
OOP Week 5 1

Object Oriented Programming in Java
Monday, Week 5

• Wednesday:
– Pure polymorphism

– overloading

– overriding

• The VAJ Debugger

OOP Concepts

• Substitutability (revisited)

• Inheritance & Composition

• Exceptions

• Memory management in Java
– Assignment & Equality

• Reading Budd, Ch 10, 11 (today) 12,16 (wed)
• Asst (due Tuesday)

Ch. 9: Exercises 1, 2a 2b
Ch. 13: Exercises 1,2,3 (4 optional)

• Asst (due Monday)
LaunchAuction classes, attributes & interface

OOP Week 5 2

Substitutability (revisited)
• In Java, we cannot break substitutability

(syntactically).
• To do so, we would have to un-create a method

signature for a superclass. There is no way to do
this.

• Example: Stack is a subset of Vector.
– Vector has the method elementAt (int)

– we cannot preclude sending the elementAt method to
an instance of Stack!

– We could override elementAt in Stack…, thus causing
it to behave differently from its superclass Vector. This
breaks the spirit of substitutability….

OOP Week 5 3

The Solitaire Class Hierarchy

Object

Card CardPile

SuitPile DeckPile DiscardPile TableauPile

• All the pile types share some behaviors
• These are declared final

– top ()
– isEmpty ()
– pop ()

• They cannot be overridden,
and are thus the same for all subclasses.

• 5 methods can be overriden:
– includes ()
– canTake ()
– addCard ()
– display ()
– select ()

OOP Week 5 4

CardPile Contents Management

• A CardPile contains card objects.

• We need the following abilities:
– look at the top card in a pile

– remove the top card in a pile

– add a card to the top of a pile

• The stack data structure is an abstract data
type that stores items LIFO, so Java’s Stack
class is used, declared final.

• Stack extends Vector….
• top
• pop
• push

OOP Week 5 5

Method Overriding Revisited
• The 5 methods for which CardPile provides

default behavior
– includes, canTake, addCard, display, select

are overridden (or not) by subclasses using:
– Replacement

• none of the superclass method’s behavior is used

– Refinement
• the superclass method is invoked with super (a

pseudovariable) and additional behavior is
implemented

super.addCard(aCard);

OOP Week 5 6

Polymorphism in Solitaire
• The Solitaire class uses an array of CardPile

to hold each of the 13 piles of cards.

• TableauPile overrides CardPile’s display()
method.

• The other subclasses use the inherited
method.

• The paint method of the SolitaireFrame
class invokes display() for each element of
the allPiles array.

Find another example of polymorphism in Solitaire

OOP Week 5 7

Software Reuse
(composition)

• Inheritance is a way to reuse code, so is
composition.

• Sometimes either could accomplish the
same objective.

• Inheritance usually assumes substitutability.

• Composition allows code reuse without
substitutability.

OOP Week 5 8

Composition or Inheritance?

• Use inheritance if the is-a relationship holds

• Use composition if the has-a relationship
holds
– Composition is achieved by using the existing

software (class) as a field in the new software.

– The new class contains a reference to the
existing class.

OOP Week 5 9

Stack using Inheritance

• The Stack class is a subclass of Vector.

• The methods needed for the Stack ADT are
implemented by the subclass.

• The protected methods of Vector are
available within the Stack class.

• The public methods of Vector are available
to users of the Stack class

OOP Week 5 10

Stack using Composition
(vs. inheritance)

• What are the disadvantages of
implementing Stack as a subset of Vector?

• To implement Stack using Composition
– an instance of Vector is used to hold the data

– The newly defined Stack class provides
implementations of methods required by the
Stack ADT

– None of the methods of the Vector class are
available to subclasses of Stack

OOP Week 5 11

Composition vs. Inheritance

• With composition, replacement of Vector
by some other existing code is
straightforward.

• With inheritance, it is very involved to
replace the functionality derived from
Vector with some other existing software.

• Exercise: How would you implement a Stack
class using an array to hold the data?

OOP Week 5 12

• The behavior of Stack when implemented
by composition is limited to the methods
defined in the Stack class.

• The behavior of Stack when implemented
by inheritance from Vector includes the
behavior of the Vector class.
– The programmer has a more difficult time

determining what the aggregate behavior is.

– This is particularly challenging when the
inheritance is not quite appropriate, i.e., not is-a

Composition vs. Inheritance (cont)

Which is a better design for Stack?

OOP Week 5 13

Dynamic Composition

If a ChessPiece class is defined to contain a
ChessPieceBehavior member, dynamic composition
can handle the situation that arises when a pawn
reaches the 8th row.

ChessPieceBehavior

KnightBehavior QueenBehavior PawnBehavior

Public class ChessPiece {
private ChessPieceBehavior pb;
// constructor initializes with behavior
// appropriate to rook, pawn, etc.

public void promotePawn () {
if (pb.isPawn ())

pb = new QueenBehavior ();
}

}

OOP Week 5 14

Exceptions
• …provide a clean way to check for errors

without cluttering code

• …signal events at execution that prevent the
program from continuing its normal course.

• A method that could raise an exception must be
invoked within a try/catch block.

• An exception is an instance of Throwable,
and is assigned to e.

• e.g., IndexOutOfBoundsException, DivideByZeroException

OOP Week 5 15

Exception Handling
public final Card pop() {

try {
return (Card) thePile.pop();

}
catch (EmptyStackException e) {

return null;
}

}

try { // Wait 1000 milliseconds
Thread.sleep(1000) ;
}

catch (InterruptedException e){
System.err.println("Interrupted. Exiting.") ;
System.exit(0) ;
}

What happens if you do not catch an exception
thrown by a method you use?

OOP Week 5 16

Throwing Exceptions (cont)

Class Stack {

private int index;

private Vector values;

. . .

Object pop throws Exception {

if (index < 0)

throw new Exception (“pop on empty stack”);

Object result = values.elementAt (index);

index--;

return result;

}

OOP Week 5 17

Throwing Exceptions
a clean way to signal errors.
public void replaceValue (String name, Object newValue)

throws NoSuchAttributeException {

Attr attr = find (name);

if (attr == null)

throw new NoSuchAtributeException (name);

attr.setValue(newValue);

}

public class NoSuchAttributeException extends Exception {

public String attrName;

public NoSuchAttributeException (String name) {

super (“No attribute named \“” + name + “\”found”);

attrName = name;

}

}

OOP Week 5 18

Your responsibility….
• If you invoke a method that lists a checked

exception in its throws clause, you have 3
choices
– Catch the exception and handle it.

– Catch the exception and map it into one of your
exceptions by throwing an exception of a type
declared in your own throws clause

– Declare the exception in your throws clause,
and let the exception pass through your method
(although you might have a finally clause
that cleans up first….)

OOP Week 5 19

Throwing Exceptions
pass the exception back to the caller….

class Concordance {

public void readLines (DataInputStream input) throws IOException {

String delims = “\t\n.,!?;:”;

for (int line = 1; true; line++) {

String text = input.readLine ();

if (text == null) return;

text = text.toLowerCase ();

Enumeration e = new StringTokenizer (text, delims);

while (e.hasMoreElements ())

enterWord ((String) e.nextElement (), new Integer (line));

}

}

. . .

}

What happens if you do not “throw” the exception?

OOP Week 5 20

try, catch, and finally

try {

statements

} catch (exceptionType1 e1) {

statements

} catch (exceptionType2 e2) {

statements

. . .

} finally {

statements

}

OOP Week 5 21

Asst (due tomorrow 5pm)
• Ch. 9: Exercises 1 (restated)

– Allow the (legal) movement of the top-most card of a tableau pile, even
if there is another face-up card below it.

– Allow the (legal) movement of an entire build, except where the
bottommost face-up card is a King and there are no face-down cards
below it.

– Allow the (legal) movement of a partial build.

To do this, user must tell you if s/he wants to move a single card,
a partial build, or the whole build. Change the UI and tell the
user what to do (in your cover page), e.g.,
– click on a face-down card, or bottom-most face-up card, means “move

entire build”

– click on any other face-up card means “move the build that starts with
this card” (incl. a build of one card)

» Ch. 9: Exercies 2a 2b
» Ch. 13: Exercises 1,2,3 (4 optional)

