td>
<td>153</td>
<td>3.38</td>
<td>sandy loam</td>
</tr>
<tr>
<td>3. Experimental plots</td>
<td>6.1</td>
<td>6.8</td>
<td>2.9</td>
<td>330</td>
<td>6.75</td>
<td>silt loam</td>
</tr>
<tr>
<td>4. South side (grain)</td>
<td>6.2</td>
<td>5.8</td>
<td>1.9</td>
<td>187</td>
<td>5.52</td>
<td>loam</td>
</tr>
<tr>
<td>5. Raised beds</td>
<td>6.5</td>
<td>7.0</td>
<td>19.5</td>
<td>265</td>
<td>13.60</td>
<td>loam</td>
</tr>
<tr>
<td>6. Southwest corner</td>
<td>5.5</td>
<td>7.0</td>
<td>2.7</td>
<td>160</td>
<td>5.02</td>
<td>loam</td>
</tr>
<tr>
<td>7. Northwest corner</td>
<td>5.7</td>
<td>5.0</td>
<td>3.1</td>
<td>134</td>
<td>3.11</td>
<td>silt loam</td>
</tr>
<tr>
<td>8. Plastic greenhouse (beds)</td>
<td>6.5</td>
<td>7.0</td>
<td>20.0</td>
<td>1335</td>
<td>12.00</td>
<td>sandy loam</td>
</tr>
<tr>
<td>9. Community garden beds</td>
<td>6.3</td>
<td>6.4</td>
<td>5.1</td>
<td>300</td>
<td>7.95</td>
<td>sandy loam</td>
</tr>
<tr>
<td>10. Hillside</td>
<td>6.0</td>
<td>6.5</td>
<td>7.1</td>
<td>295</td>
<td>6.00</td>
<td>sandy loam</td>
</tr>
<tr>
<td>11. Community garden</td>
<td>5.9</td>
<td>6.6</td>
<td>2.7</td>
<td>163</td>
<td>4.90</td>
<td>silt loam</td>
</tr>
</tbody>
</table>

(Location map on following page)
LOCATION OF SOIL SAMPLES TESTED AT WASHINGTON STATE UNIV.
TO: Lynn Gardner
Barbara Smith
Dave Wallbom

FROM: Daniel Hewins
Rick Stern
Peter Olson

RE: Outline of caretaker responsibilities

The purpose of this writing is to clarify the need for and role of caretakers of the Organic Farm.

The Organic Farm, as an academic, agricultural and recreational resource, is a valuable and integral part of the Evergreen community. In order to adequately meet the demands on this resource, some form of caretakership is required. At present, three students have committed themselves (on a one year, rotating basis) to the responsibilities of caretaking the farm. These responsibilities may be grouped into four overlapping areas: coordination, maintenance, resource, and security.

Coordination: This entails playing a major role in coordinating academic programs in their usage of the farm, coordinating the community garden project, assisting community outreach projects (i.e., senior citizen's gardens, exhibiting at fairs, having open houses). The caretakers need to work well with S and A and facilities, as well as academics, in coordinating the running of the farm. Upon completion of the new farm house, the responsibilities of coordination will be expanded to accommodate wider usage both academic and recreational, by the Evergreen (and general) community.

Maintenance. This involves, in general, maintaining the main garden, the farm tools, the house, sheds, greenhouses, grounds, caring for livestock, and keeping records. These may be further specified to include the following: making compost, obtaining fertilizers, constructing and maintaining fences, planning the garden, preparing beds, preparing the fields, ordering seeds, starting plants, watering, transplanting starts, weeding, mulching, monitoring and managing garden pests, maintaining greenhouses, harvesting, putting food up, seeing that surplus produce gets taken to market or to needy organizations, obtaining feed for livestock, feeding livestock, making regular inventory of tools, repairing them or ordering new ones, keeping the sheds organized and clean, and keeping the general grounds neat. Most of these responsibilities should be shared to a large degree by the academic program and/or contracts utilizing the farm. However, many of these tasks require attention at times when other students are not likely to be around (early morning, late evening, weekends, quarter breaks, and quarters of little program involvement.)
As a Resource: Being familiar with the development and operation of the farm, caretakers become a valuable resource for students, faculty, and the larger community. Assisting in academic programs and contracts utilizing the farm is a key role for caretakers. The caretakers gather and disseminate information pertaining to gardening and farming, give tours, and maintain a good library of resource books and periodicals.

Security: Caretakers provide the full time security desirable for the well being of the facilities, tools, garden, and livestock.
APPENDIX K

DESCRIPTION OF THE GOOD EARTH

Spring-Summer-Fall 1975

The Good Earth is a coordinated studies program running spring-summer-fall quarters 1975. The program is focused on the soil, embracing geology, biology, botany, engineering, chemistry, farming, veterinary science, economics and history. The program is accessible to freshmen but can accommodate students of advanced standing. Activities include practical field projects in soil cultivation, pest control, animal husbandry, alternate energy systems, composting, companion planting, apiary and others. The program will explore alternative rather than conventional, chemical procedures.

Modules and workshops are offered within the program, covering a wide spectrum of sciences and social sciences. The first two quarters will be devoted primarily to scientific aspects of the soil theme. In the third quarter, focus will shift to man's interaction with the land both in the traditional peasant societies and in the contemporary American setting.

Students are expected to take modules and workshops in their areas of interest, to read in support of their studies, participate in seminar discussions, carry out practical field projects and write papers and reports on such projects.

The Good Earth faculty is composed of Robert Sluss, B.S. Zoology, M.S. Entomology, Ph.D. Entomology; Medardo Delgado, B.A. Education/Spanish; and Niels Skov, B.S. Mechanical Engineering, M.S., Ph.D. Physical Oceanography. Extensive use is made of resource people from the Olympia community and elsewhere.

THE GOOD EARTH

BOOKLIST FOR SPRING QUARTER

Primary Books:

N. C. Brady: Soils
E. H. Faulkner: Plowman's Folly
E. H. Faulkner: Soil Development
R. E. Hutchins: Insects
Philbrick and Gregg: Companion Plants
P. S. Buck: The Good Earth
E. F. Schumacher: Small is Beautiful
Darwin on Humus and the Earthworm
Workshops:

- Alternate Energy
- Animal Husbandry
- Apiary
- Apiary
- Basic Chemistry
- Biodynamics
- Butchering
- Castration
- Composting
- Computers
- Construction
- Energy Principles
- Experim. Design
- Experim. Design
- Farm Design
- Field Botany
- Goats
- Herbs
- Herbs
- Milking
- Nitrogen Fixation
- Potat. Harvesting
- Soil Analysis
- Tractor Tuning
- Tree Crops
- Writing

Miscellaneous Films

Miscellaneous Lectures on Topics Relevant to Theme

Field Projects of Student's Choice

Seminars:

- Agriculture and Ceremony
- Effects of Change in Land Domain and its Influence on Sex Roles
- A Land Ethic
- Human Nature: What is its Potential in Regard to Land?
- The Lifeboat Ethic
- The Tragedy of the Commons (and revisit.)
- Answers to Crow's Post-Industrial Soc.

Panel Discussions:

- Organic vs. Conventional Methods
 (Smith, Smith, Schmidt)
- Chemical Sprays
 (Harrison, Ely, Herman)
- Livestock Feeds
 (Tracy, Andrew, Garrard)
- Small Farm Animal Production
 (Tracy, Andrew, Salzer)

Field Trips:

- Feed Lot
- Dairy Farm (medium)
- Dairy Farm (large)
- Potato Harvest
Secondary Books:

A.I. Root: ABC and XYZ of Bee Culture
Galston: The Life of the Green Plant
Cains: Five Acres and Independence
Gilkey and Dennis: Handbook of Northwestern Plants
Portola Institute: Energy Primer
Nitrate in Soil and Plants and Animals
Bundy and Diggins: Livestock and Poultry Production

BOOKLIST FOR FALL QUARTER

NOTE: The books will be needed approximately in the sequence listed.
Books marked with an asterisk should be read by everyone. Try
to read as many of the others as possible.

from Pearl Vincent.
*5. Geoffrey Barraclough: "The Great World Crisis", The New York Review,
23 January 1975.

PROGRAM CONTENT OF THE GOOD EARTH

Modules: Visiting Lecturers:
Geology (Mumma) Mark Papworth: Farming in Pre-History
Entomology (Sluss) Mark Elliott: Meat Production
Soil Biota I (Sluss) Mark Elliott: Dairy Production
Soil Biota II (Sluss) Jim Morgan: Organic Farming
Parasitology (Sluss) Doris St. Louis: Buying Land
Insect Control (Sluss) Richard Cellarius: Photosynthesis
Vet. Science (Pitts) Jess Spielholz: Nutrition
Nutrition (Pitts) Pearl Vincent: Raising Angus
Land and People (Skov) Beryl Crowe: Tragedy of the Commons
WINTER QUARTER ACTIVITIES

Modules:

Chemistry - 4 weeks - Harper
Plant Science - 5 weeks - Deryckx
Soil Science - 4 weeks - Filmer
 Text: The Nature and Properties of Soils, Brady

Booklist:

The Biosphere, Scientific American
Mankind at the Turning Point, Mesarovic and Pestel
Skid Road, Morgan
Individualism, Old and New, Dewey
Radical Agriculture, Merrill
Small is Beautiful, Schumacher
Seeds, Spades, Hearth, Herbs, Sauer
Energy, Ecology, and Economics, Odum

Lecture Topics:

Self-directed Learning - Filmer
Basic Ecology - Harper
The Biosphere - Harper
Agroecosystems - Deryckx
Agricultural Anthropology - Papworth
Population and the World Food Supply - Kormondy
Population Dynamics - Milne
Roots of the Common People to the Land - Teske
Eighteenth Century Back to the Land Movements - Frankle
China Past and Present - Marsh
Urban Planning - Dobbs
Land Reform - Brown
Agribusiness in Washington State - Deryckx

Guest Workshops:

Biodynamic/French Intensive Gardening - Ripking, Ecology Action of the Mid-Peninsula, Palo Alto, CA
Land Reform - Dave Heavyside, National Land for People, Fresno, CA
Herbs of the Northwest - Bruce Peters, Olympia, WA

Films:

Cosmic Zoom
Environment
Garden
Future Shock
Diet for a Small Planet
Breadmaking
The People's Communes
The New Alchemists
Energy, Food and You
Hard Times in the Country
The Tragedy of the Commons
The Limits to Growth
The Richest Land
The Baobab Tree
Toward an Organic America
Compost
Two Faces of China
Multiply and Subdue the Earth
The Other Way
"Living with the Land" is a group contract conducted during Winter, Spring and Summer Quarters. The program is accessible to freshmen, but can accommodate students of advanced standing. It is a basic survey of agricultural science from an ecological and sociological perspective and includes studies in anthropology, history, geography, economics, politics, and agricultural and natural sciences. Philosophically speaking, the intent is to train people to work and think in terms of an organic and ecologically sound agriculture. Science and humanities offerings are supplemented with a healthy admixture of practical experience on the college's organic farming facility and through numerous workshops, practicums and field trips.

Students are expected to do individual research on a project of their own choosing and to submit papers and reports on such projects.

The Faculty:

Anne Harper - B.A. - Biology
Woody Deryckx - B.A. - Agriculture
Robert Filmer - Ph.D. - Engineering

WINTER QUARTER ACTIVITIES

Modules:

Chemistry - 4 weeks - Harper
Plant Science - 5 weeks - Deryckx
Soil Science - 4 weeks - Filmer
Text: The Nature and Properties of Soils, Brady

Booklist:

The Biosphere, Scientific American
Mankind at the Turning Point, Mesarovic and Pestel
Skid Road, Morgan
Individualism Old and New, Dewey
Farmers of Forty Centuries, King
Radical Agriculture, Merrill
Small is Beautiful, Schumacher
Seeds, Spades, Hearths, and Herds, Sauer
"Energy, Ecology, and Economics", Odum

Lecture Topics:

Self-directed Learning - Filmer
Basic Ecology - Harper
The Biosphere - Harper
Agroecosystems - Deryckx
Agricultural Anthropology - Papworth
Population and the World Food Supply - Kormondy
Population Dynamics - Milne
Roots of the Common People to the Land - Teske
Eighteenth Century Back to the Land Movements - Frankl
China Past and Present - Marsh
Urban Planning - Dobbs
Winter was largely a time for reflection, perspective and preparation for more dynamic activity during the Spring quarter.

Agriculture was critically examined from the perspectives of anthropology, history, geography, economics, politics, population dynamics and natural science. Included was a basic survey of agricultural sciences from an ecological-sociological perspective. Special topic sessions dealt with: The Biosphere, Basic Ecology, Agro-ecosystems; Agricultural Anthropology; Population Dynamics; Roots of common people to the land from a romanticist perspective; Urban Planning; Land Reform and Agribusiness.

Technical sessions focused on plant science, chemistry and soil science. Practicums were included, covering such subjects as composting, seed bed preparation and grafting. A series of films were presented augmenting and highlighting the lecture material and seminar reading.

A trip through the labyrinths of a mushroom farm and a visit to community cooperatives in the Seattle area provided yet an additional perspective.

Required Readings:

The Biosphere
Mankind at the Turning Point
Skid Road
Individualism, Old and New
Radical Agriculture
Farmers of Forty Centuries
Small is Beautiful
Energy, Ecology; Economics
Seeds, Spades, Hearth, Herbs

Scientific American
Mesarovic and Pestel
Morgan
John Dewey
Merrill
F.H. King
Schumacher
H.T. Odum
Sauer
Land Reform - Brown
Agribusiness in Washington State - Deryckx

Guest Workshops:

Biodynamic/French Intensive Gardening - Ripking, Ecology Action of the Mid-Peninsula, Palo Alto, CA
Land Reform - Dave Heavyide, National Land for People, Fresno, CA
Herbs of the Northwest - Bruce Peters, Olympia, WA

Films:

- Cosmic Zoom - The Tragedy of the Commons
- Environment - The Limits to Growth
- Garden - The Richest Land
- Future Shock - The Baobab Tree
- Diet for a Small Planet - Toward an Organic America
- Breadmaking - Compost
- The People's Communes - Two Faces of China
- The New Alchemists - Multiply and Subdue the Earth
- Energy, Food and You - The Other Way

Field Trips:

- Worker controlled businesses and food cooperatives: CC Grains, Puget Consumer Coop, The Corner Green Grocery, Seattle WA
- Ostrows Mushroom Farm, Lacey, WA

Program Planning:

SPRING QUARTER ACTIVITIES

Modules:

- Plant Science - 10 weeks - Deryckx
- Soil Science - 5 weeks - Filmer
 - Text: The Nature and Properties of Soils, Brady
- Field Ecology - 5 weeks - Harper

Booklist:

- Finding and Buying your Place in the Country - Scher
- Topsoil and Civilization, Carter and Dale
- The Limits of the City, Bookchin
- Living the Good Life, Nearing and Nearing
- Ectopia, Callenbach
- A Sand County Almanac, Leopold
- Radical Agriculture, Merrill
- How to Grow More Vegetables, Jeavons
- The Encyclopedia of Organic Gardening, Rodale Press

Guest Lectures and Workshops:

- Soil Conservation - Don Hurlbert, Soil Conservation Service, Olympia, WA
- Energy and Agriculture - Jan Turnbull, Model Farm Project, Seattle, WA
- Urban Planning - Bob Fish, Environmental Works, Seattle, WA
Agricultural Science - 7 weeks, - Deryckx
 Soil Biology and Soil Fertility Management - 3 weeks
 Plant Pathology - 2 weeks
 Agricultural Entomology - 2 weeks

Texts:
 Soils and Men
 1938 Yearbook of Agriculture
 USDA

 Nature and Property of Soils
 Brady

 Handbook on Biological Control of Plant Pests
 Brooklyn Botanical Gardens

 Field Guide to Insects
 Borrer

 Field Ecology - 9 weeks - Harper
 Alternative Energy Technology - 6 weeks - Filmer

Texts:
 The Energy Primer
 Portola Institute

Booklist:
 Soil Development - Faulkner
 Radical Agriculture - Merrill, Editor
 The People's Land - Barnes
 Farming: A Handbook - Berry
 Selected Journal readings

Students in the program for the summer quarter only also read and seminared on the following books:

 The Biosphere - Scientific American
 Mankind at the Turning Point - Mesarovic and Pestel
 Small is Beautiful - Schumacher
 Ecotopia - Callenbach
 Farmers of Forty Centuries - King

Lecture Topics:

 Self-Directed Learning - Filmer
 Agroecosystems - Deryckx
 Food Preservation - Harper
Guest Lectures and Workshops:

Biodynamic Agriculture

Farmers Market

Comfrey - Medicinal

Iridology

Nutrition

Nutrition

Seeds and Growing

Agricultural Chemicals

Direct Marketing

Solar Greenhouses

Chicken and Rabbit Slaughtering

and Meat Cutting

Modern Technology and Agriculture

-Niels Skov

-Doris Cellarius

-Bill Smith

-Bill Smith

-Bill Smith

-Tom Newford

-Forrest Glenn Roth

-John Peard

-Shirley Zorro

-David Yates

Films:

-Plant Pathogenic Fungi
-Plant Pathogenic Fungi
Washington Biome Tour
The Wet Forest Biome
The Dry Forest Biome

Field Trips:

Field Ecology - 4 hrs per week to diverse natural ecosystems

Medicinal Herb Garden, College of Pharmacy, University of Washington

Beltane Herb Co. - Seattle

Solar Greenhouses - University of Washington

Pack Forest, College of Forestry Experiment Station

Beebe’s Worm and Rabbit Farm

Farwest Farms, Gort Dairy, Chehalis, Washington

Bill Moomau 273-9234

Bryan 273-5630

Jasper Martin’s Organic Truck Farm

Nine day field trip to agricultural lands of northern and eastern Washington including:

Methane Plant at Monroe State Reformatory

N.W. Experiment Station, Mt. Vernon

Christiansen Seed Co., Mt. Vernon

Hansen and Peterson (grain dryer, grain elevator and feedmill), Burlington

Big Lake Granary, Big Lake, Washington

Working days at:

Pragtree Organic Farm, Arlington

Cascadian Farm, Rockport

and visits to:

Sunglow Organic Fruits, Tonasket

Bill Schildgen - nutgrower, Palmer Lake

Grand Coulee Dam, Federal Land Reclamation Project, irrigation and power

Earth Cyclers, dryland wheat, organic potatoes and beef - Edwall, Wa.

Tour of Columbia Basin Agriculture with Grant County Extension Agent

Russell Elliot Farm - Yakima Valley (33 acre organic truck farm)

Old Town Mill, Union Gap (water-powered flour mill)

Darrel Griek, energy consultant and homesteader - Yakima Valley
GOOD EARTH II

Program Description, Fall 1977

The Good Earth II coordinated studies program comprised during fall quarter 1977 the following activities:

Module on History of Agriculture. In lectures and discussions, the origins of agriculture were explored from pre-history through neolithic and tribal groups. Peasant societies were dealt with in some detail, with emphasis on the interaction between market development and agricultural improvement. Advances in European agricultural practices were traced through the Middle Ages, the manorial estates, enclosure movements and the second agricultural revolution. The U.S. scene was covered briefly in the light of imported technology in the colonial and post colonial periods.

Module on Winter Food Production. Winter Food Production was a course in applied horticultural science investigating the special consideration involved with making full use of the cool season to produce food year-round in the temperate, marine climate of Western Washington. The area's climatic constraints on agriculture were reviewed, and its agriculture was compared with that of its homoclime, Northwestern Europe for inspiration for a regionally adaptive agriculture. Topics of study included:

- Comparative world climatology and crop geography.
- Autecology with emphasis on the physiological response to cold stress within a microclimate.
- Greenhouse design and management.
- Cloche gardening systems of England.
- The botany, culture, and use of cool season crops.
- Post harvest physiology and live storage of crops.
- Soil fertility management.

Module on Roots of Agriculture. This was a lecture series devoted to basic human concepts and the development of civilization. Much of our agricultural knowledge and practice is rooted in our cultural past. We see and do things in patterned ways because of traditions of which we are mostly unaware. These lectures demonstrated to the students the origins and divergences in such basic human concepts as Conflict, Zero, Numbers, Music, Time, and Humor, and examined cultural aspects of such basic perceptual concepts as "hearing" and "seeing." The lectures pointed out that much of what we assume about the world is non-rational and much of what we do, particularly concerning our relations with nature, crops and the land has nothing to do with truth or high probability and is best understood as cultural reflex rather than wisdom.

Student Research. Students selected, individually or in small groups, topics to be researched in depth over fall and winter quarters, with spring quarter being reserved for writing of papers on the results. Topic selections ranged from Land Ethics to Control of Wheat Blight, and faculty guidance and input were provided in scheduled sessions. An additional feature of the research was provided by a weekly meeting wherein the students reported to the entire program on progress and results of the research. The reports served the dual purpose of keeping everyone in touch with ongoing work and of affording students an opportunity to prepare and deliver summarized data and information to a larger forum.

57
GOOD EARTH II, Winter Quarter 1978

PROGRAM DESCRIPTION

During winter quarter, the program content comprised the following elements:

Modules:
Technological Evolution. Mark Papworth presented this as an historical review and evolutionary analysis of great technological events which most dramatically affected man's relationship to the earth and to his fellow man. He chose as these Great Technological Events: Mining and Metals; Mills; Wind and Water; Clocks; Navigation and Time Perspectives; Steam Engines; Cotton Gins, Eli Whitney and Mass Production; The Flying Shuttle and the Factory System; Communications. In this series of lectures and brief discussion periods, he sought to emphasize technological devices which singularly marked irreversible changes in culture tied to nature.

Soils Studies - Woody Deryckx. This module was an introductory investigation of agricultural soil science, emphasizing the physical, chemical, and biological basis of crop growth and soil management on the farm. Nyle Brady's text, The Nature and Properties of Soils, was used and we covered chapters 1-10 in this first of two quarters. Lectures, discussion sessions, homework, and laboratory exercises were dedicated toward a comfortable familiarity with the scientific bases of the soil/plant relationship. Technical Subjects, including processes of soil formation, mineral nutrition of plants, physical properties of soil, the nature and importance of the soil colloidal fraction, soil organisms, soil organic matter, the dynamics of soil water - plant relationships, and soil air, served as a foundation for considerations of the impact of common agricultural practices on the soil as a feature of agroecosystems. This should be considered as the first half of a two-quarter introductory soil science course with lab.

Series of Request Lectures - Neils Skov. This series grew out of a number of student requests for specific coverage of topics deemed to be of particular interest. The topics covered in lectures were: Heat Exchange; Alternative Energy Sources; Tree Crops; Biodynamics; Confluence of Spiritual and Scientific Thought; Land Ownership in the U.S. Assigned readings were from engineering texts, Rudolf Steiner: Agriculture, Arthur Koestler: The Sleepwalkers, C.L. Harriss: The Good Earth of America, Tree Crops.

Student Research Projects. The students continued their individual research projects through winter quarter, completing the process of data gathering and commencing drafting of their papers. Meeting with faculty members were continued as was the weekly reporting sessions wherein researchers reported their findings and observations to the rest of the program.

Weekly Seminars were held on the following books: Stavrianos: Promise of the Coming Dark Age, Bookchin: Post Scarcity Anarchism, Ophuls: Ecology and the Politics of Scarcity, Wolf: Peasant Wars of the 20th Century, Koestler: The Case of the Midwife Toad, Heilbroner: Primer on Government Spending, Berry: Unsettling of America.

Field Trips. The program visited a mushroom farm, a dairy farm and a plywood mill in the course of the quarter.

58
During spring quarter the program comprised the following elements:

Module:
Soils Studies - Woody Deryckx. This was a continuation of the winter quarter soils studies, covering the remainder of Nyle Brady's *The Nature and Properties of Soils*. The laboratory work focused on soil animals, and their natural history and economic importance in agriculture were covered. Students associated into study groups and concentrated on selected taxonomic divisions of soil fauna prominent in our region; there was an earth worm group, a snail and slug group, a nematode group, a mite group, and a group which undertook to study soil-dwelling beetles and flies. Students read literature pertinent to their chosen fauna and conducted some simple field studies and laboratory experiments.

Writing Workshop - Niels Skov. A continuous writing workshop conducted throughout the quarter gave the students the opportunity to upgrade their writing skills in the process of finishing their program papers. Selected sections of student writing were reviewed, discussed, edited and rewritten in a cooperative group process. Minor writing assignments were issued for the purpose of spotlighting specific problems such as coherence, paragraphing, etc. Concurrent with the workshops, the students worked on finishing their program papers, summarizing the results of research done in the two previous quarters. The aim was one of producing publishable papers as end results.

Ethics Seminars - Mark Papworth. This seminar series dealt with principles underlying students' aesthetic and ethical stances, as Mark made students verbalize their feelings about nature, man, society and agriculture. In past quarters the program has viewed agriculture as a given "good" as opposed to the given "bad" of technology, agro-business and mercantilism. Students attempted to find the roots of their prejudices regarding philosophy and nature. They learned that the current definition of nature as fields and trees is quite recent and that the concerns of our times are very different from those of the recent past. Many of our assumptions reflect popular opinion, whereas few stem from experience with farming as it really is. Mark posed the hard questions as to whether small farming is a viable lifestyle in the U.S. today. It seems that farming is a viable alternative to participation in the petrochemical industrial morass -- if one has a job on the side.

Field Trips. The program visited three orchards, a fruit leather manufacturer, a tofu plant, a cider press and a dairy farm.
The "Organic Gardening" contract emphasized practical experience in organic gardening. Students were required to work in their individual gardens or at Evergreen's Organic Garden and to record their observations and activities in a field journal. They also were required to read a handbook on organic gardening and to include notes in their journals. Field journal entries were read during seminar and turned into the faculty for evaluation.

Students attended workshops on the biodynamic approach to gardening, composting, companion planting, worms, soil chemistry and nutrition, methods of food preservation, seed gathering, solar greenhouses, winter gardening, and wild edibles. A field trip was taken to two commercial organic farms in the area. How to Grow More Vegetables by John Jeavons and Winter Gardening by Binda Colebrook were texts used for the workshops.

Weekly seminars were held on selected books: Small Is Beautiful (Schumacher), Farming: A Handbook (Berry), Radical Agriculture (edited by Merrill), and Farmers of Forty Centuries (King). Films entitled Ruth Stout's Garden and A Sense of Humus were shown and discussed in seminar.

A full-time option (three or four units) was available to students. In addition to the above program activities, students chose research topics and completed a research proposal, outline, rough and final drafts of a paper detailing their work.
Winter quarter, As You Sow emphasized the historical, political, and scientific
realms in which the current-day small farm exists. The faculty was composed
of a plant scientist (Richard Cellarius), an agricultural ecologist (Fred Stone),
and a political scientist/land use planner (Carolyn Dobbs). A range of activities,
including book seminars, science lectures and labs, workshops, applied work at
the farm, and developing research proposals, provided opportunities for thinking
about and acting upon these program foci.

Weekly book seminars were used to discuss Plants, Man, and Life (Anderson),
Radical Agriculture (ed. by Merrill), "A Closer Look at Science" (Ballard),
The Land Remembers (Logan), Farming: A Handbook (Berry), Food First (Lappe and
Collins), Let Us Now Praise Famous Men (Agee and Evans), and Building the Earth
(Teilhard de Chardin). Seminar groups met for one 2-hour seminar each week.

Lectures (2 hours each) on plant sciences and agricultural ecology were given two
times a week. Topics included cellular metabolism, plant nutrition, nutrient
cycles, water relations, plant growth and development, and the effects of light,
soil, temperature, and atmosphere on plant function. These lectures were
supplemented by labs on plant respiration, photosynthesis (Hill reaction),
plant adaptation, mineral nutrition, soil sampling. Books for the lectures
and labs included The Living Plant (Ray), Plant Science (Janick et al.), and
Plants and Their Environment (Daubenmire). At the end of the quarter students
were given a take home exam that enabled them to synthesize the learning that
had occurred in this part of the program.

Students participated in a three hour large group meeting once a week. Topics
included how to do research, life on a small farm, the Green Revolution, coordina­
tion and reports of activities in the program, curriculum planning and book
selection for spring quarter. The students were able to learn a considerable
amount about group process, especially leadership styles and decision-making
models, from these sessions.

A retreat during the first week of the quarter resulted in a number of task
forces, that gave attention to greenhouses, composting, beautification and trail
maintenance, seed selection and purchase, etc. that provided for work at TESC's
Organic Farm, an integral part of the program. In addition, weekly workshops on
practical, farm-related skills and activities took place. A few of these included
seed gathering, use of tools, direct marketing, small farming in Thurston County,
tree pruning, and food coops. Books that supported the applied work included
Basic Book of Organic Gardening (Rodale Press), Winter Gardening (Colebrook),
and How to Grow More Vegetables (Jeavons).

Students kept a notebook/journal to record class notes and develop in-depth
analysis and reflection about program material as it related to them and broader
current issues in agriculture.

A final activity for the quarter was developing a written research proposal
that would be carried out in the subsequent quarters of the program.
AS YOU SOW: THE SMALL FARM
Spring Quarter, 1979

As You Sow covered several major topics this quarter: soil science, land use planning, gardening experience, workshops on a range of skills needed in alternative agriculture, and field trips to observe working farms and agencies impacting agriculture in Western Washington. In addition, book seminars were held and research or projects were pursued by a number of students.

Eleven Self-Paced Learning Units were applied in the soil science labs using Introduction to Soils and Soil Science by M.H. Milford. The text was The Nature and Properties of Soils by Nyle C. Brady (8th ed.). Students worked in small groups to complete the SPLUs or, as an option, apply the SPLU material to a plot in the garden. Topics covered included physical and chemical characterization of soils; soil water, air and temperature; organisms and organic matter; pH and liming; nutrients and fertilizing. A field exercise was completed in which students conducted a soil survey of three farms and determined soil characteristics, uses and limitations through use of Soil Survey of Thurston County, field observations and interviews with the farmers. Weekly discussion sessions were conducted to clarify the material and explore certain aspects of the assignments further. An end of quarter exam was given asking the students to formulate and answer a question that synthesized and applied their learning from the quarter.

The land use component had two parts; the first developed the base studies needed to update a plan for the TESC Organic Farm prepared in 1974. The base studies included surveying and mapping the farm, constructing a questionnaire distributed to interested people on and off campus, and conducting interviews with selected people who had had important contacts with the farm in the past. The data has been gathered and the results of the questionnaire tabulated. A small group of students have been meeting to work on writing the plan; this work will carry into the summer quarter.

The second part of land use in the program required that teams of 5-7 students find out what they would need to know about the soils and the land use/political variables affecting an assigned piece of farm land. The students visited the local assessor, auditor, planning, public works, SCS, and Coop Extension offices and a realtor to determine land use regulations, taxes, property encumbrances, and the land market. They read "A Short Course in Land Use Planning" by the Washington State Planning and Community Affairs Agency and "The Thurston County Agriculture Report" by the Thurston County Agriculture Committee.

On Mondays students were required to work at the TESC Organic Farm. They pursued tasks such as completing and planting the solar greenhouse, preparing garden beds for planting, seeding and transplanting, building compost, weeding, maintaining a large perennial herb garden, and working with bees.

Students were required to keep a journal during the quarter. Entries included field observations of the garden, and discussion of the seminar books (One Straw Revolution by Fukuoka, The Unsettling of America by Berry, The Findhorn Garden by The Findhorn Community, The Milagro Beanfield War by Nichols, Living the Good Life by H. and S. Nearing, Enchanted Garden by Chadwick, and selections from Radical Agriculture, edited by Merrill). The journal also included class notes, and weekly analyses of the program's theme: survival of the small farm.
A two day field trip to Seattle acquainted students with the plight of small farmers of King County. Visits to Pike Place Market, the Bulk Commodity Exchange, King County Extension Service, King County Agricultural Department Representative, and a planning class at Seattle Center Community College provided an understanding of the political, economic and social dimension of farm land preservation.

Weekly business meetings, facilitated by students, were held as were weekly workshops that covered small farming practices, raising bees, rabbits, and worms, wild edibles, greenhouse construction, composting, pest management, surveying, soil conservation, and spinning. Field trips to local farms taught applied aspects of pig, sheep and cattle raising.
AS YOU SOW: A STUDY OF THE SMALL FARM

Program Description
Summer Quarter, 1979

The summer quarter of As You Sow concentrated on pest management, socio-economic analysis of small farms and completion of research and construction projects, in addition to continued work in the organic garden. Faculty included an agricultural ecologist (Fred Stone), and two pest management/entomologists (Bob Sluss and Jerry Cook).

Bi-weekly book seminars discussed Grapes of Wrath (Steinbeck), The Pesticide Conspiracy (Van der Bosch), Organic Farming (Rodale Press, editors), and Radical Agriculture (Merrill). Seminars focused on political, social and economic forces influencing small farmers and those who are attempting to return to the land.

The pest management sessions included lectures on Entomology and biological pest control by Bob Sluss and Jerry Cook. Ralph Byther, plant pathologist from Puyallup Experiment Station gave a slide-lecture and field session on identification and control of plant diseases. Fred Stone talked on ecological agriculture and ecological approaches to control of plant pests. The pest management practicum covered field identification of plants and insects, using taxonomic keys to orders and families. Each student researched and presented a report on a specific agricultural pest, including its biology, economic injury levels and control. Research sources included reference books, local agencies and experts and farmers.

Socio-economic analysis of five local farms was done through farm visits and interviews with the farmers. Two vegetable farms, a livestock-mixed crop farm, an orchard tree nursery and a recently purchased hay farm were visited. Students completed an economic analysis of the farms visited or worked on group reports planning the future survival of a particular farm. Additional class time was spent in student reports and discussions of the issues raised by the farm visits.

Workshops were conducted on various gardening methods by Brian Saunders of Pragtree Farms and Monty West. Additional workshops included putting food by, herbs by Mrs. Minnie Muenscher, horse logging by Carlos Campos, and wine making by Greg Skowronek, Peter Olson and Roger Strittmatter.

Students worked on research and construction projects throughout the quarter, and presented reports on their work during the final week. Reports included: geodesic dome greenhouse construction, by Chip Patullo; Alan Chadwick's french intensive gardens in California, by Sarah Bowman; winter gardening by Joe Craigen; a solar food dryer, by Scott Englander, Karen Bown and Peter Olson; gardening with developmentally disabled children, by Sara Obern; the Ananda Center, dairy and garden, by Stuart Stotts; growing potatoes in tires with various growth medium, by Rion Pollock and Roger Strittmatter; and use of sludge as a soil additive, by Conrad Driscoll.

(over)
The farm workday resulted in a large amount of effort being put into care of the organic garden, especially composting and mulching. Produce was harvested for immediate use, drying and canning, and sold to the farmers' market and on campus. A winter garden was planned and planting was begun.

Students also worked on various construction projects on the farm, on landscaping the new farmhouse and on completion of the updated farm plan.

Students continued to keep notebooks and journals concerning program activities.
Appendix L

Results of TESC Organic Farm Land Use Questionnaire

Total questionnaires completed and returned: 103

1. What is your age and sex?

<table>
<thead>
<tr>
<th>age/sex</th>
<th>M</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-17</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18-25</td>
<td>35</td>
<td>33</td>
<td>68</td>
</tr>
<tr>
<td>26-35</td>
<td>12</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>36-50</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>51-65</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>66+</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>54</td>
<td>49</td>
<td>103</td>
</tr>
</tbody>
</table>

2. What is your occupation?

- Student: 61
- Faculty, teacher: 5
- Other professional: 20
- Manual, blue collar: 10
- Homemaker: 4
- Unemployed: 3
- Retired: 2
- Bum: 1
- Revolutionary: 1
- No Response: 6

3. How would you categorize your living environment?

<table>
<thead>
<tr>
<th></th>
<th>Past</th>
<th>Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural, farm</td>
<td>13</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>Rural, Non-farm</td>
<td>20</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Small Town</td>
<td>24</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Suburban</td>
<td>38</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Urban</td>
<td>37</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Don't Know</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Transient</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

4. Have you heard of the T.E.S.C. Organic Farm?

- Yes 102
- No 1

If Yes, when?

<table>
<thead>
<tr>
<th>Year</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>8</td>
</tr>
<tr>
<td>1978</td>
<td>29</td>
</tr>
<tr>
<td>1977</td>
<td>21</td>
</tr>
<tr>
<td>1976</td>
<td>19</td>
</tr>
<tr>
<td>1975</td>
<td>7</td>
</tr>
<tr>
<td>1974</td>
<td>7</td>
</tr>
<tr>
<td>1973</td>
<td>2</td>
</tr>
<tr>
<td>1972</td>
<td>5</td>
</tr>
<tr>
<td>1971</td>
<td>2</td>
</tr>
</tbody>
</table>

Years not indicated: 2
5. Have you ever visited the Organic Farm: Yes: 94 No: 9

A. If yes, Why?
 - Academic work 34
 - Curiosity 65
 - Workshops 13
 - Recreation 31
 - Community Garden Plot 19
 - Social 34
 - To buy produce/plants 12
 - Other 30

B. If no, why not?
 - Didn’t know where it is. 3
 - Didn’t know it was open to the Public: 2
 - No reason to: 1
 - Lack of time: 4
 - Other: 2

6. Which of the following resources at the Organic Farm:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Have you Used?</th>
<th>Would you like to use?</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garden Space</td>
<td>32</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Meeting Space</td>
<td>42</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Other Facilities</td>
<td>18</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Library/Information</td>
<td>27</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Recreation</td>
<td>34</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Workshops</td>
<td>21</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Research Center</td>
<td>13</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Arts/Crafts</td>
<td>11</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Which of the following programs:

<table>
<thead>
<tr>
<th>Program</th>
<th>Have you heard about?</th>
<th>Were you involved with?</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back to the Land</td>
<td>43</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Good Earth I</td>
<td>46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Good Earth II</td>
<td>45</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Gardening</td>
<td>52</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>As You Sow</td>
<td>77</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Individual Contract</td>
<td>19</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>No Response</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Which areas would you like to see covered by academic activities using the Organic Farm?

<table>
<thead>
<tr>
<th>Area</th>
<th>Research</th>
<th>Full Time Studies</th>
<th>Part Time/Evening Studies</th>
<th>Workshops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Farming</td>
<td>72</td>
<td>70</td>
<td>53</td>
<td>33</td>
</tr>
<tr>
<td>Organic Gardening</td>
<td>67</td>
<td>68</td>
<td>58</td>
<td>71</td>
</tr>
<tr>
<td>Forestry</td>
<td>43</td>
<td>41</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>Land Use</td>
<td>46</td>
<td>52</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>Field Biology</td>
<td>49</td>
<td>48</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>Livestock</td>
<td>37</td>
<td>37</td>
<td>34</td>
<td>37</td>
</tr>
</tbody>
</table>
Should there be a permanent faculty position at T.E.S.C. in agriculture?

Yes: 89 (6 wanted more than one faculty)
No: 2
Don't Know: 8
No Response: 4

10. Do you think the Organic Farm should sell produce?

A. At the Olympia Farmers Market: 91
B. The FOOD COOP: 80
C. Only on campus 0
 (Misleading wording: 46 marked on campus, with others, or crossed out 'only')
D. Not at all 0
 Don't Know: 2
 No Response: 6
 If Surplus: 2

11. Check the following categories that you think should fund the Organic Farm?

A. School I. Academic: 87
 II. S & A 47 don't know 4
 III. Facilities 54 don't know 4

B. Self sufficiency (marked only this) 2

B. Self sufficiency (marked with others) 37
 Not self sufficiency: 2
 Ideal, work toward it: 3
 Sell produce: 3
 Bake sales, fund raisers: 3
 No produce sales: 4

C. Grants: 43

D. Other 8
 (trust fund private grants; wherever can get it; do research for money; federal grants; corporate grants; private donations)

12. The present policy at the Organic Farm is not to use chemical fertilizers, herbicides, or pesticides Do you agree with that policy?

Yes: 87 (yes with qualifications, 4, partial, chemical research; 2)
No: 1
Don't know: 3
No response: 6
13. Are there any other areas that should be considered for the F.P.?

Don't Know: 6
No Response: 62

- Broaden the farm's boundaries
- Expansion of farming area
- An outdoor jacuzzi
- More workshops for those not in agr. programs
- Use of farm house and tools
- The old farm house must stay
- Allow for flexibility
- How to use produce more effectively (no waste)
- Caretaker policy (i.e. how many, what responsibilities, what will happen to the old building)
- Take no direction from the administration, set revolutionary objectives for program content
- Publicize success if produce grown organic in large scale
- On campus (inexpensive) organic restaurant using farm produce
- The old experimental house on the bay
- Garden space allocations, use policies
- Choosing caretaker's policy is poor and cuts out very potential people
- Any building, construction should be geared towards appropriate energy and technology
- Training in use of intermediate scale farm technology
- The use of the farm's equipment for areas other than farm (rent at fee or exchange st. i.d. or drivers license)
- Continuing faculty and curriculum and student recruitment
- Other elements of soil conservation
- Machinery, caretakers
- Don't start anything new until present projects are complete; landscaping, solar greenhouse, also have three caretakers, each responsible for special area

14. How do you think the O.F. could serve the Olympia community better?

Don't Know: 3
No Response: 30

- Workshops, research, grow local variety of seeds for sale, become viable then people will respect the place and come visit
- More communication of workshops and events, more workshops advertising of availability of garden plots
- More publicity
- Sell produce, organize community as experimentation
- Show them what they do, how they do it, benefits and how others can garden, etc.
- Offer advising service for home gardeners, publicize farm activities through organic media
- Food production
- Bus senior citizens and kids out for garden plots
- Hold workshops in the community
- A source of alternative information and as a living and working example of farming and gardening technology
- By including the community, clean up surroundings, provide for information and community activities about gardening
- Sell produce at the farmers market
14. Continued

- Publishing papers, contributing to farm garden mags
- Hands on experience/better ways to garden, teach how to propagate and collect seeds
- Better signs to the Organic Farm
- Evening garden classes
- Have local farmers work with Organic Farm
- Sell produce at roadside stands, and shopping malls
- Part time (mod) organic gardening classes
- Publicized tours
- Informational resource for ag. political issues
- A library and availability of research reports
- Have evening class on Organic Farm
- More visibility and education in alt. gardening/farming
- Helping with com. gardens
- Assistance to senior citizens
- Open house
- Get some sheep, move weaving equipment from lab II, hire a weaver to develop program in spinning nat dyes, weaving, the Oly com. has many interested weavers (lights in lab building aren't good)
- More support from administration, which in turn would yield support and communication/acknowledgement from community
- Prove that it can pay for itself and produce better quality produce for less cost
- By combining their philosophy with other programs and becoming famous and incredible
- Grow more produce
- More space for community gardens
- Have tours

15. What do you see as strengths of the organic farm?

Don't Know: 2
No Response: 31

- Location, new building, the fact that it is organic (for study, etc.)
- acquainting students with small and diverse practices
- Accessibility of garden plots to students
- Provides alternative study that is not available elsewhere, can serve as a place of experimentation
- Community garden space
- Helping new generation to produce their food from the land, backyard gardens is a lost art for new kids
- Personal enrichment
- Practical application of knowledge
- Make people more aware of conservation
- One of Evergreen's best academic, recreational research and community service resources
- Gardening and alternative energy
- Few students interested
- Climate, geology, funkiness and cool people
- Beautiful garden and greenhouse, nice location and no pesticides
- The type of people that run it
- Center for meetings and exchange in the school/community
15. Continued

- A willingness to help others and creating an atmosphere of optimism by the people running it
- A large area well utilized
- Functions well with student input
- Space for students to become introduced to farming as a lifestyle
- Being part of an accredited college
- Viability of control of food sources
- Its facilities, and philosophies and as a meeting space and a learning space and laboratory
- Freedom to experiment and experience in farm management
- The land being available and students working there
- Very inspiring
- Its presence and potential
- It works, it produces, it's needed
- Learning by doing
- It's organic
- Healthy approach
- Comfortable warm atmosphere
- Sensible dedicated people, working for experience, more than credit
- Its separation from the institutionalized campus setting
- Allows human contact with the soil
- Lack of high technology
- Student-run
- A lot of people involved in the program
- Everything
- Diversity of projects that can go on there
- Hard working people there
- Potential to bring Olympia Community to Evergreen

16. What do you see as its weakness?

A. Administration, Support

2 Nothing
32 No Response
5 Don't Know
13 Lack of continuity in institutional commitment, faculty, staff and students
7 Lack of Administrative support
4 Lack of full time, permanent faculty
7 Inadequate budget
7 Lack of organization, coordination in planning
1 The school owns it
1 More support from Olympia and Evergreen

B. Academic Program and Planning

5 Lack of Academic support
1 Not viewed as serious study
4 Lack of long term plan, researched
1 Inability to complete projects
4 Lack of full time, permanent faculty
1 Doesn't consider large-scale, commercial organic farming
2 Should put out progress reports
1 Lack of livestock
1 Need part time programs
1. Not enough scientific direction
1. Need someone with years of local farming experience
1. Do more professional job of gardening

23 Total

C. Communications, Publicity

11. Lack of public knowledge needs more publicity
5. Too isolated geographically
4. More communication within TESC community
1. Lack ties with rest of school
1. Students lack voice on main campus
2. Community outreach
1. Need more signs explaining activities

25 Total

D. Image

2. Not really run as farm or prototype farm
1. Self learning dispenses goals
1. Not viewed as serious study
1. Elitist atmosphere
1. Name too limiting, too communal
1. Spaced out rainbow granola heads playing "Back to the Land"
2. Students too self-righteous and pompous
1. Reputation for attracting 'space-cadets'
1. Lack of political consciousness about needs of small agric. in future
1. Alienation to newcomers
1. Need to broaden perspective and be challenged
1. Need to clean up the act
1. Social pressures

15 Total
Key

<table>
<thead>
<tr>
<th>Botanical Name (Common Name)</th>
<th>Features</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN Cornus nutallii (Pacific Dogwood)</td>
<td>Spring Fall bloom, Fall fruit</td>
<td>Irrigate infrequently in summer, Slow growing to go, Berries toxicate birds (winter)</td>
</tr>
<tr>
<td>QC Quercus garryana (Garry Oak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS Sorbus sitchensis (Mountain Ash)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Acer circinatum (Vine Maple)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC Ficus carica 'Latterula'; 'Negronne' (Fig)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE Pinus edulis (Nut Pine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV Prunus virginiana (Chokecherry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT Gaultheria tricanthos (Honey Locust)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB Taxus brevifolia (Pacific Yew)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM Rhododendron macrophyllum (Rhododendron)</td>
<td>Pink bloom may - June</td>
<td>State flower of Washington, Erect growth, deciduous</td>
</tr>
<tr>
<td>RO Rhododendron occidentale (Mt. Azalea)</td>
<td>White, fragrant bloom, Fall color</td>
<td>Needs irrigation in summer, needs irrigation in summer, varieties 'Jersy', 'Dixi' rec'd.</td>
</tr>
<tr>
<td>SC Sambucus callicarpa (Red Elderberry)</td>
<td>Spring bloom, Inedible fruit</td>
<td></td>
</tr>
<tr>
<td>VC Vaccinium corymbosum (Blueberry)</td>
<td>Spring bloom, Fruit, Fall color</td>
<td></td>
</tr>
<tr>
<td>CQ Cornus stolonifera (Osier Dogwood)</td>
<td>Summer bloom, Red twigs</td>
<td></td>
</tr>
<tr>
<td>OC Osmanthus Cerasiformus (Indian Pim)</td>
<td>First spring leaves, fruit</td>
<td></td>
</tr>
<tr>
<td>PG Philadelphus Gordonianus (Mock Orange)</td>
<td>Early summer fragrant bloom</td>
<td></td>
</tr>
<tr>
<td>HD Holodiscus discolor (Ocean Spray)</td>
<td>Early leaf, Long lasting bloom</td>
<td></td>
</tr>
<tr>
<td>RN Rosa nutkana (Wild Rose)</td>
<td>Single pink bloom, Rose hips</td>
<td></td>
</tr>
<tr>
<td>MA Mahonia aquifolium (Oregon Grape)</td>
<td>Spring bloom, Yellow, Edible fruit</td>
<td></td>
</tr>
<tr>
<td>FM Arctostaphylos columbiana (Manzanita)</td>
<td>Red bark, fruit, Grey foliage</td>
<td></td>
</tr>
<tr>
<td>MC Myrica Californica (Pacific Myrtle)</td>
<td>Purple fruit, Evergreen</td>
<td></td>
</tr>
<tr>
<td>ES Chamaemeles speciosa (Quince)</td>
<td>Red bloom, Early spring, fruit</td>
<td></td>
</tr>
<tr>
<td>Ground Covers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT Sedum spathulifolium (Stonecrop)</td>
<td>Yellow bloom, Blue-green leaf</td>
<td>Succulent, needs little water, mulch to control weeds</td>
</tr>
<tr>
<td>AU Arctostaphylos uva-ursi (Kinnikinnick)</td>
<td>White, pink bloom, Spring, Red fruit</td>
<td>Corrective prune annually</td>
</tr>
<tr>
<td>HH Hedera helix (English Ivy)</td>
<td>Evergreen vine, Fast growing</td>
<td></td>
</tr>
<tr>
<td>FC Fragaria chilensis (Wild Strawberry)</td>
<td>Leaves red in winter, Fall fruit</td>
<td>Irrigate, Feed, Mulch, requires irrigation in drought</td>
</tr>
<tr>
<td>MN Mahonia nervosa (Longleaf Mahonia)</td>
<td>Yellow bloom, Late spring, Low</td>
<td></td>
</tr>
</tbody>
</table>