Object Oriented Programming in Java

Monday, Week 5
OOP Concepts
Substitutability (revisited) * Wednesday:
Inheritance & Composition — Pure polymorphism
Exceptions — overloading
— overriding

Memory management in Java
— Assignment & Equality

 Reading Budd, Ch 10, 11 (today) 12,16 (wed)
e Asst (due Tuesday)

Ch. 9: Exercisesl, 2a2b
Ch. 13: Exercises 1,2,3 (4 optional)

» Asst (due Monday)
OOP Week 51 L aunchAuction classes, attributes & interface

 The VAJDebugger

Substitutability (revisited)
 In Java, we cannot break substitutability
(syntactically).

e To do so, we would have to un-create a method
sighature for asuperclass. Thereisno way to do

this.

 Example: Stack isasubset of Vector.

— Vector has the method elementAt (int)
— we cannot preclude sending the elementAt method to
an instance of Stack!

— We could override elementAt in Stack..., thus causing
It to behave differently from its superclass Vector. This
breaks the spirit of substitutability....

OOP Week 5 2

The Solitaire Class Hierarchy

Object

/
Cad

CardPile

SuitPile

DeckPile

DiscardPile

TableauPile

 All the pile types share some behaviors

 These are declared final

—top ()
—IisEmpty ()

—pop ()

e They cannot be overridden,
and are thus the same for all subclasses.

OOP Week 53

* 5 methods can be overriden:
— includes ()
— canTake ()
— addCard ()
— display ()
— select ()

CardPile Contents M anagement

* A CardPile contains card objects.

* \WWe need the following abilities:
— look at thetop card inapile
— remove thetop card in apile
— add acard to thetop of apile

 The stack data structure is an abstract data

type that stores items LIFO, so Java' s Stack
classisused, declared f | nal . :
° Op

e St ack extends Vect or pop
e push

OOP Week 54

Method Overriding Revisited

e The 5 methods for which CardPile provides
default behavior

— Includes, canTake, addCard, display, select

are overridden (or not) by subclasses using:

— Replacement
 none of the superclass method’' s behavior is used

— Refinement

* the superclass method isinvoked with super (a
pseudovariable) and additional behavior is
Implemented

super. addCar d(aCard);

OOP Week 55

Polymorphism in Solitaire

 The Solitaire class uses an array of CardPile
to hold each of the 13 piles of cards.

e TableauPile overrides CardPile’s display()
method.

 The other subclasses use the inherited
method.

e The paint method of the SolitaireFrame
class invokes display() for each element of
the allPiles array.

Find another example of polymorphism in Solitaire
OOP Week 56

Software Reuse
(composition)
 Inheritance isaway to reuse code, SO IS
composition.

o Sometimes either could accomplish the
same objective.

 Inheritance usually assumes substitutability.

e Composition allows code reuse without
substitutability.

OOP Week 57

Composition or Inheritance?

e Useinheritanceif theis-a relationship holds

« Use composition if the has-a relationship

nolds

— Composition Is achieved by using the existing
software (class) as afield in the new software.

— The new class contains areference to the
existing class.

OOP Week 58

Stack using Inheritance

e The Stack classis a subclass of Vector.

 The methods needed for the Stack ADT are
Implemented by the subclass.

* The protected methods of Vector are
availlable within the Stack class.

* The public methods of Vector are available
to users of the Stack class

OOP Week 59

Stack using Composition
(vs. Inheritance)

e \What are the disadvantages of
Implementing Stack as a subset of Vector?

e To implement Stack using Composition
— an Instance of Vector 1s used to hold the data

— The newly defined Stack class provides
Implementations of methods required by the
Stack ADT

— None of the methods of the Vector class are
avallable to subclasses of Stack

OOP Week 510

Composition vs. Inheritance

 With composition, replacement of Vector
by some other existing code is
straightforward.

o With inheritance, it isvery involved to
replace the functionality derived from
Vector with some other existing software.

e Exercisec How would you implement a Stack
class using an array to hold the data?

OOP Week 5 11

Composition vs. | nheritance (cont)

e The behavior of Stack when implemented

by composition is limited to the methods
defined in the Stack class.

* The behavior of Stack when implemented
by inheritance from Vector includes the
behavior of the Vector class.

— The programmer has a more difficult time
determining what the aggregate behavior Is.

— Thisis particularly challenging when the
Inheritance Is not quite appropriate, 1.e., not is-a

OOP Week 512 Which is a better design for Stack?

Dynamic Composition

ChessPieceBehavior

KnightBehavior

QueenBehavior

If a ChessPiecec

ChessPieceBehavior member, dynamic composition

PawnBehavior

ass I1s defined to contain a

can handle the situation that arises when a pawn
reaches the 8th row.

OOP Week 513

}

Publ i c cl ass ChessPi ece {

pri vate ChessPi eceBehavi or pb;

/] constructor initializes with behavi or

/| appropriate to rook, pawn, etc.

public void pronmotePawn () {
if (pb.isPawn ())

pb = new QueenBehavior ();

}

Exceptions
 ...provide aclean way to check for errors
without cluttering code

e ...Signal events at execution that prevent the
program from continuing its normal course.

* A method that could raise an exception must be
Invoked within at r y/ cat ch block.

e An exception is an instance of Thr owabl e,
and Isassigned to e.

* €.0., | ndexQut O BoundsExcepti on, Di vi deByZer oExcepti on

OOP Week 5 14

Exception Handling

}

public final Card pop() {
try {
return (Card) thePile.pop();
}
catch (EnptyStackException e) {
return null:
}
}
try { // Wait 1000 mlli seconds
Thr ead. sl eep(1000) ;
}
catch (InterruptedException e){

Systemerr.println("Interrupted. Exiting.") ;
Systemexit(0) ;

OOP Week 5 15

What happens if you do not catch an exception
thrown by a method you use?

Throwing Exceptions (cont)

Cl ass Stack {
private int index;
private Vector val ues;

(bj ect pop throws Exception {
i f (index < 0)
t hrow new Exception (“pop on enpty stack”);
bj ect result = val ues. el enent At (i ndex);
| ndex- -
return result;

OOP Week 5 16

Throwing Exceptions

aclean way to signal errors.
public void replaceValue (String nane, Object newVal ue)
t hrows NoSuchAttri buteException {
Attr attr = find (nanme);
I f (attr == null)
t hr ow new NoSuchAtri but eExcepti on (nane);
attr. set Val ue(newal ue) ;

public class NoSuchAttri buteException extends Exception {
public String attrNane;
public NoSuchAttri buteException (String nane) {
super (“No attribute naned \“” + nane + “\”"found”);
attr Nane = nane;

}

OOP Week 5 17

}

Y our responsibility....

* |If you invoke amethod that lists a checked
exception in its throws clause, you have 3
choices

— Catch the exception and handle it.

— Catch the exception and map it into one of your
exceptions by throwing an exception of atype

declared in your ownt hr ows clause
— Declare the exception in your t hr ows clause,

and let the exception pass through your method
(although you might haveaf i nal | y clause

that cleans up first....)

OOP Week 5 18

Throwing Exceptions

pass the exception back to the caller....

cl ass Concordance {

public void readLi nes (Datal nputStreami nput) throws | OException {
String delins = “\t\n.,!7?2;:";

for (int line = 1; true; line++) {
String text = input.readLine ();
If (text == null) return;

text = text.toLowerCase ();
Enunmeration e = new StringTokeni zer (text, delins);
whil e (e. hasMoreEl enents ())
enterWord ((String) e.nextElenment (), new Integer (line));

}

What happens if you do not “ throw” the exception?

OOP Week 519

try,catch,andfinally

try {
st at enent s

} catch (exceptionTypel el) {
st at enent s

} catch (exceptionType2 e2) {
st at enent s

} finally {
statenent s

OOP Week 5 20

Asst (due tomorrow 5pm)

 Ch.9: Exercises1 (restated)

— Allow the (legal) movement of the top-most card of atableau pile, even
If there is another face-up card below it.

— Allow the (legal) movement of an entire build, except where the
bottommost face-up card is a King and there are no face-down cards
below it.

— Allow the (legal) movement of apartial build.

To do this, user must tell you if g/he wantsto move a single card,
a partial build, or the whole build. Change the Ul and tell the
user what to do (in your cover page), e.g.,

— click on aface-down card, or bottom-most face-up card, means “move
entire build”

— click on any other face-up card means “move the build that starts with
thiscard” (incl. abuild of one card)

» Ch. 9: Exercies2a2b
OOP Week 521 » Ch. 13: Exercises 1,2,3 (4 optional)

