Object Oriented Programming in Java

Monday, Week 5
OOP Concepts
Substitutability (revisited) * Wednesday:
Inheritance & Composition — Pure polymorphism
Exceptions — overloading
— overriding

Memory management in Java
— Assignment & Equality

 Reading Budd, Ch 10, 11 (today) 12,16 (wed)
e Asst (due Tuesday)

Ch. 9: Exercisesl, 2a2b
Ch. 13: Exercises 1,2,3 (4 optional)

» Asst (due Monday)
OOP Week 51 L aunchAuction classes, attributes & interface

 The VAJDebugger




Substitutability (revisited)
 In Java, we cannot break substitutability
(syntactically).

e To do so, we would have to un-create a method
sighature for asuperclass. Thereisno way to do

this.

 Example: Stack isasubset of Vector.

— Vector has the method elementAt (int)
— we cannot preclude sending the elementAt method to
an instance of Stack!

— We could override elementAt in Stack..., thus causing
It to behave differently from its superclass Vector. This
breaks the spirit of substitutability....
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The Solitaire Class Hierarchy

Object

/
Cad

CardPile

SuitPile

DeckPile

DiscardPile

TableauPile

 All the pile types share some behaviors

 These are declared final

—top ()
—IisEmpty ()

—pop ()

e They cannot be overridden,
and are thus the same for all subclasses.
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* 5 methods can be overriden:
— includes ()
— canTake ()
— addCard ()
— display ()
— select ()




CardPile Contents M anagement

* A CardPile contains card objects.

* \WWe need the following abilities:
— look at thetop card inapile
— remove thetop card in apile
— add acard to thetop of apile

 The stack data structure is an abstract data

type that stores items LIFO, so Java' s Stack
classisused, declared f | nal . :
° Op

e St ack extends Vect or .... . pop
e push
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Method Overriding Revisited

e The 5 methods for which CardPile provides
default behavior

— Includes, canTake, addCard, display, select

are overridden (or not) by subclasses using:

— Replacement
 none of the superclass method’' s behavior is used

— Refinement

* the superclass method isinvoked with super (a
pseudovariable) and additional behavior is
Implemented

super. addCar d(aCard);
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Polymorphism in Solitaire

 The Solitaire class uses an array of CardPile
to hold each of the 13 piles of cards.

e TableauPile overrides CardPile’s display( )
method.

 The other subclasses use the inherited
method.

e The paint method of the SolitaireFrame
class invokes display( ) for each element of
the allPiles array.

Find another example of polymorphism in Solitaire
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Software Reuse
(composition)
 Inheritance isaway to reuse code, SO IS
composition.

o Sometimes either could accomplish the
same objective.

 Inheritance usually assumes substitutability.

e Composition allows code reuse without
substitutability.
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Composition or Inheritance?

e Useinheritanceif theis-a relationship holds

« Use composition if the has-a relationship

nolds

— Composition Is achieved by using the existing
software (class) as afield in the new software.

— The new class contains areference to the
existing class.
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Stack using Inheritance

e The Stack classis a subclass of Vector.

 The methods needed for the Stack ADT are
Implemented by the subclass.

* The protected methods of Vector are
availlable within the Stack class.

* The public methods of Vector are available
to users of the Stack class
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Stack using Composition
(vs. Inheritance)

e \What are the disadvantages of
Implementing Stack as a subset of Vector?

e To implement Stack using Composition
— an Instance of Vector 1s used to hold the data

— The newly defined Stack class provides
Implementations of methods required by the
Stack ADT

— None of the methods of the Vector class are
avallable to subclasses of Stack
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Composition vs. Inheritance

 With composition, replacement of Vector
by some other existing code is
straightforward.

o With inheritance, it isvery involved to
replace the functionality derived from
Vector with some other existing software.

e Exercisec How would you implement a Stack
class using an array to hold the data?
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Composition vs. | nheritance (cont)

e The behavior of Stack when implemented

by composition is limited to the methods
defined in the Stack class.

* The behavior of Stack when implemented
by inheritance from Vector includes the
behavior of the Vector class.

— The programmer has a more difficult time
determining what the aggregate behavior Is.

— Thisis particularly challenging when the
Inheritance Is not quite appropriate, 1.e., not is-a
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Dynamic Composition

ChessPieceBehavior

KnightBehavior

QueenBehavior

If a ChessPiecec

ChessPieceBehavior member, dynamic composition

PawnBehavior

ass I1s defined to contain a

can handle the situation that arises when a pawn
reaches the 8th row.
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}

Publ i c cl ass ChessPi ece {

pri vate ChessPi eceBehavi or pb;

/] constructor initializes with behavi or

/| appropriate to rook, pawn, etc.

public void pronmotePawn ( ) {
if (pb.isPawn ( ) )

pb = new QueenBehavior ( );

}




Exceptions
 ...provide aclean way to check for errors
without cluttering code

e ...Signal events at execution that prevent the
program from continuing its normal course.

* A method that could raise an exception must be
Invoked within at r y/ cat ch block.

e An exception is an instance of Thr owabl e,
and Isassigned to e.

* €.0., | ndexQut O BoundsExcepti on, Di vi deByZer oExcepti on
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Exception Handling

}

public final Card pop() {
try {
return (Card) thePile.pop();
}
catch (EnptyStackException e) {
return null:
}
}
try { // Wait 1000 mlli seconds
Thr ead. sl eep( 1000 ) ;
}
catch ( InterruptedException e ){

Systemerr.println( "Interrupted. Exiting." ) ;
Systemexit( 0 ) ;
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What happens if you do not catch an exception
thrown by a method you use?



Throwing Exceptions (cont)

Cl ass Stack {
private int index;
private Vector val ues;

(bj ect pop throws Exception {
i f (index < 0)
t hrow new Exception (“pop on enpty stack”);
bj ect result = val ues. el enent At (i ndex);
| ndex- -
return result;

OOP Week 5 16



Throwing Exceptions

aclean way to signal errors.
public void replaceValue (String nane, Object newVal ue)
t hrows NoSuchAttri buteException {
Attr attr = find (nanme);
I f (attr == null)
t hr ow new NoSuchAtri but eExcepti on (nane);
attr. set Val ue( newal ue) ;

public class NoSuchAttri buteException extends Exception {
public String attrNane;
public NoSuchAttri buteException (String nane) {
super (“No attribute naned \“” + nane + “\”"found”);
attr Nane = nane;

}
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Y our responsibility....

* |If you invoke amethod that lists a checked
exception in its throws clause, you have 3
choices

— Catch the exception and handle it.

— Catch the exception and map it into one of your
exceptions by throwing an exception of atype

declared in your ownt hr ows clause
— Declare the exception in your t hr ows clause,

and let the exception pass through your method
(although you might haveaf i nal | y clause

that cleans up first....)
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Throwing Exceptions

pass the exception back to the caller....

cl ass Concordance {

public void readLi nes (Datal nputStreami nput) throws | OException {
String delins = “\t\n.,!7?2;:";

for (int line = 1; true; line++) {
String text = input.readLine ( );
If (text == null) return;

text = text.toLowerCase ( );
Enunmeration e = new StringTokeni zer (text, delins);
whil e (e. hasMoreEl enents ( ))
enterWord ((String) e.nextElenment ( ), new Integer (line));

}

What happens if you do not “ throw” the exception?
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try,catch,andfinally

try {
st at enent s

} catch (exceptionTypel el) {
st at enent s

} catch (exceptionType2 e2) {
st at enent s

} finally {
statenent s
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Asst (due tomorrow 5pm)

 Ch.9: Exercises1 (restated)

— Allow the (legal) movement of the top-most card of atableau pile, even
If there is another face-up card below it.

— Allow the (legal) movement of an entire build, except where the
bottommost face-up card is a King and there are no face-down cards
below it.

— Allow the (legal) movement of apartial build.

To do this, user must tell you if g/he wantsto move a single card,
a partial build, or the whole build. Change the Ul and tell the
user what to do (in your cover page), e.g.,

— click on aface-down card, or bottom-most face-up card, means “move
entire build”

— click on any other face-up card means “move the build that starts with
thiscard” (incl. abuild of one card)

» Ch. 9: Exercies2a2b
OOP Week 521 » Ch. 13: Exercises 1,2,3 (4 optional)




