
OOP Week 4 1

Object Oriented Programming in Java
Monday, Week 4

• Last week’s asst.
– rating….

• This week’s asst.

OOP Concepts

• Inheritance & Substitutability

• Method overriding

• subclass vs. subtype

• Solitaire class hierarchy

• Polymorphism
• Reading Budd, Ch 8, 9, 13
• Asst (due Tuesday, October 23)

Ch. 9: Exercises 1, 2a 2b
Ch. 13: Exercises 1,2,3 (4 optional)

OOP Week 4 2

Inheritance Revisited

• (almost) Everything is an Object: The class
Object is a superclass of all Java classes.
– All classes inherit a common base functionality from

the Object class.

– A variable of type Object can refer to any Java object
type.

– overriding the methods inherited from Object allows
customization of the basic behavior.

OOP Week 4 3

Substitutability
• Substitutability implies that a subclass object can

be substituted for an object of any of its
superclasses with no observable differences in
behavior.

• By allowing superclass variables to refer to all
subclass types, Java implicitly assumes the
subclasses are substitutable for the superclass.

public class Solitaire {
static public CadPile allPiles []’
static public SuitPile suitPile [];

...
allPiles[0] = deckPile = newDeckPile(335,30);
if (allPiles[i].includes(x,y)) ….

OOP Week 4 4

Method Overriding
• Method overriding can cause a subclass to behave

differently than its superclass.

• In this case, the subclass is no longer substitutable
for the superclass.

• Java can’t tell whether a set of classes are really
substitutable or not, so it assumes substitutability.

• Where possible, substitutability should be
maintained.

public class Solitaire {
static public CadPile allPiles []’
static public SuitPile suitPile [];

...
allPiles[0] = deckPile = newDeckPile(335,30);

...
if (allPiles[i].includes(x,y)) ….

OOP Week 4 5

Subclass vs. Subtype
• Subclasses extend their superclass.

• This is mechanically determinable.

• Subtypes are substitutable for their superclass.

• Determining if a subclass is also a subtype is more
difficult to determine -- it depends on
implementation details.

• Can it be mechanically determined?

public class Solitaire {
static public CadPile allPiles []’
static public SuitPile suitPile [];

...
allPiles[0] = deckPile = newDeckPile(335,30);

...
if (allPiles[i].includes(x,y)) ….

OOP Week 4 6

Subtypes via Interfaces
• Interfaces enforce a set of behaviors.

• An interface is a set of behaviors that is defined
but not implemented

• Classes that implement a common interface can be
subtypes wrt that set of behaviors.

• The subtype relationship depends on the actual
implementations provided.

• An inappropriate implementation can break the
subtype relationship by doing the “wrong thing”
for some of the methods of an interface.

Example….

OOP Week 4 7

Types of Inheritance
• Budd lists six different forms of inheritance:

– specialization

– specification

– construction

– extension

– limitation

– combination

• Inheritance for limitation is usually bad. The
other forms each have valid uses

OOP Week 4 8

Inheritance for Specification
• 2 mechanisms support inheritance for

specification
– interfaces

– abstract classes

• An abstract class defines one or more methods for
which it does not provide an implementation
– objects cannot be created from an abstract class.

– subclasses of an abstract class must provide
implementations for all abstract methods, or they are
also abstract classes.

OOP Week 4 9

Access Modifiers

• Choice of public, protected, private, or package is
important!

• In general, an object’s state information should be
either protected or private.
– private prevents even subclasses from seeing the

information.

• An object’s methods should be public if they
reflect its external interface.

OOP Week 4 10

Other Modifiers

• Final -- can be used to prevent change of a method
or data field.
– A final method cannot be overridden by a subclass.

– A final data field’s value cannot be changed. Such a
field should probably also be static.

• Final can also be used to prevent creation of a
subclass.

OOP Week 4 11

The Solitaire Class Hierarchy

Object

Card CardPile

SuitPile DeckPile DiscardPile TableauPile

• All the pile types share some behaviors
• These are declared final

– top ()
– isEmpty ()
– pop ()

• They cannot be overridden,
and are thus the same for all subclasses.

• 5 methods can be overriden:
– includes ()
– canTake ()
– addCard ()
– display ()
– select ()

OOP Week 4 12

CardPile Contents Management

• A CardPile contains card objects.

• We need the following abilities:
– look at the top card in a pile

– remove the top card in a pile

– add a card to the top of a pile

• The stack data structure is an abstract data
type that stores items LIFO, so Java’s Stack
class is used, declared final.

• Stack extends Vector….
• top
• pop
• push

OOP Week 4 13

Method Overriding Revisited
• The 5 methods for which CardPile provides

default behavior
– includes, canTake, addCard, display, select

are overridden (or not) by subclasses using:
– Replacement

• none of the superclass method’s behavior is used

– Refinement
• the superclass method is invoked with super (a

pseudovariable) and additional behavior is
implemented

super.addCard(aCard);

OOP Week 4 14

Polymorphism in Solitaire
• The Solitaire class uses an array of CardPile

to hold each of the 13 piles of cards.

• TableauPile overrides CardPile’s display()
method.

• The other subclasses use the inherited
method.

• The paint method of the SolitaireFrame
class invokes display() for each element of
the allPiles array.

Find another example of polymorphism in Solitaire

OOP Week 4 15

Asst
• Ch. 9: Exercises 1 (restated)

– Allow the (legal) movement of the top-most card of a tableau pile, even
if there is another face-up card below it.

– Allow the (legal) movement of an entire build, except where the
bottommost face-up card is a King and there are no face-down cards
below it.

– Allow the (legal) movement of a partial build.

To do this, user must tell you if s/he wants to move a single card,
a partial build, or the whole build. Change the UI and tell the
user what to do (in your cover page), e.g.,
– click on a face-down card, or bottom-most face-up card, means “move

entire build”
– click on any other face-up card means “move the build that starts with

this card” (incl. a build of one card)

» Ch. 9: Exercies 2a 2b
» Ch. 13 (the AWT), p. 232 Ex 1, 2. (those looking for

additional challenge, work on 3, 4).

